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Abstract
Taking into account the own gravitational field of elementary particles, we have obtained exact static spherical symmetric
solutions to the spinor field equation. The nonlinear terms LN are arbitrary functions of bilinear Pauli-Fierz invariant
Iv = S2 + P 2. It characterizes the self-interaction of a spinor field. We have investigated in detail equations with power
and polynomial nonlinearities. The spinor field equation with a power-law nonlinearity have regular solutions with a
localized energy density and regular metric. In this case a soliton-like configuration has finite and negative total energy.
As for equations with polynomial nonlinearity, the obtained solutions are regular with a localized energy density and
regular metric but its total energy is finite and positive.
Keywords: proper gravitational field, elementary particles, symmetric metric

1. Introduction

The concept of soliton is present in many branches of pure science. In the elementary particles physics, the soliton as
regular localized stable solutions of nonlinear differential field equations are used as the simplest models of extended
particles (Perring J. K. and Skyrme T.H. R, 1962; Scott A.C., Chu F. Y. F. and McLaughlin D. W., 1973; Rybakov Yu.P.,
1985). The nonlinearity of the field equations plays a crucial role in the obtaining of regular solutions. It describes the
fields interactions. But let us emphasize that the choice of field equations is one of the principle problems in nonlinear
theory (Marshak R.E. and Sudershan E.C.G., 1961). In many models elaborated in the pure science in order to describe the
configuration of elementary particles, the gravitational field equation is absent. However the gravitational field equation
is nonlinear by nature and the field itself is universal and unscreenable.
The present work, is a part II of all investigated initiatied in ( Adomou A., Massou S. and Edou J.(2019) International
Journal of Applied Mathematics and Theoretical Physics, 118-128 doi: 10.11648/j.ijamtp.20190504.14). Here, We have
extended the results to the exact spherical symmetric solutions of equations with polynomial nonlinearity taking into
account the gravitational field equation.

The paper is organized as follows. The section 2 deals with model and fields equations. In section 3 the general solutions
are obtained. The section 4 adresses discussion of main results. In the section 5, we determined the total charge and total
spin. Finally some conclusions of the work are given in the last section (section 6)

2. Model and Fields Equations

This section is devolted to establish the spinor and gravitational fields equations. To do so,let us consider the lagrangian
density for the self-consistent system of spinor and gravitational fields under the following expression (Adomou A. and
Shikin G.N., 1998):

L =
R

2χ
+ LSp

=
R

2χ
+
i

2
(ψ̄γµ∇µψ −∇µψ̄γ

µψ)−mψ̄ψ + LN , (1)

where LN is the nonlinear part of the spinor field lagrangian, R is the scalar curvature and χ = 8ΠG
C4 is Einstein’s

gravitational constant. LN = G(Iv) is an arbitrary function depending on the bilinear Pauli-Fierz invariant Iv = S2 +
P 2 = (ψ̄γµψ)gµν(ψ̄γ

νψ).

In the present analysis, the gravitational field is defined by the static spherical symmetric metric under the form (Adan-
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houmè A., Adomou A., Codo F.P. and Hounkonnou M.N, 2012):

ds2 = e2γdt2 − e2αdξ2 − e2β [dθ2 + sin2 (θ)dφ2]. (2)

Here, its signature is (+1, -1, -1, -1 ) and c = 1 is the speed of light considered to be unity. The metric functions α, β and
γ are some functions depending only on ξ = 1

r ( Bronnikov K. A, 1973) where r stands for the radial component of the
spherical symmetric metric. They satisfy the coordinate condition given by the following expression ( Bronnikov K. A,
1973):

α = 2β + γ. (3)

The matricial form of the metric tensor gµν associated to the metric (2) is

[gµν ] =


e2γ 0 0 0
0 −e2α 0 0
0 0 −e2β 0
0 0 0 −e2β sin2 θ

 . (4)

Varying (1) with respect to the metric tensor gµν , we obtain the Einstein’s field equations in the metric (2) under the
condition (3) having the form (D. Brill and J. Wheeler, 1957)

G0
0 = e−2α(2β′′ − 2γ′β′ − β′2)− e−2β = −χT 0

0 , (5)
G1

1 = e−2α(2β′γ′ + β′2)− e−2β = −χT 1
1 , (6)

G2
2 = e−2α(β′′ + γ′′ − 2β′γ′ − β′2) = −χT 2

2 , (7)

G2
2 = G3

3, T 2
2 = T 3

3 (8)

where prime denotes differentiation with respect to the spatial variable ξ and Tµ
ν is the energy-momentum tensor of the

spinor field.
From the lagrangian (1), applying the variational principle, we obtain the spinor field equations for the functions ψ and ψ̄
as follows

iγµ∇µψ −mψ + 2S
∂G

∂I
ψ + 2iP

∂G

∂J
γ5ψ = 0, (9)

i∇µψ̄γ
µ +mψ̄ − 2S

∂G

∂I
ψ̄ − 2iP

∂G

∂J
γ5ψ̄ = 0, (10)

with I = S2 and J = P 2.
The general form of the metric energy-momentum tensor of the spinor field is

T ν
µ =

i

4
gνρ(ψ̄γµ∇νψ + ψ̄γν∇µψ −∇µψ̄γνψ −∇νψ̄γµψ)− δνµLSp (11)

Using the spinor field equations for the functions ψ and ψ̄, LSp becomes

LSP
=

1

2
ψ̄(iγµ∇µψ −mψ)− 1

2
(i∇µψ̄γ

µ +mψ̄)ψ +G(S, P ), (12)

= −2I
∂G

∂I
− 2J

∂G

∂J
+G(S, P ), (13)

= −2Iv
∂G

∂Iv
+G(S, P ). (14)

Taking into account (14), the nonzero components of the tensor Tµ
ν are:

T 0
0 = T 2

2 = T 3
3 = −LSp = 2Iv

∂G(S, P )

∂Iv
−G(S, P ). (15)

T 1
1 =

i

2
(ψ̄γ1∇1ψ −∇1ψ̄γ

1ψ) + 2Iv
∂G(S, P )

∂Iv
−G(S, P ). (16)

In flat space-time, the Dirac’s matrices γ̄a are determined by the following expressions
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γ̄0 =

(
I 0
0 −I

)
, γ̄i =

(
0 σi

−σi 0

)
, γ̄5 = γ5 =

(
0 −I
−I 0

)
,

where I is the two order unity matrice and σi are Pauli’s matrices defined as follows

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

In curved space-time, the Dirac’s matrices γµ are defined in the following way.
Using the equalities

γµ(ξ) = eaµ(ξ)γ̄a, (17)

gµν(ξ) = eaµ(ξ)e
b
ν(ξ)ηab

where ηab = diag(1,−1,−1,−1) is Minkowski’s metric, eaµ(ξ) are tetradic 4-vectors, we obtain

γ0 = e−γ γ̄0 , γ1(x) = e−αγ̄1 , γ2 = e−β γ̄2 , γ3 = e−β γ̄3

sin θ . (18)

The general form of the spinor affine connection matrices is

Γµ(ξ) =
1

4
gρµ(∂µe

b
σe

ρ
a − Γρ

µσ)γ
δγσ, (19)

The expression (19) leads to

Γ0 = −1

2
e−2β γ̄0γ̄1γ′, Γ1 = 0, Γ2 =

1

2
e−β−γ γ̄2γ̄1β′, Γ3 =

1

2
(e−β−γ γ̄3γ̄1β′ sin θ + γ̄3γ̄2 cos θ) (20)

In (9)-(11), ∇µ is the covariant derivative of spinor. ∇µ is linked to the spinor affine connection matrices Γµ(ξ) by

∇µψ =
∂ψ

∂ξµ
− Γµψ or ∇µψ̄ =

∂ψ̄

∂ξµ
+ Γµψ̄ (21)

From (18) and (20), the Einstein’s sommation gives

γµΓµ = −1

2
(e−αα′γ̄1 + γ̄2e−β cot θ) (22)

Taking into account (21) and (22), the spinor field equations (9) and (10) lead to the following expressions

ie−αγ̄1(∂ξ +
1

2
α′)ψ +

i

2
γ̄2e−βψ cot θ − (m−D)ψ + iE(S, P )γ5ψ = 0, (23)

ie−αγ̄1(∂ξ +
1

2
α′)ψ̄ +

i

2
γ̄2e−βψ̄ cot θ + (m−D)ψ̄ − iE(S, P )γ5ψ̄ = 0, (24)

where
D(S, P ) = 2S

dG

dIv
, E(S, P ) = 2P

dG

dIv
(25)

From (23), we obtain the following system of equations

V ′
4 +

1

2
α′V4 −

i

2
eα−βV4 cot θ + ieα(m−D)V1 − EeαV3 = 0, (26)

V ′
3 +

1

2
α′V3 +

i

2
eα−βV3 cot θ + ieα(m−D)V2 − EeαV4 = 0, (27)

V ′
2 +

1

2
α′V2 −

i

2
eα−βV2 cot θ − ieα(m−D)V3 + EeαV1 = 0, (28)

V ′
1 +

1

2
α′V1 +

i

2
eα−βV1 cot θ − ieα(m−D)V4 + EeαV2 = 0, (29)

where ψ(ξ) = Vδ(ξ) with δ = 1, 2, 3, 4. Let us remark that in order to solve the set of equations (26)-(29), we must
determine D(S,P) and E(S,P) and then S and P as functions of eα(ξ).
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3. General Solutions

In the preceding section we derived the fundamental equations for nonlinear spinor fields and metric functions. This part
consists of solving the fundamental fields equations. By doing so, from (26)-(29), we write the equations for the functions
S = ψ̄ψ, P = iψ̄γ5ψ and R = ψ̄γ̄5γ̄1ψ as follows

S′ + α′S + 2EeαR = 0 (30)
R′ + α′R+ 2(m−D)eαP + 2EeαS = 0 (31)

P ′ + α′P + 2(m−D)eαR = 0 (32)

It follows that the first integral for the system (30)-(32) is

P 2 −R2 + S2 = Ae−2α(ξ) = − A

g11
, A = const. (33)

The expression (33) comes to confirm that the spinor field of elementary particles and the own gravitational are linked by
nature. Also, the same relation proves that the consideration of the proper gravitational fied is very important in purpose
to obtain solutions having the interest physics properties.

Let us now study the system of the invariant functions (30)- (32) considering massless elementary particles (m=0) and
setting

P0(ξ) = eαP (ξ); S0(ξ) = eαS(ξ); R0(ξ) = eαR(ξ). (34)

Inserting (34) into (30)-(32) we get the following system in P0; S0 and R0:

S′
0 + 2EeαR0 = 0 (35)

R′
0 − 2DeαP0 + 2EeαS0 = 0 (36)

P ′
0 − 2DeαR0 = 0 (37)

The previous system leads to the differential equation:

P0P
′
0 −R0R

′
0 + S0S

′
0 = 0. (38)

The first integral of the equation (38) is
P 2
0 −R2

0 + S2
0 = A0, (39)

with A0 being constant.
Then multiplying (35) by D(S,P) and (37) by E(S,P) and combining the results, we obtain

DS′
0 + EP ′

0 = 0 (40)

Taking into account the expressions for D(S,P) and E(S,P) (25) we find

2S
dG

dIν
S′
0 + 2P

dG

dIν
P ′
0 = 0 (41)

The equation (41) implies that
SS′

0 + PP ′
0 = 0. (42)

When we multiply (42) by eα(ξ) and taking into account (18), we get the equation

S0S
′
0 + P0P

′
0 = 0 (43)

which has the first integral given by the following relation

P 2
0 + S2

0 = A2
1 (44)

where A1 being integration constant.
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Since P0 = eαP and S0 = eαS, from (34), we deduce

Iv(ξ) = P 2 + S2 = A2
1e

−2α(ξ). (45)

By substituting (44) into (33), we obtain

R0 =
√
A2

1 −A, where A2
1 −A > 0. (46)

It is follows that
R(ξ) = A2e

−α(ξ), with A2
2 = A2

1 −A. (47)

Taking into account (25) and P0 =
√
A2

1 − S2
0 due to (44), the expression (35) becomes

dS0

dξ
+ 4
√
A2

1 − S2
0 .A2

dG

dIv
= 0 (48)

The equation (48) has the first integral

S0(ξ) = −A1 sinΩ(ξ), S(ξ) = −A1e
−α(ξ) sinΩ(ξ) (49)

where
Ω(ξ) = 4A2

∫
dG

dIv
+A3, A3 = const. (50)

Introducing (49) into (44), we get

P0(ξ) = A1 cosΩ(ξ), P (ξ) = A1e
−α(ξ) cosΩ(ξ). (51)

Using the spinor field equation in the form (23) and the conjugate one in the form (24), we obtain the following expression
for T 1

1 from (16)
T 1
1 = mS −G(Iv) (52)

In the following paragraph, we shall solve the Einstein equations by determining the expressions of the metric functions
α(ξ), β(ξ) and γ(ξ). In view of T 0

0 = T 2
2 for (15), the difference of Einstein equations (5) and (7) implies

β′′ − γ′′ = e2β+2γ . (53)

The equation (53) may be transformed to Liouville equation type (G.N. Shikin, 1995). Then, the equation (53) has the
solution

β(ξ) =
H

4
(1 +

2

C
) ln

H

CT 2(h, ξ + ξ1)
= (1 +

2

C
)γ(ξ). (54)

γ(ξ) =
H

4
ln

H

CT 2(h, ξ + ξ1)
. (55)

H and C being integration constants.

The function T has the form

T (h, ξ + ξ1) =


1
h sinh[h(ξ + ξ1)], h > 0

(ξ + ξ1), h = 0

1
hsin[h(ξ + ξ1)], h < 0

(56)

h being an integration constant and ξ1 another nonzero integration constant.
Taking into account (55), (56) and (3) we obtain the following expressions between the metric functions α(ξ), β(ξ) and
γ(ξ)

α(ξ) =
H

2
(
3

2
+

2

C
) ln

H

CT 2(h, ξ + ξ1)
, (57)

β(ξ) =
2 + C

4 + 3C
α(ξ); γ(ξ) =

C

4 + 3C
α(ξ). (58)
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The equation (6) is the first integral of the equations (5) and (7). It is also a first order differential equation. Substituting
(52) and (58) into (6), we get a following expression

(α′)2 =
(4 + 3C)2

(3C2 + 8C + 4)
e2α

[
e

4+2C
4+3C (−α) − χ(mS −G(Iv))

]
(59)

For a concrete analytique form of the function G(Iv), we can define the metric function α(ξ) from (59). Considering
massless elementary particles, i.e. m = 0, without losing the generality ( Heisenberg W., 1966 ), the solution of the
equation (59) is ∫

dα

4+3C√
3C2+8C+4

eα
√
e

4+2C
4+3C (−α) + χG(Iv)

= ±(ξ + ξ0), ξ0 = const. (60)

Let us now pass from α(ξ) to Iv(ξ). Taking into account (45), we have

eα(ξ) =
A1√
Iv
, dα = −1

2

dIv
Iv
. (61)

Inserting (61) into (60), one gets the following solution∫
dIv

2A1(4+3C)√
3C2+8C+4

√
Iv

√
( Iv
A2

1
)

2+C
4+3C + χG(Iv)

= ±2(ξ + ξ0), ξ0 = const. (62)

Let us remark that, knowing the analytical form of G(Iv), we can determine the analytic explicite form of the invariant
function Iv(ξ). Furthermore, we can determine the metric functions α(ξ), β(ξ) and γ(ξ) from the equation(45) and (58)
respectively as well as the functions S, P, D(S,P) and E(S,P).
From (49) and (51), we define the functions D(S,P) and E(S,P) by the following relations

D(S, P ) = 2S
dG(Iv)

dIv
= −2C1 sinΩ(ξ).e

−α(ξ) dG(Iv)

dIv
, (63)

E(S, P ) = 2P
dG(Iv)

dIv
= 2C1 cosΩ(ξ).e

−α(ξ) dG(Iv)

dIv
. (64)

Introducing (63) and (64) into (26)-(29) and considering m = 0 and Wδ(Ω(ξ)) = Vδ(ξ)e
α
2 , δ = 1, 2, 3, 4 where Ω(ξ) is

defined by (50), we get

W ′
4(Ω)− Φ(Iv)W4 + ia sinΩ(ξ)W1 − a cosΩ(ξ)W3 = 0, (65)

W ′
3(Ω) + Φ(Iv)W3 + ia sinΩ(ξ)W2 − a cosΩ(ξ)W4 = 0, (66)

W ′
2(Ω)− Φ(Iv)W2 − ia sinΩ(ξ)W3 + a cosΩ(ξ)W1 = 0, (67)

W ′
1(Ω) + Φ(Iv)W1 − ia sinΩ(ξ)W4 + a cosΩ(ξ)W2 = 0 (68)

with Φ(Iv) =
i

8C2
dG
dIv

cot θ, a = C1

2C2
and W ′

δ(Ω) =
dWδ

dΩ .

Here for simplicity, let us pass to the new functions Uδ(Ω) in the system (65)-(68):

U1 = W1 +W2 +W3 +W4, (69)
U2 = W1 +W2 −W3 −W4, (70)
U3 = W1 −W2 +W3 −W4, (71)
U4 = W1 −W2 −W3 +W4. (72)

Inserting (69)-(72) into (65)-(68) and summing the results, we obtain the following set equations:

U ′′
4 + iU ′

4 − [a2 + ϕ2(Iv)]U4 + iϕ(Iv)U2 = 0 (73)
U ′′
3 + iU ′

3 − [a2 + ϕ2(Iv)]U3 − iϕ(Iv)U1 = 0 (74)
U ′′
2 + iU ′

2 − [a2 + ϕ2(Iv)]U2 + iϕ(Iv)U4 = 0 (75)
U ′′
1 + iU ′

1 − [a2 + ϕ2(Iv)]U1 − iϕ(Iv)U3 = 0 (76)
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Summing (73) and (75) and setting X(Ω) = U2 + U4, we have the differential equation

X ′′ + iX ′ − [a2 + ϕ2(Iv)− iϕ(Iv)]X = 0 (77)

yields the solution
U2 + U4 = K2e

r2Ω(ξ) +K4e
r4Ω(ξ), K2, K4 = const (78)

with

r2,4 = − i

2
±

√√√√a2 − 1

4

(
1 +

cot θ

4C2
dG
dIv

)2

. (79)

Substracting equations (73) and (75) and using Y (Ω) = U2 − U4, we obtain the equation

Y ′′ + iY ′ − [a2 + ϕ2(Iv) + iϕ(Iv)]Y = 0. (80)

The solution of the equation (80) is given by the following expression

U2 − U4 = K ′
2e

r′2Ω(ξ) +K ′
4e

r′4Ω(ξ), K ′
2, K ′

4 = const. (81)

where

r′2,4 = − i

2
±

√√√√a2 − 1

4

(
1− cot θ

4C2
dG
dIv

)2

. (82)

Taking the realtions (78) and (81) into account, we deduce the expressions of the functions U2 and U4 as follows

U2(Ω) =
1

2

[
K2e

r2Ω(ξ) +K4e
r4Ω(ξ) +K ′

2e
r′2Ω(ξ) +K ′

4e
r′4Ω(ξ)

]
(83)

U4(Ω) =
1

2

[
K2e

r2Ω(ξ) +K4e
r4Ω(ξ) −K ′

2e
r′2Ω(ξ) −K ′

4e
r′4Ω(ξ)

]
(84)

We also obtain the differential equation of the function Z setting Z(Ω) = U1 + U3 and combining the equations (74) and
(76)

Z ′′ − iZ ′ − [a2 + ϕ2(Iv) + iϕ(Iv)]Z = 0. (85)

The equation (85) has solution

U1 + U3 = K1e
r1Ω(ξ) +K3e

r3Ω(ξ), K1, K3 = const (86)

with

r1,3 =
i

2
±

√√√√a2 − 1

4

(
1− cot θ

4C2
dG
dIv

)2

. (87)

Choosing M(Ω) = U1 − U3, the difference of the equations (74) and (76) leads to

M ′′ − iM ′ − [a2 + ϕ2(Iv)− iϕ(Iv)]M = 0. (88)

Its solution is
U1 − U3 = K ′

1e
r′1Ω(ξ) +K ′

3e
r′3Ω(ξ), K ′

1, K ′
3 = const (89)

where

r′1,3 =
i

2
±

√√√√a2 − 1

4

(
1 +

cot θ

4C2
dG
dIv

)2

. (90)

The expressions of the functions U1(Ω) and U3Ω) are defined from (86) and (88) as follows

U1(Ω) =
1

2

[
K1e

r1Ω(ξ) +K3e
r3Ω(ξ) +K ′

1e
r′1Ω(ξ) +K ′

3e
r′3Ω(ξ)

]
(91)

U3(Ω) =
1

2

[
K1e

r1Ω(ξ) +K3e
r3Ω(ξ) −K ′

1e
r′1Ω(ξ) −K ′

3e
r′3Ω(ξ)

]
(92)

Let us remark that as the functions Uδ(Ω) are known, we can pass to the functionsWδ(Ω) and then to the functions Vδ(ξ).
Thus, we have found the general solutions to the set equations (26)-(29) for m = 0 containing eight integration constants
K1, K2, K3, K4, K ′

1, K ′
2, K ′

3 and K ′
4 and an arbitrary function G(Iv).

In the following section, we analyze the equation (62) in details given the concrete form of nonlinear terms in spinor
lagrangian.
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4. Discussion

In the present section, we have studied in detail two distinct cases namely equations with power and polynomial nonlin-
earities.

4.1 Equations With Power Nonlinearity

This subsection is intended to study equations with power nonlinearity. By doing so, we consider the nonlinear terms in
the form (Adomou A., R. Alvarado and G. N. Shikin1995):

G(Iv) = λInv , n ≥ 2 (93)

where λ and n are the parameter of nonlinearity and power of nonlinearity respectively. It is convenient to separately
analyze the two cases n = 2 and n > 2.
• For n=2, we have Heisenberg-Ivanenko type nonlinear spinor field equation given by the following expression

ie−αγ̄1(∂ξ +
1

2
α′)ψ +

i

2
γ̄2e−βψ cot θ −

(
m− 4λIvψ̄ψ

)
ψ − 4λIv(ψ̄ψ)ψ = 0, (94)

Substituting G(Iv) = λI2v into (62) with 2+C
4+3C = 1, we obtain

Iv(ξ) = − 1

(8 + 6C)
√

1+χλA2
1

3C2+8C+4 (ξ + ξ0)
(95)

In this case, the energy density is given by the expression

T 0
0 (ξ) =

3λ(3C2 + 8C + 4)

(8 + 6C)2(1 + χλA2
1)(ξ + ξ0)

(96)

From (96), the distribution of the spinor field energy density per unit invariant volume is

f(ξ) = T 0
0 (ξ)

√
−3g

= T 0
0 (ξ)e

α(ξ)+2β(ξ)

=
3λ(3C2 + 8C + 4)

(8 + 6C)2(1 + χλA2
1)(ξ + ξ0)

sin θ exp

[
−H

4
ln

H

CT 2(h, ξ + ξ1)

]
(97)

Note that the set equations (26)-(29) possesses soliton-like solution when G(Iv) = λI2v . Indeed Iv(ξ) is a continuous
and bounded function when ξ ∈ [0, ξc], the quantities g00, g11, g22 and g33 are regular, the spinor field energy density is
localized and the total energy E =

∫ ξc
0
T 0
0 (ξ)

√
−3gdξ is finite.

• Then, for n > 2, LN = G(Iv) = λInv we have

Iv(ξ) =

 1√
χλA2

1 sinh
[

(4+3C)√
3C2+8C+4

(n− 1)(ξ + ξ0)
]


2
n−1

;n > 2. (98)

As for the energy densit, it is defined by the following expression

T 0
0 (ξ) = λ(2n− 1)

 1√
χλA2

1 sinh
[

(4+3C)√
3C2+8C+4

(n− 1)(ξ + ξ0)
]


2n
n−1

;n > 2. (99)

From (98) and (99), when ξ −→ 0, ξ0 = 0, we note that Iv(ξ) −→ ∞ and T 0
0 (ξ) −→ ∞. This means that T 0

0 (ξ) has
an infinite value when ξ −→ 0, ξ0 = 0 and the initial set of equations has no solution with localized energy density. It
should be noted that this result is in agreement with that found in (Adomou A. and Shikin G.N., 1998). It would be now
interesting to consider in the sequel of this work the case where n > 2, LN = G(Iv) = λInv and λ = −Λ2 < 0.
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• For n > 2, LN = G(Iv) = λInv and λ = −Λ2 < 0, we obtain

Iv(ξ) =

 1

χΛ2A2
1 cosh

2
[

(4+3C)√
3C2+8C+4

(n− 1)(ξ + ξ0)
]


1
n−1

;n > 2. (100)

We remark that Iv(ξ) is a continuous and bounded function when ξ ∈ [0, ξc].
Then, the energy density is defined by the following expression

T 0
0 (ξ) = −Λ2(2n− 1)

 1

χΛ2A2
1 cosh

2
[

(4+3C)√
3C2+8C+4

(n− 1)(ξ + ξ0)
]


n
n−1

;n > 2. (101)

Let us consider the energy density per unit volume invariant:

Γ(ξ) = T 0
0 (ξ)

√
−3g

= −Λ2(2n− 1)ζ(ξ)

 1

χΛ2A2
1 cosh

2
[

(4+3C)√
3C2+8C+4

(n− 1)(ξ + ξ0)
]


n
n−1

sin θ (102)

where ζ(ξ) =

 A1 1

χΛ2A2
1 cosh2

[
(4+3C)√

3C2+8C+4
(n−1)(ξ+ξ0)

]


1
n−1



8+5C
4+3C

.

Let us emphasize that the spinor field energy density per unit invariant volume Γ(ξ) is localized and the total energy
E =

∫ ξc
0

Γ(ξ)dξ has a finite quantity and negative in space when the nonlinearity parameter is negative (A. Adomou, R.
Alvarado and G. N. Shikin, 1995) .
Let us find the explicit form of the functions Vδ(ξ), δ = 1, 2, 3, 4. To this end, we must determine an explit form of Uδ(ξ),
then Wδ(ξ) and subsequently Vδ(ξ) =Wδ(ξ)e

− 1
2α(ξ). We obtain:

V1(ξ) =
1

4
√
A1

[
K1e

r1Ω(ξ) +K2e
r2Ω(ξ) +K3e

r3Ω(ξ) +K4e
r4Ω(ξ)

]
υ(ξ) (103)

V2(ξ) =
1

4
√
A1

[
K ′

1e
r′1Ω(ξ) +K ′

2e
r′2Ω(ξ) +K ′

3e
r′3Ω(ξ) +K ′

4e
r′4Ω(ξ)

]
υ(ξ) (104)

V3(ξ) =
1

4
√
A1

[
K1e

r1Ω(ξ) +K3e
r3Ω(ξ) −K2e

r2Ω(ξ) −K4e
r4Ω(ξ)

]
υ(ξ) (105)

V3(ξ) =
1

4
√
A1

[
K ′

1e
r′1Ω(ξ) +K ′

3e
r′3Ω(ξ) −K ′

2e
r′2Ω(ξ) −K ′

4e
r′4Ω(ξ)

]
υ(ξ) (106)

where

υ(ξ) =

 1√
χΛ2A2

1 cosh
[

(4+3C)√
3C2+8C+4

(n− 1)(ξ + ξ0)
]


1
2n−2

(107)

and

Ω(ξ) = −4nA2

√
3C2 + 8C + 4

χA2
1(4 + 3C)(n− 1)

tanh

[
(4 + 3C)√

3C2 + 8C + 4
(n− 1)(ξ + ξ0)

]
+A3. (108)

The expression of the function Ω(ξ) is obtained by substituting G(Iv) = −Λ2Inv in (50).
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4.2 Equations With Polynomial Nonlinearity

This subsection aims to analyze the nonlinear spinor field equation (60), when 1
A1

−→ 0 and G(Iv) is under the polyno-
mial nonlinearities

G(Iv) = λ
√
Iv

(√
Iv
ω2
0

− 1

)2(
2−

√
Iv
ω2
0

)
. (109)

The function G(Iv), in the equality (109), admits three roots Iv = 0, Iv = ω2
0 and Iv = 4ω2

0 . By Substituting (109) into
(60), we obtain the expression of the invariant function Iv(ξ) as follows:

Iv(ξ) = ω0

[
1 +

1

cosh(ζ0(ξ + ξ0))

]2
(110)

Using the relation (110), for the metric function −g11 = e2α(ξ), we find the following expression:

e2α(ξ) =
A1

Iv
=

A1 cosh
2(ζ0(ξ + ξ0))

ω0 [1 + cosh(ζ0(ξ + ξ0))]
2 (111)

From (111), one notes that for ξ = ξ0 = 0, e2α(ξ) = A1

4ω0
and e2α(ξ) = A1 cosh2 ζ0ξC

ω0[1+cosh ζ0ξC ]2
for ξ = ξC and ξ0 = 0. The

function g11 is regular and stationary. In reason of the equality (58) traducing the relation between α(ξ), β(ξ) and γ(ξ),
the functions g22 and g33 are also regular and stationary. Therefore, the metric is also regular and stationary for ξ ∈ [0, ξC ].

Now let us get to the energy density, the distribution energy density per unit invariant volume and the field total energy
. Taking into account the relations (15) and (110) and the usual algebras manipulations, the energy density of the spinor
field is defined by:

T 0
0 (ξ) = λ

√
ω0

(
Iv
ω0

)(√
Iv
ω0

− 1

)(
5− 3

√
Iv
ω0

)
(112)

that is

T 0
0 (ξ) =

λ
√
ω0

cosh(ζ0(ξ + ξ0))

(
1 +

1

cosh(ζ0(ξ + ξ0))

)2(
2− 3

cosh(ζ0(ξ + ξ0))

)
(113)

The analysis of the expression (113) shows that the energy density of the spinor field T 0
0 is negative, localized and

alterning. Therefore the energy density per unit invariant volume is regular localized function. Thus total energy E =∫ ξc
0
T 0
0 (ξ)

√
−3gdξ is finite as the integrand is positive.

Note that our solution describes a nonlinear spinor field configuration with regular localized energy density T 0
0 , positive

energy E and regular metric.

5. Total Charge and Total Spin

The following paragraph addresses to the total charge and the total spin. To this end, according to the expressions (103)-
(106), let us write the components of the spinor current vector jµ = ψ̄γµψ ( Zhelnorovich V. A., 1982):

j0 = F̄ (Ω).e−α−γ (114)

Since the configuration is static, the another components j1, j2 and j3 are nulle. The component j0 determines the charge
density of the spinor field given by the expression:

ϱ(ξ) = (j0j
0)

1
2 = F̄ (Ω).e−α (115)

From (61), (95) and (109), we have

ϱ(ξ) = F̄ (Ω)A−1
1

 1

χΛ2A2
1 cosh

2
[

(4+3C)√
3C2+8C+4

(n− 1)(ξ + ξ0)
]


1
2(n−1)

(116)
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The charge density per unit invariant volume of the spinor field is defined by:

q(ξ) = ϱ(ξ)
√

−3g

= F̄ (Ω)A−1
1

 1

χΛ2A2
1 cosh

2
[

(4+3C)√
3C2+8C+4

(n− 1)(ξ + ξ0)
]


1
2(n−1)

ζ(ξ) sin θ (117)

The total charge of the spinor field is:

Q(ξ) =

∫ ξc

0

q(ξ)dξ (118)

ξC being the center of the field configuration.
It follows that from (117) and (118) the charge density and the charge density per unit invariant volume are localized
because the integrands ϱ(ξ) and q(ξ) are continuous and limited functions when ξ ∈ [0, ξc]. Moreover, the total charge is
a finite quantity when the nonlinear term of the spinor field is choosen under the form LN = −Λ2Inv .
Then, the general expression of the spin tensor of the spinor field reads ( N.N Bogoliubov and Shirkov D.V., 1976)

Sµν,ε =
1

4
ψ̄ {γεσµν + σµνγε}ψ (119)

where σµν = ( i
2 ) [γ

µγν − γνγµ]. The spatial density of the spin vector Sik,0, i, k=1, 2, 3, is given by the following
expression

Sik,0 =
1

4
ψ̄
{
γ0σik + σikγ0

}
ψ =

1

2
ψ̄γ0σikψ (120)

From (115), we find the components of the spin tensor of the spinor field as follows

S12,0 = 0, S13,0 = 0, S23,0 =
1

2
V̄δγ

0σ23Vδ.e
−α (121)

We remark that the only nontrivial component of the spin tensor is S23,0. It defines the chronometric invariant spin tensor
S23,0
chI and the projection of spin vector S1 on ξ axis having the forms

S23,0
chI =

(
S23,0.S

23,0
) 1

2 = F̄ (Ω)e−α (122)

S1 =

∫ ξc

0

F̄ (Ω)e−α
√
3−gdξ (123)

Let us remark that the integrands in (118) and (123) coincide. Thus, the total spin is also limited quantity as the total
charge. As result, the geometry of the metric, the nonlinearity of the spinor field and the own gravitaional field play
an important role in order to obtain a soliton-like solutions with limited total charge and total spin. Theses results are
compatible with experimentaly results obtained in the accelerator particles.

6. Concluding Remarks

In this paper, we have obtained analytics spherical symmetric solutions to the spinor and gravitational fields equations
which are regular with a localized energy density and finite total energy. Equations with power and polynomial nonlin-
earities are thoroughly scrutinized. Our solutions describe a nonlinear spinor field configuration with localized energy
density T 0

0 , postive total energy E in the equations with polynomial nonlinearity case and negative in the equations with
power nonlinearity case. In the forthcoming paper, we will present the numerical solutions of the solutions obtained here
in graphical form.
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