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Abstract
The increasing number of physical phenomena, such as the Dark Matter, as well as the difficulties to understand the
enormous distances in the Universe, encourages one to formulate matter description that goes beyond the Standard Model.
Here we present the description of ordinary and novel (some as Dark Matter) particles through the bicubic equation
limiting velocity solutions, globally denoted as, c1, c2 and c3, (primary, secondary and tertiary). These solutions depend
on the congruent parameter z = 3

√
3mv2/2E which connect them to m, v, and E , respectively being particle mass,

velocity and energy. When the bicubic equation discriminant D and z satisfy D ≤ 0, z2 ≤ 1, the limiting velocities
describe ordinary particles (electron, neutrino, etc.) and when D ⪰ 0, z2 ⪰ 1 limiting velocities describe the novel (some
as Dark Matter), yet to be directly observed particles. At z = 1 ordinary particles with c1, c2 and c3 (primary, secondary
and tertiary) transit from, z2 ≤ 1 into novel (some as Dark Matter) patrticles, z2 ⪰ 1 with the same values at z = 1 for
novel particle limiting velocities Rc1, Rc2 and c3 (primary, secondary and tertiary).The ordinary tertiary particle limiting
velocity c3 and novel primary plus secondary particle limiting velocities Rc1 and Rc2 are convenient to be deduced from
maximum particle velocities. The velocity of the neutrino with v = c is a good example for c3 = c,while, with the
assumption that a novel particle maximum velocity is, say, v = c•, which leads to Rc1 and Rc2 = c• . Hopefully, it
may turn out that also c• = c. An example of a lethargic low energy novel particle appears to be a good candidate for
gravitational Dark Matter particle.
Keywords: limiting velocity, real energy, congruent parameter, novel particle, DM particle

1. Introduction

Just the difficulty to explain the distances in the Universe, lead some people to the need that possibly one should introduce
new kind of particles and interactions (K. Dawson and W. Percival, 2021). This particularly so since many cosmological
observations, such as Dark Matter (DM), indicate that description of matter goes beyond the Standard Model. As a conse-
quence, may new ideas flourished about existence of new particles in the Universe. Although they are definitely there in
the Universe, nobody as yet has identified any of them. Many new theories are still flourishing about their existance. Here
we wish to present description of ordinary and novel (some as DM) particles, through their limiting velocities. Hopefully,
if not presently, this theory eventually may yield desired results.

By upgrading the usual relativistic kinematics (Šoln, J., 2014-2021), one ends up with the bicubic equation for particle
limiting velocity c

(
c2

v2

)3

−
(

E

mv2

)2 (
c2

v2

)
+

(
E

mv2

)2

= 0. (1)

where E, m and v2 were respectively real particle energy, constant (real) mass and real velocity squared. One can simplify
equation (1) with introducing real congruent parameter z (z∗ = z),

z =
3
√
3mv2

2E
,E =

3
√
3mv2

2z
(2)

The three limiting velocity solution squares can be cast symbolically into two categories, all real c2∗i = c2i or some complex
c2∗i ̸= c2i (i = 1, 2, 3). On general grounds, the three solutions are also categorized by the discriminant D through the
energy E together with particle mass m and velocity squared v2 or simply the congruent parameter z :
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D =
1

4

(
E

mv2

)4
[
1− 4

27

(
E

mv2

)2
]

(3)

=

(
27

8

)2
1

z4

(
1− 1

z2

)
,

From (3) we have

Ordinary particles : D(⪯ 0, z2 ⪯ 1, c2∗i = c2i ,

E =
3
√
3mv2

2z
⪰ 3

√
3mv2

2
(3.1)

Novel particles : D(⪰ 0, z2 ⪰ 1, c2∗i ̸= c2i ,

E =
3
√
3mv2

2z
⪯ 3

√
3mv2

2
(3.2)

As we wish to establish space-time connections for limiting velocities from bicubic equation, in what follows we use
global notations without detailed specifications. For instance acceptable real limiting velocity squares we denote simply
c2i without specifying i. For a particle with an exact mass m its inertial mass m is defined with

E(ci) = m(ci) (±c2i ), c
2∗
i = c2i (4.1)

m(ci) = γ(ci)m (4.2)

where
±c2i is allowed by the bicubic equations and γ(ci) is the inertial scaling factor. For ordinary particles (4.1,2) are satisfied
as written. For novel particles, however, with the help from the IRC Imaginary-Reality connection, that follows from
the bicubic limiting velocity solutions, the complex limiting velocity squares are reduced to three real squares of limiting
velocities Rc21, Rc22 and c23. The γ inertial scaling factors can be derived for both the ordinary, z ⪯ 1, and novel, z ⪰ 1,
particle cases from the limiting velocity solutions. It is customary to write the particle energy in terms of a proper mass m
together with explicit expression of the inertial scaling factor γ factor, rather than in terms just of inertial mass m.

As shown in (Šoln, J., 2021), on the global level, already from (1) we can deduce for ordinary particles with z2 ⪯ 1,
c2∗i = c2i the scaling factors in Lorentzian forms by simply transforming (1) into

z2 ⪯ 1, c2∗i = c2i : m2c4i − E2 + E2 v
2

c2i
= 0,

E =
3
√
3mv2

2z
=

mc2i
(1− v2/c2)

1
2

= γ÷(ci)mc2i = m÷(ci)c
2
i ,

γ÷(ci) = (1− v2/c2)−
1
2 , z =

3
√
3v2

2γ÷(ci)c2i
⪯ 1 (5)

Where with the small ÷ above the symbols of both the energy and the inertial scaling factors indicate that they are in
the Lorentzian forms. Later on, numerically equivalent scaling factor expressions for ordinary particles, z2 ⪯ 1, will be
given with the limiting velocity solutions, as derived in (Šoln, J., 2016). However, when z2 ⪰ 1, for novel particles the
inertial scaling factors can be calculated only from bicubic equation,with the IRC Imaginary-Reality connection for now
real limiting velocity squares Rc21, Rc22 and c23.

As we see from (5), the congruent parameter z, particle velocity −→v , and limiting velocity ci are all interdependent. The
definition of the inertial scaling factor came quite naturally for each limiting velocity ci.For both ordinary, z2 ⪯ 1, and
novel, z2 ⪰ 1, particles the knowledge of the inertial scaling factors γ allow the particle limiting velocities to establish
space-time connection. Here we do that by adopting the formalism of Relativistic Dynamics as appearing in (Sard, R. D.,
1970, Barut, A. D., 1964 and Griffiths, D., 1987).
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To continue, we notice that a particle with exact (proper) mass m in the inertial time t moves with the velocity −→v =
d−→x /dt. The inertial time interval △ t and the proper time interval △ τ are related as △ t =γ △ τ . Then the proper
velocity −→η = d−→x /dτ is related to particle velocity as −→η = γ−→v ; this can be generalized for each particle associated
with a limiting velocity ci into a four-vector form via the inertial factor γ(ci), ηµ(ci) = dxµ/dτ =γ(ci)(ci, vx, vy, vz) =
γ(ci)(ci, v1, v2, v3) = γ(ci)(ci,

−→v ), with x0(ci) = cit and we wrote η0(ci) = dx0(ci)dτ = γ(ci) dx0(ci)/dt =
γ(ci)ci.Already here we wrote some expressions that utilize the 4 by 4 Minkowski metric whose diagonal values are
gµν = (1,−1,−1,−1) : g00 = −gii = 1, gµν = 0, µ ̸= ν, xµ = (x0, x1, x2,x3) = (x0,−x1,−x2,−x3), xµ =
gµυx

ν .; gµν = gµρgρσg
σν , gµσ = δµσ; xy = xµgµνy

ν = xµg
µνyν = x0y0 − x1y1 − x2y2 − x3y3. Specifically,

ηµ(ci)ηµ(ci) = η02(ci) − −→η 2(ci) = γ2(ci)(c
2
i −

−→v 2), which according to (5) suggests that the energy of an ordinary
particle, is expressible in the Lorentzian form. This, as we shall see is consistent with the form derivable directly from
the bicubic equation (Šoln, J., 2016). As long as c2i −

−→v 2 ≻ 0, ηµ(ci) is a time-like four-vector. A four-vector xµ is
respectively: x2 ≻ 0, is time-like, x2 = 0, is light-like or null vector, x2 ≺ 0, is space-like.

At this point we give some general characteristics for limiting velocity solutions. For ordinary particles, z ⪯ 1, the
limiting velocities satisfy: c21 ⪰ 0 , c22 ≤ 0 and c23 ⪰ 0 . For novel particles, z ≻ 1 with associated congruent angle
α ⪯ π

2 ,the limiting velocities satisfy: Rc21 ⪰ 0, Rc22 ⪰ 0 and c23 ≤ 0 . And the inertial masses with inertial scaling factor
are respectively:

m( c21, c
2
2, c

2
3) = γ( c21, c

2
2, c

2
3)m and m(Rc21, Rc22, c

2
3) = γ(Rc21, Rc22, c

2
3)m and for both cases are derivable with he

help of limiting velocity solutions.

As noted in (Šoln, J, 2021) by utilizing the Cardano’s formula (Rade, L., Westegren, B., 1999) on page 56, one deduces
that, with the help of the congruent parameter z, limiting velocities can be expressed globally in forms of Limiting Velocity
Algebras:

c21 + c22 + c23 = 0,

Rc21 +Rc22 + c23 = 0. (5.1)

c21c
2
2c

2
3 = −

(
Ev

m

)2

= −27v6

4z2

′

z2 = − 27v6

4c21c
2
2c

2
3

. (5.2)

c21c
2
2 + c21c

2
3 + c22c

2
3 = −

(
E

m

)2

= −27v4

4z2
,

z2 =
−27v4

4 (c21c
2
2 + c21c

2
3 + c22c

2
3)
. (5.3)

c41 + c42 + c43 = 2

(
E

m

)2

=
27v4

2z2
,

z2 =
27v4

2 (c41 + c42 + c43)
. (5.4)

The ordinary particle limiting velocity c3 and novel (which may be DM) particle limiting velocities Rc1 and Rc1, defined
as Rc1,2 ≡ +

√
Rc21,2, are the only ones to be deduced with, respectively, maximum particle velocities, say v = c and

v = c• , yielding the maximum values of unity 1 , respectively for, v/c3 and v/ Rc1,2, as is done in the Numerology
Section. The ordinary limiting velocity c3 is known to be c from the neutrino maximum velocity of v = c, as argued
in (Šoln, J., 2014, 2021). It is likely that c• of Rc1 and Rc2 is also c. As to other limiting velocities, one can resort to
Limiting Velocity Algebras (5.1, 2, 3, 4) to find their possible values and roles in the theory.

2. Ordinary Particle Inertial Masses From Their Limiting Velocities and Space-time Connection

As indicated in the introduction, the ordinary particle limiting velocitiy solutions of (1) with the discriminant D ⪯ 0 and
the congruent parameter z ⪯ 1 yield three squares of real particle limiting velocity solutions (Šoln, J., 2014-2021):
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c21
v2

=
3

z
sin

[
1

3

(
π − sin−1 z

)]
≻ 0; (6.1)

c22
v2

= −3

z
sin

[
1

3
(π + sin−1 z)

]
≺ 0; (6.2)

c23
v2

=
3

z
sin

[
1

3
sin−1 (z)

]
≻ 0. (6.3)

The fundamental energy expression in (2) suggests to evaluate from (6.1, 2, 3) v2/z for every c21, c22 and c23 :

c21 :
v2

z
=

c21
3 sin

[
1
3

(
π − sin−1 z

)] , v2

c21
=

z

3 sin
[
1
3

(
π − sin−1 z

)] (7.1)

c22 :
v2

z
=

−c22
3 sin

[
1
3 (π + sin−1 z)

] , v2

−c22
=

z

3 sin
[
1
3 (π + sin−1 z)

] (7.2)

c23 :
v2

z
=

c23
3 sin

[
1
3 sin

−1 (z)
] , v2

c23
=

z

3 sin
[
1
3 sin

−1 (z)
] (7.3)

where we indicated in (7.1,2,3) the connection between every v2/z with the inverted velocity solution (5.1, 2, 3). Now to
get inertial masses with inertial scaling factors for ordinary particles, z ≤ 1, from limiting velocity solutions, we evaluate
particle energy according to (2) with the help from (7.1,2,3) and at the same time with the energy expression in Lorentzian
form from (5):

z ≤ 1 : E(c1) =
m
√
3c21

2 sin
[
1
3 (π − sin−1 z)

] = mγ(c1)c
2
1 = m(c1)c

2
1

=
mc2i

(1− v2/c21)
1
2

= mγ÷(c1)c
2
1 = m÷(c1)c

2
1 (8.1)

z ≤ 1 : E(c2) =
m
√
3
(
−c22

)
2 sin

[
1
3 (sin

−1(z(m) + π
3 )
] = mγ(c2)(−c22) = m(c2)(−c22)

=
m(−c22)

(1− v2/c22)
1
2

= mγ÷(c2)(−c22) = m÷(c2)(−c22) (8.2)

z ≤ 1 : E(c3) =

√
3mc23

2 sin
[
1
3 sin

−1 z
] = mγ(c3)c

2
3 = m(c3)c

2
3

. =
mc23

(1− v2/c23)
1
2

= mγ÷(c3)c
2
3 = m÷(c3)c

2
3 (8.3)

From relations (8.1, 2, 3) we can read deduce explicit expressions for ordinary particles, z ⪯ 1, inertial masses and inertial
scaling γ factors.

γ(c1) =

√
3

2 sin
[
1
3 (π − sin−1 z)

] ,m(c1) = γ(c1)m,

γ•(c1) =
1

(1− v2/c21)
1
2

, m•(c1) = γ•(c1)m (8.4)
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γ(c2) =

√
3

2 sin
[
1
3 (sin

−1(z(m) + π
3 )
] ,m(c2) = γ(c2)m,

γ•(c2) =
1

(1− v2/c22)
1
2

,m•(c2) = γ•(c2)m (8.5)

γ(c3) =

√
3

2 sin
[
1
3 sin

−1 z
] ,m(c3) = γ(c3)m,

γ÷(c3) =
1

(1− v2/c23)
1
2

,m÷(c3) = γ÷(c3)m (8.6)

At this point, we indicate that energy relations from (8.1,2,3), since they depend on respective limiting velocity squared,
positive or negative, also tells us how much energy are carried way by the particle involved with specific limiting velocity,
c1, c2 andc3. Some details of these questions will be given in the Numerology Section. As it was already mentioned, in
(Šoln, J., 2016) it was shown rigorously that numerically there are complete equalities between inertial scaling factors,
γ(ci) = γ÷(ci), as well as between inertial masses, m(ci) = m÷(ci), respectively in the limiting velocity solutions form
or in the Lorentzian form. To this end, for ordinary particles, z ⪯ 1, the kinetic energy involving a limiting velocity ci is
simply:

T (ci) = mc2i (γ(ci)− 1) = mc2i (γ
÷(ci)− 1), i = 1, 2, 3 (8.7)

Formally, the space like proper velocity vector component plus its time component, for ordinary particle, z ⪯ 1, involving
the limiting velocity ci, i = 1, 2, 3, are in both forms

−→η (ci) = γ(ci)
−→v , −→η ÷(ci) = γ÷(ci)

−→v ; η0(ci) = γ(ci)ci, η
÷0(ci) = γ÷(ci)ci (9.1)

and, by utilizing 4 by 4 Minkkowski metric, as discussed in the Introduction, they are also in four-vector forms, together
with their scalar products,

ηµ(ci) = γ(ci)(ci,
−→v ); η÷µ(ci) = γ÷(ci)(ci,

−→v ) (9.2)
ηµ(ci)ηµ(ci) = γ2(ci)(c

2
i −−→v 2); η÷µ(ci)η

÷
µ (ci) = γ÷2(ci)(c

2
i −−→v 2) (9.3)

Regardless of limiting velocity form or Lorentzian form, the relevant expression have the same value (Šoln, J., 2016). For
instance, η(ci)

2 = η÷(ci)
2, since γ2(ci) = γ÷2(ci), etc.

Next, we talk about space-like, time-like and four-momentum forms of ordinary particles, z ⪯ 1, by implicitly acknowl-
edging the equality of limiting velocity forms and Lorentzian forms of relevant expressions. Hence, we have in succession,

−→p (ci) = mγ(ci)
−→v = m(ci)

−→v = mγ÷(ci)
−→v = m÷(ci)

−→v = m−→η (ci), i = 1, 2, 3 (10.1)

p0(ci) = mγ(ci)ci = m(ci)ci = mγ÷(ci)ci = m÷(ci)ci = mη0(ci), i = 1, 2, 3 (10.2)

pµ(ci) = mηµ(ci) = mγ(ci)(ci,
−→v ) = mγ÷(ci)(ci,

−→v ), (10.3)
p(ci)

2 = pµ(ci)p
µ(ci) = p0(ci)

2 −−→p (ci)
2 = m2c2i , (10.4)

E(ci) = p0(ci)ci = m(c2i )c
2
i = m÷(ci)c

2
i .i = 1, 2, 3 (10.5)

3. Novel (Some as DM) Particle Inertial Masses From Their Limiting Velocities and Space-time Connection

Following the particle limiting velocity bicubic equation (1), we arrive also at solutions for novel (some as DM) particles
with the discriminant D(m) ⪰ 0 and congruent parameter , z ⪰ 1 with the associated congruent angle α ⪯ π/2. Here,
unlike with the ordinary particles, z ⪯ 1, we also have complex quadratic limiting velocity solutions. Because of the
IRC connecting imaginary and real quadratic limiting velocity values, one can express the numerically equal energy with
either a real or imaginary quadratic limiting velocity solution.
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For z ⪰ 1, the novel particle quadratic limiting velocity solutions are given with, z ⪰ 1 parameter as,

c21,2
v2

=
3

2z
csc 2 tan−1

(
tan

(
1

2
sin−1

(
1

z

))) 1
3

±i
3
√
3

2z
ctn 2 tan−1

(
tan

(
1

2
sin−1

(
1

z

))) 1
3

,

c23
v2

= −3

z
csc 2 tan−1

(
tan

(
1

2
sin−1

(
1

z

))) 1
3

. (11)

To proceed with z ≿ 1 novel particle quadratic limiting velocity solutions from bicubic equation (11), it is convenient to
express the congruent parameter z ≿ 1 in terms of the congruent angle α ⪯ π/2 :

1

z
= sin

[
2 tan−1

(
tan

(α
2

))3
]
.

α = 2 tan−1

(
tan

(
1

2
sin−1

(
1

z

))) 1
3

, (12.1)

z =
4− 3 sin2 α

sin3 α
, z2 ⪰ 1, 0 ≺ α ⪯ π/2. (12.2)

where (12.1) relations are revers of each other, while single relation (12.2) is convenient to just relate z to α. With
relation (12.1) applied to solutions (11) the squares of limiting velocities for novel particles, with Rc21,2 ≡ Re c21,2 and
Ic21,2 ≡ Im c21,2, become,

c21,2
v2

=
Rc21,2
v2

+ i
Ic21,2
v2

(13)

Rc21,2
v2

=
3

2z sinα
,
Ic21,2
v2

= ±3
√
3

2z
ctnα,

c23
v2

= − 3

z sinα
, (14)

Rc21 +Rc22 + c23 = 0, Ic21 + Ic22 = 0 (15)

From solution expressions (14) one deduces very important relation, connecting Imaginary and Real limiting velocities:

IRC : Ic21,2 = ±
√
3 cosα Rc21,2 (16)

If allowed by the IRC from (16), for instance, the energy can be expressed in convenient combination of Ic21,2 and Rc21,2.

In order to get inertial masses with inertial connecting γ factors for novel particles, z ⪰ 1, we have to first calculate the
energy according to (2) using the limiting velocity solutions (13) and(14). We start with c21,2 by calculating v2/z and
putting it into E = 3

√
3mv2/2z and then with the help of the IRC from (16) arrive at:

c21,2 :
v2

z
= c21,2

2 sinα

3

(
1 + i(±)

√
3 cosα

)−1

=
(
Rc21,2 + iIc21,2

) 2 sinα
3

(
1− i(±)

√
3 cosα

)
(1 + 3 cos2 α)

=
2 sinα

3 (1 + 3 cos2 α)

[
Rc21,2 ± Ic21,2

√
3 cosα+ i

(
Ic21,2 ∓Rc21,2

√
3 cosα

)]
=

2 sinα

3 (1 + 3 cos2 α)

(
Rc21,2 ± Ic21,2

√
3 cosα

)
(17.1)

Applying now the IRC from (16) to (17.1) we can eliminate Ic21,2 from (17.1) to obtain for Rc21,2 :
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Rc21,2 :
v2

z
=

2

3
sinα Rc21,2 (17.2)

Again using the IRC from (16) we can eliminate Rc21,2 from (17.2) and obtain for Ic21,2 :

Ic21,2 :
v2

z
=

2

3
√
3
tanα (±Ic21,2).

v2

±Ic21,2
=

2 z tanα

3
√
3

(17.3)

And for c23 from (14) we have c23 : v2/z = − sinα c23/3 which together with (17.2) gives:

v2

z
=

2

3
sinα Rc21,2 :

v2

Rc21,2
=

2

3
z sinα ,

v2

z
= − sinα c23

3
:

v2

c23
= −z sinα

3
(17.4)

The main reason for deriving relations (17.1), (17.2) and (17.3) was to show the validity of the IRC from (16). Once
having the IRC one can derive (17.2) and (17.3) and (17.4) directly from (14). One thing to notice from (17.1,2,3,4) and
(17.1,2,3) that once one figures out from the particle energy, mass, etc., the particle velocity fractions depend only on the
congruent parameter z and congruent angle α.

The general energy expression for the original quadratic limiting velocity solution is deduced from (17.1) as follows

z ⪰ 1 : E(c1,2) =

√
3m sinα

(1 + 3 cos2 α)

(
Rc21,2 +

√
3 cosα (±Ic21,2)

)
(18)

As one sees, in (18), to measure this energy, one has to know both Rc21,2 and Ic21,2. However, this energy has the same
value as the others that follow from (17.2), (17.3) and (17.4), which unlike (18) will be proportional to just single square
of novel particle limiting velocity. Hence, with notations Rc1,2 ≡

√
Rc21,2, Ic1,2 =

√
Ic21,2 and c3 =

√
c23 from (17.2),

(17.3) and (17.4) we obtain the energy expressions as follows:

z ⪰ 1 : E(Rc1,2) =
√
3m sinα Rc21,2 == mγ(Rc1,2)Rc21,2 = m(Rc1,2)Rc21,2 (18.1,2)

z ⪰ 1 : E(c3) =

√
3

2
m sinα (−c23) = mγ(c3)(−c23) = m(c3)(−c23) (18.3)

z ⪰ 1 : E(Ic1,2) = m tanα (±Ic21,2) = mγ(Ic1,2) (±Ic21,2) = m(Ic1,2) (±Ic21,2) (18.4)

Comparing the energy expressions for ordinary particles, z ⪯ 1, (18.1,2,3) with the energy expressions for novel particles
(18) and (18.1,2,3,4) we notice that they cannot be all matched. The ones that can be matched belong to the squares of
limiting velocities as indicated:

c21(z ⪯ 1) : Rc21(z ⪰ 1); c22(z ⪯ 1) : c23(z ⪰ 1); c23(z ⪯ 1) : Rc22(z ⪰ 1) (19)

The energy of novel (some as DM) particle in (18) contains a combination of two limiting velocity squares and will be
discussed last. The energy in (18.4) is due entirely to the imaginary limiting velocity square, however with the same
numerical energy value as the others. However, one can easily see from relation (18), that in practical calculations with
real quantities the congruent angle α will not depart very far from the value of π/2 keeping cosα ⪕ sinα. At this point,
also here we indicate that energy relations from (18.1,2,3,4), since they depend on respective limiting velocity squared,
real or imaginary, also tells us how much energy is carried away by the particle involved with specific limiting velocity,
Rc1, Rc2, Ic1, Ic,2 and c3. These energy transfers will be discussed in more detail in the Numerology Section.

To continue, the inertial masses with inertial γ factors follow with fixed z ⪰ 1:
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γ(Rc1,2) =
√
3 sinα , m(Rc1,2) = γ(Rc1,2)m (20.1,2)

γ(c3) =

√
3

2
sinα, m(c3) = γ(c3)m (20.3)

γ(Ic1,2) = tanα ,m((Ic1,2) = γ(Ic1,2)m (20.4)

And as was done for the ordinary particles, here also for the novel particles, z ⪰ 1, the kinetic energy of the particle, say,
associated with the limiting velocities Rc1,2 for instance, are:

T (Rc1,2) = mRc21,2(γ(Rc1,2)− 1) (20.5)

For novel particles, the proper velocity vectors and the time-like proper velocities are respectively, as follows:

−→η (Rc1,2) = γ(Rc1,2)
−→v , −→η (c3) = γ(c3)

−→v (21.1)
η0(Rc1,2) = γ(Rc1,2)Rc1,2, η

0(c3) = γ(c3)c3 (21.2)

Despite the fact that the novel particle energy (18.3) with imaginary limiting velocity c3 is positive, never the less, the
meaning of the time-like η0(c3) proper velocity needs to be studied further. Likewise that applies to any other quantity
that depends on imaginary c3. From (21.1,2), as discussed in the Introduction by utilizing 4 × 4 Mikowski metric, for
novel particles, z ⪰ 1, we formulate the proper velocity four vector forms together with their scalar products:

ηµ(Rc1,2) = γ(Rc1,2) (Rc1,2,
−→v ) ,

η2(Rc1,2) = ηµ(Rc1,2)η
µ(Rc1,2) = γ2(Rc1,2)

(
Rc21,2 −−→v 2

)
= Rc21,2 sin

2 α (3− 2z sinα) (21.3)

ηµ(c3) = γ(c3)(c3,
−→v ),

η2(c3) = ηµ(c3)η
µ(c3) = γ2(c3)(c

2
3 −−→v 2) = c23

(3 + z sinα)

4
(21.4)

Linear space-like, time-like and four momenta of novel (some as DM) particles are

−→p (Rc1,2) = mγ(Rc1,2)
−→v = m−→η (Rc1,2),

p0(Rc1,2) = mγ(Rc1,2)Rc1,2 = mη0(Rc1,2), p
µ(Rc1,2) = mηµ(Rc1,2),

p2(Rc1,2) = pµ (Rc1,2) p
µ (Rc1,2) = p02(Rc1,2)−−→p 2(Rc1,2)

= m2R2c1,2 sin
2 α (3− 2z sinα) (21.5)

−→p (c3) = mγ(c3)
−→v = m−→η (c3), p

0(c3) = mγ(c3)c3 = mη0(c3),

pµ(c3) = mηµ(c3), p
2(c3) = pµ(c3)p

µ(c3) = p02(c3)−−→p 2(c3)

= m2c23
(3 + z sinα)

4
(21.6)

4. Numerology

Here, we wish to demonstrate on specific examples the validity of space-time connections, derived either analytically
or phenomenologically. As far as the ordinary particles,z ⪯ 1, analytical derivations are straightforward, while for the
novel (some as DM) particles, z ⪰ 1, the phenomenological methods are naturally accepted. However, for both the
ordinary and novel particles the space-time connections to hold globally, is assured by having many physical quantities
exhibiting the smoothness at the congruent parameter dividing point at z = 1 between the ordinary and novel particles.
On specific level, this will be demonstrated with variety of physical quantities, such as, the limiting velocity solutions,
particle energies, scaling actors, proper velocities, particle momenta, etc. Of particular interest in this endeavor, for both

8
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ordinary and novel particles, will be the ratios of particle velocities to respective limiting velocities; and those which with
maxima of unity define the limiting velocities from respective maximum particle velocities.

The comparable evaluations of the same physical quantities for ordinary particles, z ⪯ 1, and novel (some as DM)
particles, z ⪰ 1, at the congruent parameter dividing point of z = 1, are presented in pairs of tables, (Table 1.1; Table 1.2)
and (Table 2.1; Table 2.2) where the first one contains ordinary particles and second the novel (some as DM particles).

Table 1.1, Ordinary particles , z ⪯ 1 −→ 1 :
c21
v2

=
3

2
,
c22
v2

= −3,
c21
v2

=
3

2
; E(c1) =

√
3mc21 =

3
√
3

2
mv2;E(c2) =

√
3

2
m(−c22) =

3
√
3

2
mv2;E(c3) =

√
3mc23 =

3
√
3

2
mv2; γ(c1) =

√
3, γ(c2) =

√
3

2
, γ(c3) =

√
3

Table 1.2, Novel particles, z ⪰ 1 −→ 1 :
Rc21
v2

=
3

2
,
c23
v2

= −3,
Rc22
v2

=
3

2
;

E(Rc1) =
√
3mRc21 =

3
√
3

2
mv2, ;E(c3) =

√
3

2
m(−c23) =

3
√
3

2
mv2;E(Rc2) =

√
3mRc22 =

3
√
3

2
mv2; γ(Rc1) =

√
3, γ(c3) =

√
3

2
, γ(Rc2) =

√
3.

Table 2.1, Ordinary particles, z ⪯ 1 −→ 1 : ηµ(c1) =
√
3(c1,

−→v ); ηµ(c2) =

√
3

2
(c2,

−→v ); ηµ(c3) =
√
3(c3,

−→v );

pµ(c1) = m
√
3(c1,

−→v ); pµ(c2) = m

√
3

2
(c2,

−→v ); pµ(c3) = m
√
3(c3,

−→v );

Table 2.2, Novel particles, z ⪰ 1 −→ 1 : ηµ(Rc1) =
√
3(Rc1,

−→v ); ηµ(c3) =

√
3

2
(c3,

−→v ); ηµ(Rc2) =
√
3(Rc2,

−→v );

pµ(Rc1) = m
√
3(Rc1,

−→v ); pµ(c3) = m

√
3

2
(c3,

−→v ); pµ(Rc2) = m
√
3(Rc2,

−→v ).

Direct comparisons within these tables, demonstrates the smoothness of all physical quantities between the ordinary and
novel (some as DM) particles. This indicates that they operate in the same Universe. In (Šoln, J., 2021), it was shown
explicitly the consistency for ordinary particles bicubic equation limiting velocities descriptions with the Special Theory
of Relativity. The smoothness demonstrations above, strongly suggests that also the novel particles bicubic equation
limiting velocities descriptions are consistent with the Special Theory of Relativity,however phenomenologically, rather
than analytically.

Next on the agenda is to see what are, if any, possible limits of applicability for both ordinary, z ⪯ 1, and novel, z ⪰ 1,
particles, parametrized in terms of the congruent parameter z and congruent angle α. Of particular interest here is to
compare the fractions of particle velocities with respect to their limiting velocities for ordinary particles, z ⪯ 1, versus
novel particles, z ⪰ 1. From parametrizing values of z ⪯ 1 for ordinary particles and z ⪰ 1 for novel particles, we should
be able to deduce which are usable segments of z for ordinary and novel particles. For the ordinary particles, z ⪯ 1, to
calculate the velocity fractions, v2/c2i , i = 1, 2, 3, we use relations from (7), while for the novel particles, z ⪰ 1, the
velocity fractions are calculated from v2/Rc2i , i = 1, 2 and v2/c23 from relations (17.2,3,4). Since they all involve z sinα
we combine relations (12.1) and (12.2) to express z sinα just in terms of the congruent parameter z :

z sinα = z sin

(
2 tan−1(tan(

1

2
sin−1 1

z
))

1
3

)
(22.1)

In Tables 3.1, 3.2 and 3.3, for ordinary particles, z ⪯ 1, wee list with decreasing z, respectively, v2

c21
, v2

c22
and v2

c23
.

While in Tables 4.1,2 and 4.3, for novel (some as DM) particles, z ⪰ 1, we list with increasing z, respectively, v2

Rc21,2
and

v2

c23
.
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z v2

c21

v
c1

1 2
3 0.816

0.9 0.48 0.69
0.6 0.267 0.516
0.4 0.169 0.411
0.2 0.08 0.283
0.05 0.019 0.139
10−10 0.385× 10−4 0.62× 10−5

Table 3.1, z ≤ 1

:

z v2

c22

v
c2

1 − 1
3 i0.58

0.9 −0.3 i0.58
0.6 −0.21 i458
0.4 −0.14 i0.38
0.2 −0.074 i0.272
0.05 −0.074 i0.272
10−10 −0.385× 10−4 i0.62× 10−5

Table 3.2, z ≤ 1

z v2

c23

v
c3

1 2
3 0.82

0.9 0.823 0.91
0.6 0.94 0.97
0.4 0.975 0.987
0.2 0.994 0.997
0.05 0996 0.9998
10−10 1 1

Table 3.3, z ≤ 1

z α v2

Rc21,2

v
Rc1,2

1 π
2

2
3 0.816

1.1 π
2.21 0.7254 0.852

1.2 π
2.3 0.783 0.885

1.3 π
2.38 0.84 0.916

1.4 π
2.44 0.9 ′0.95

1.5 π
2.5 0.95 0.96

1.59 π
2.55 1 1

Table 4.1,2,z ⪰ 1

z α v2

c23

v
c3

1 π
2 − 1

3 i0.58
1.1 π

2.21 −0.363 i0.6
1.2 π

2.3 −0.4 i0.63
1.3 π

2.38 −0.42 i0.65
1.4 π

2.44 −0.45 i0.67
1.5 π

2.5 −0.475 i0.69
1.59 π

2.55 −0.5 i0.707
Table 4.3,z ⪰ 1
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The simple analysis shows that for either ordinary or novel (some as DM) particle, there is just one value of velocity vmax
which yields v2max/c

2
i = 1, specifically for i=3 of the ordinary particle, which can be denoted as vmax = c; And similarly

vmax/Rc2i =1, for i=1,2 of the novel particle whose vmax can be denoted as vmax = c•. To be specific, from Table 3.3,
we read that at z = 0, c3 =vmax = c, while from Table 4.1,2 we read that at at z = 1.59, Rc1,2 = vmax = c•. Hence,
the limiting velocity for the normal particles we denote simply with c3 = c, the velocity of light, as was already argued
in (Šoln, J., (2014, 2021) consistent with ( Adams T. at al. (2012), Stecker F. W. (2015)). The limiting velocity of the
novel (some as DM) particle, we denote simply with Rc1,2 = c• as it may be different from c, although being equal to
c would be rather desirable. The novel particle fraction v2

Ic21,2
was not discussed separately as it can be calculated, with

IR Cconnection (16): Ic21,2 = ±
√
3 cosα Rc21,2, from v2

Rc21,2
. Namely, from IR Cconnection, v2

Ic21,2
=

√
3 2

3z sinα Rc21,2

which for z = 1.59 and α = π
2.55 , gives vmax2

Ic21,2
=

√
3
vmax2

Rc21,2
=

√
3 # 1 . This is not surprising as particles following

imaginary square limiting velocity can have also only the positive energy.

Furthermore, these Tables are useful as they also show in detail how the limiting velocities of ordinary and novel particles
change with particle velocity as z changes. In fact, consistent with Table 3.3 and 4.1,2, we deduce directly from (3.3) and
(17.2), respectively, for ordinary and novel particles:

z ≤ 1,
c2

c23
= 1 =

z

3 sin( 13 sin
−1 z)

: z = 0;

z ⪰ 1,
c∗2

Rc21,2
= 1 =

2

3
z sinα = 1, z =

4− 3 sin2 α

sin3 α
, α =

π

2.55
, z = 1.59 (22.2)

Here, it should be noticed the importance of the congruent parameter z. Namely as relations (7.1,2,3) and (17.1,2,3,4)
indicate that the ordinary and novel particle velocity fractions depend, respectively, basically on congruent parameters z,
and z with α, consistent with particle energies and masses. In fact, at various z′s we can calculate limiting velocities now
with vmax = c for ordinary particles and with vmax = c• for novel particles. In fact, although the ordinary particle which
with vmax = c defined the limiting velocity c3 = vmax = c may, when tied to c1, cause c1to achieve very large value. Here
we present similar examples for both ordinary and novel particles:

z = 10−10 :
vmax

c3
=

c

c3
= 1,

vmax

c1
=

c

c1
= 0.62× 10−5; c1 = 1.6× 105c. (23.1)

z = 10−10 :
vmax

c2
=

c

c2
= i0.62× 10−5; c2 = i1.5× 05c. (23.2)

z = 1.59, α =
π

2.55
:
vmax

Rc1
=

c•

Rc1
= 1,

vmax

c3
=

c•

c3
= i0.77, c3 = −i1.4c∗. (23.3)

z = 1.2, α =
π

2.3
:
vmax

Rc1
=

c•

Rc1
= 0.885, Rc1 = 1.3c• (23.4)

In (23.1) and (23.2), consistent with ordinary particle limiting velocity solutions, (6.1) (6.2) and (6.3) we now take the
particle with its vmax = c = c3 at z = 10−10 to give the solutions also at z = 10−10 for c1and c2which are rather different
from c3. Likewise, in (23.3), consistent with novel particle limiting velocity solutions in (17.4) we take particle with its
vmax = c• = Rc1 at z = 1.59, α = π

2.55 to give at the same z and α the value for imaginary c3 limiting velocity. In (23.4)
we notice that now Rc1 changes to larger value with smaller z = 1.2 and larger α = π

2.3 .

The energies, for the ordinary, z ≤ 1, and the novel, z ⪰ 1, particles can be calculated in terms limited velocities,
respectively, from, z ≤, 1, (8.1, 2,3) and,z ⪰ 1, (18.1,2,3,4). Here, we wish to take advantage of, z ≤ 1, Tables: 3.1,3.2
and 3.3, plus,z ⪰ 1,Tables: 4.1,2,3 and rewrite the nergies from z ≤, 1, (8.1, 2,3) and,z ⪰ 1, (18.1,2,3,4) as:

z ≤ , 1 : E(ci, z) =
3
√
3

2z

v2

c2i
mc2i = γ(ci, z)mc2i , i = 1, 2, 3 (24.1)

z ⪰ 1 : E(Rci, z) =
3
√
3

2z

v2

Rc2i
mRc2i =

3
√
3

2z

2

3
z sinα mRc2i

=
√
3 sinα mRc2i = γ(Rci, z)mRc2i , , i = 1, 2, (24.2)

z ⪰ 1 : E(c3, z) =
3
√
3

2z

v2

c23
mc23 =

3
√
3

2z
(−z sinα

3
)mc23. = γ(c3, z)m(−c23) (24.3)
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In the Tables, regardless weather, the ordinary or novel (some as DM) particle limiting velocity is real or imaginary, the
energy for the particle associated with it is always real. How to calculate the mass and deduct its velocity from an energy
in (24) with the help from Tables Table: 3.1, 2,3 and Table: 4.1,2,3 is mostly by trial and error until we get particle mass
and velocity that are sensible and acceptable.

As an γ scaling factor example,we take the energy of the muon neutrino E(ν) = 17GeV from the muon neutrino, υ,
luminal velocity measurements with the OPERA detector (Adams, T. et al., 2012). With the help of Table: 3.3, by the
trial and error, we wish to find the most plausible values of neutrino velocity and the mass. Let us try in Table: 3.3 with
v2/c23 = 0.823 with z = 0.9. Now with (24.1) we derive 17GeV = 2.4m(ν)c23, yielding, after dividing by the inertial
scaling factor γ, m(ν)c23 = 0.56GeV,which is way too big a mass energy. So we go down the scale and stop at v2max/c

2
3 =

v2max/c
2 = 1 at z = 10−10 and with (24.1) write 17GeV = 2.6 × 1010m(ν)c23 yielding, after dividing by the inertial

scaling factor γ , m(ν)c2 = 0.65eV , which is acceptable mass energy.

For a simple comparison, we now turn to a novel, say, Dark Matter particle, z ⪰ 1. DM particle has energy of E(DM) =

1e•V , where e•V is the energy unit of the novel DM particle. The energy units of novel DM particle versus ordinary
particle rescale the same way as the corresponding limiting velocities: e•V/eV = c•2/c2. And now, assuming that it
has velocity v(DM)max = c• and as such from Table 4.1 it has z = 1.59 and α = π/2.55. From (24.2), we have
then E(DM) = 1e•V =

√
3 sin(π/2.55)m(DM)Rc21, yielding, after dividing by the inertial scaling factor γ, the mass

energy of m(DM)Rc21 = m(DM)c•2 = 0.61e•V. This mass energy of m(DM)c•2 = 0.61e•V being so close to
E(DM) = 1e•V , of DM particle energy, makes this novel DM particle rather lethargic and a plausible example of a
gravitational DM particle. As we see the novel particles are good candidates to describe the Dark Matter particles.

Namely, many new novel particles already appear as the Dark Matter particles in the energy range from keV to GeV
and above. A typical example is a novel DM sterile neutrino complementing ordinary neutrino (Jaramilo, J., 2022).
Experimentalists are also busy pursuing novel DM particles. For example, EDELWEISS is searching for just light novel
DM particles (Lattaud, L., 2022). Also in pursuit of the Dark Photon, one is looking at γγ → e+e− process (Xu, I.et al.,
2022). It is fair to say that novel as DM particles are taken more and more seriously every day as there are quite a few
meetings dedicated to them in search of new ideas (Battaglieri, M. et al., 2017).

While the roles of real limiting velocities are clear, the roles of imaginary limiting velocities with real energies should be
possible to discuss additionally with the help of limiting velocity algebras from (5.1.2,3,4). Furthermore, regardless of
weather, an ordinary or novel limiting velocity is real or imaginary, the energy for the particle associated with it is always
real and positive. Systematically that can be easily verified with the help of Tables: 3.1,2,3 and 4.1,2,3.

5. Conclusion

We believe that these rather large collections of ordinary and novel particle limiting velocities together with a Dark
Matter particle limiting velocity, real or imaginary, most of them with large absolute values some possibly exceeding c,the
velocity of light, together with the energies of particles associated with these limiting velocities, should to some extent
answer in part the question posed by Dawson and Percival (K. Dawson and W. Percival, 2021) as to why the Universe has
such large distances.

Still, it would be definitively appropriate to pursue in the direction of Dark Matter exploration with the theory of novel as
DM particles developed here.

In conclusion, we dare to say: ”The Universe has no beginning and no end, it transforms continuously into itself.”
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