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Abstract 

Graphene, as the thinnest material ever found, exhibits unconventionally relativistic behaviour of Dirac fermions. 

However, unusual phenomena (such as superconductivity) arise when stacking two graphene layers and twisting 

the bilayer graphene. The relativistic Dirac fermion in graphene has been widely studied and understood, but the 

large change observed in twisted bilayer graphene (TBG) is intriguing and still unclear because only van der 

Waals force (vdW) interlayer interaction is added from graphene to TBG and such a very weak interaction is 

expected to play a negligible role. To understand such dramatic variation, we studied the electronic structures of 

monolayer, bilayer and twisted bilayer graphene. Twisted bilayer graphene creates different moiré patterns when 

turned at different angles. We proposed tight-binding and effective continuum models and thereby drafted a 

computer code to calculate their electronic structures. Our calculated results show that the electronic structure of 

twisted bilayer graphene changes significantly even by a tiny twist. When bilayer graphene is twisted at special 

“magic angles”, flat bands appear. We examined how these flat bands are created, their properties and the 

relevance to some unconventional physical property such as superconductivity. We conclude that in the 

nanoscopic scale, similar looking atomic structures can create vastly different electronic structures. Like how P. 

W. Anderson stated that similar looking fields in science can have differences in his article “More is Different”, 

similar moiré patterns in twisted bilayer graphene can produce different electronic structures. 

Keywords: Twisted Bilayer Graphene, Electron Band Structure, Density of States, Magic Angle 

1. Introduction 

In 1972, physicist Phillip W. Anderson wrote an article called “More is Different”. In the article (Anderson, 

1972), he explained how although symmetry is of great importance to physics, objects that appear symmetric 

may not be actually symmetric at the quantum scale. The physical laws that govern an object may also be 

un-symmetric. Through this, he emphasized how scientists’ focus on reductionism may limit scientific 

advancement. He also expressed that the common view of science having a hierarchy (biology is applied 

chemistry, physics is applied math, etc.) is wrong. Things that seems similar at first look may have large 

deviations. At the quantum level, even tiny changes could create huge differences. 

One material where a tiny change can create a huge difference is twisted bilayer graphene (TBG). As the thinnest 

known material, graphene has been found to exhibit unconventional behaviour of relativistic Dirac fermions, for 

example, a linear dispersive band in the vicinity of the zone corner of its reciprocal Brillouin zone. Bilayer 

graphene is when two layers of graphene are laid on top of each other. By putting a twist between the two layers, 

special “moiré patterns” can be created. A tiny change in angle could create a vastly different moiré pattern. 

However, some fascinating phenomena such as superconductivity and other novel strong-correlation 

properties(Bistritzer & MacDonald, 2011; Cao, Fatemi, Demir, Fang, Tomarken, Luo, Sanchez-Yamagishi, 

Watanabe, Taniguchi, Kaxiras, Ashoori, & Jarillo-Herrero, 2018; Cao, Fatemi, Fang, Watanabe, Taniguchi, 

Kaxiras, & Jarillo-Herrero, 2018), which are unconceivable in graphene, are found to arise in TBG. Such a big 

change observed from graphene to TBG is very intriguing but unclear, because it is very counterintuitive to 

ascribe such a big change to the tiny change in twist or to the very weak van der Waals force (vdW) interlayer 

interaction.To comprehend the huge difference due to tiny change in TBG, we examined the electronic properties 

of graphene and conventional bilayer graphene, then created twisted bilayer graphene and finally investigated the 

electronic band structure of TBG within tight binding approximation and effective continuum model. At some 

specific angles, dubbed “magic angles” in a moiré superlattice, a special “flat band” shows up merely due to the 

weak vdW interlayer interaction. We also examined how the model of TBG changes at and around magic angles 
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through the electronic density of states. The electrons move extremely slowly in the flat band near the Fermi 

level, increasing the Coulomb interaction between each other, or the so-called strong correlation effect, which 

can help us understand the emergence of superconductivity relevant to high-Tc superconductors(Cao, Fatemi, 

Demir, Fang, Tomarken, Luo, Sanchez-Yamagishi, Watanabe, Taniguchi, Kaxiras, Ashoori, & Jarillo-Herrero, 

2018; Cao, Fatemi, Fang, Watanabe, Taniguchi, Kaxiras, & Jarillo-Herrero, 2018). 

2. Model, Results, and Discussions 

2.1 Atomic and Electronic Structure of Monolayer Graphene 

We will start from graphite; graphite is everywhere in our daily life, for example, in the pencils we use. It is an 

anisotropic structure with many single-atomic layers stacking together. More than ten years ago, two physicists 

Dr. Andre Geim and Dr. Konstantin Novoselov from University of Manchester succeeded in obtaining one such 

atomic-thick layer (dubbed graphene) by mechanically exfoliating graphite using Scotch tape. They were 

awarded the Nobel Prize for significant contributions(Novoselov, Geim, Morozov, Jiang, Zhang, Dubonos, 

Grigorieva, & Firsov, 2004; Novoselov, Geim, Morozov, Jiang, & Katsnelson, 2005) in Physics in 2010. As 

shown in Figure 1, graphene is a hexagonal lattice pattern of a carbon atomic layer. Graphene is the thinnest 

material ever found and has many novel properties: it is strong, light, and a good conductor of electricity. 

 

Figure 1. Single-atomic-thick structure of graphene 

 

The simplest unit or the primitive structure of graphene has atom A and B, as seen from Figure 2 (Left). Defining 

the distance between atom A and B as a, we can write the unit-cell lattice vectors as 𝑎⃗1 = a0 ( , , 0),𝑎⃗2 = a0 

(0,1,0), 𝑎⃗3 =c0 (0, 0, 1), where a0 = a. To study the electronic structure, it will be more convenient to work in 

the reciprocal k space. To calculate the unit vectors (b⃗⃗1,b⃗⃗2,b⃗⃗3) in reciprocal space, using the following formulae: 

  (1) 

we have b⃗⃗1=
4𝜋

√3𝑎0
 (1, 0, 0) and b⃗⃗2 = 

4𝜋

√3𝑎0
 (

1

2
,
√3

2
,0), as given in Figure 2 (Right). 
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Figure 2. (Left) The unit-cell lattice vectors of graphene. (Right) The reciprocal unit vectors of graphene 

 

Electron motion in graphene is governed by the Schrödinger equation H (x) = (x), in which (x) is wave 

function of the system, H is the system Hamiltonian, and  is the eigenvalue of the wave function. The 

-electronic wave function (x) of graphene can be constructed by combing the pz orbitals on both A and B sites 

in the Bloch type(Wallace, 1947; Moon & Koshino, 2013; Koshino, 2015):  

 (x) = RA, RB [ei(k.RA) A A(x - RA) + ei(k.RB) B B(x - RB)] (2) 

Where RA and RB are the translational lattice vectors and k is the wave vector in reciprocal space. By multiplying 

*
A(0) to the Schrödinger equation H (x) = (x) and integrating it in the whole real space ––∫d*

A(0)H (x) 

= ∫d*
A(0)(x) –– we will obtain the following equations: 

 (𝜀𝐴 − 𝜀)A + 𝐸1[𝑒
−𝑖𝑘𝑥𝑎 + 2𝑒

𝑖𝑘𝑥𝑎

2 cos (
√3𝑘𝑦𝑎

2
)] B  = 0 (3) 

 𝐸1[𝑒
𝑖𝑘𝑥𝑎 + 2𝑒−

𝑖𝑘𝑥𝑎

2 cos (
√3𝑘𝑦𝑎

2
)] + (𝜀𝐵 − 𝜀) B = 0 (4) 

which can be described using the following matrix: 

 [
𝜀𝐴 − 𝜀 𝐸1[𝑒

−𝑖𝑘𝑥𝑎 + 2𝑒
𝑖𝑘𝑥𝑎

2 cos (
√3𝑘𝑦𝑎

2
)]

𝐸1[𝑒
𝑖𝑘𝑥𝑎 + 2𝑒−

𝑖𝑘𝑥𝑎

2 cos (
√3𝑘𝑦𝑎

2
)] 𝜀𝐵 − 𝜀

] [
𝐴
𝐵
] = 0 (5) 

where A (or B, is the on-site energy and here for simplicity we set B= A = 0) refers to the eigenvalue of the 

-electronic in the carbon atom andE1 = ∫d*
A H B is defined as the electronic hopping energy between the 

nearest A and B atoms. From here, we can obtain the following formula of the dispersive electronic band 

structure, which is plotted in Figure 3.  

 𝐸(±)(𝑘) = ±𝛾√1 + 4 cos (
√3𝑘𝑥𝑎0

2
) cos (

𝑘𝑦𝑎0

2
) + 4cos2(

𝑘𝑦𝑎0

2
)  (6) 

 

Figure 3. (Left) The electron band dispersion of monolayer graphene. (Right) Dirac cones in the corner of the 

Brillouin Zone of monolayer graphene 
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We can observe that monolayer graphene has a very special electron band structure: 

1) The band surface of the two eigenvalues in the Brillouin Zone are almost mirror symmetric. 

2) Two surfaces touch at the corner K points. At each corner the bands form two cones connected to each other 

on their ends at the Fermi level called “Dirac cones”. The Dirac cones cause electrons in the monolayer to appear 

massless, meaning they can move at relativistic speeds. This makes graphene an extremely good conductor. 

2.2 Atomic and Electronic Structure of Bilayer Graphene 

In graphite, the stacking of graphene takes the AB, or Bernal, configuration. Graphene may also stack in the AA 

configuration. These two typical configurations are shown in Figure 4. In AA stacking, both layers are lined up; 

while in AB stacking, the layers are staggered. AB stacking is also analogous to twisting the layers of 

AA-stacked graphene 60° apart. 

 

Figure 4. (Upper Left) AA stacking; atom “a” in top layer lines up with atom “a” in bottom layer, atom “b” in top 

layer lines up with atom “b” in bottom layer. (Upper Right) AB stacking; atom “a” in top layer lines up with 

atom “b” in bottom layer, atom “b” in top layer and atom “a” in bottom layer do not line up with anything. 

(Bottom) Top-down view of both AA and AB stacking configurations 

 

Using a method similar to calculating the electronic band of monolayer graphene, we can construct the following 

matrixes for AA and AB configurations. 

For AA configuration: 



apr.ccsenet.org Applied Physics Research Vol. 13, No. 1; 2021 

54 

  (7) 

And for AB configuration: 

  (8) 

Both of them give rise to very different band dispersions and band structures, as indicated in the right panels of 

Figure 5. Diagonalizing the above matrixes, we have 

𝜀 = ± (E2 
3

2
𝑘𝑎E1) for AA; 𝜀1 = ±E2 [1 + (

3

2
𝑎
E1

E2
)2 q2] and 𝜀2 = ±E2 [0 + (

3

2
𝑎
E1

E2
)2 q2] for AB 

 

Figure 5. Interlayer hopping term and electronic band in AA (Top) and AB (Bottom) configurations 
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In the bilayer graphene with AA stacking configuration, the electron bands of both layers are aligned, so the 

AA-stacked bilayer has similar properties to a monolayer. In AB stacked bilayer graphene, the interlayer vdW 

force significantly reduce its carrier mobility. The two layers’ electron bands also interfere with each other, 

leading to a decrease in the conductivity of AB stacked bilayer graphene. We notice here that stacking two layers 

changes the electronic band structure of graphene greatly. Again, as mentioned earlier, AB stacking can be 

considered to be twisted bilayer graphene from AA stacking by 60°. It is curious whether band structure changes 

continuously with the twist angle. 

3. Atomic Structure and Electronic Band of Twisted Bilayer Graphene 

Graphene has three-fold rotational symmetry, that is to say, the periodic rotating angle is 120o. In the meantime, 

there exists vertical mirror symmetry, suggesting that 60o is the smallest angle unit. 0o and 60o twist angle 

represent the AA and AB stacking, respectively. However, unlike the simple AA and AB stackings, the unit cell 

size for a twist angle between 0o and 60o becomes more complicated, depending on the twist angle (Moon & 

Koshino, 2013; Koshino, 2015). Figure 6 shows three twist angles at 21.7o, 31.3o, and 7.4o from left to right. 

Moiré patterns can be created when the twist angle between two graphene layers are small. A moiré pattern is an 

interference pattern created when two layers of patterns are overlaid with each other. Twisted bilayer graphene 

(TBG) creates different moiré patterns depending on the amount of twist between layers. 

 

Figure 6. Moiré patterns at different turning angles (21.7, 13.3, and 7.44 from left to right) and their unit cells. 

These angles are just used as examples and do not have any significance to the rest of the paper 

 

Figure 7 shows an analysis on the lattice parameters of TBG moiré lattice starting from the AA configuration. We 

first select a lattice vector Lb = m 𝒂⃗⃗⃗1 + n𝒂⃗⃗⃗2 in the bottom layer and Lt = n𝒂⃗⃗⃗1 + m 𝒂⃗⃗⃗2 in the top layer (|Lb| = |Lt|). 

We then rotate Lt to Lb by angle  to form a TBG moiré lattice. We see that the lattice size L (L = |Lb| = |Lt|) for 

the TBG moiré lattice is 

 𝐿 = 𝑎√𝑚2 + 𝑛2 +𝑚𝑛 =
|𝑚−𝑛|

2sin⁡(
𝜃

2
)
𝑎 (9) 

And the twist angle  is 

 cos(𝜃) =
1

2

𝑚2+𝑛2+4𝑚𝑛

𝑚2+𝑛2+𝑚𝑛
 (10) 

As indicated by the black arrows in the right panel of Figure 7, both L1
M and L2

M should have the same and 

the smallest length ––a, the graphene unit vector size –– and take the vectors of (a2 - a1) and (–a1), respectively. 

The relation between the moiré lattice vectors L1
M and L2

M and the change (L1
M and L2

M) to the moiré lattice 

vectors is 

 𝑳1
𝑀 =

(−𝒂1+𝒂2)×𝒆𝑧

2sin⁡(
𝜃

2
)

⁡ ⁡ ,⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ 𝑳2
𝑀 =

−𝒂1×𝒆𝑧

2sin⁡(
𝜃

2
)
 (11) 
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Figure 7. Lattice and reciprocal parameters of moiré patterns 

4. The Effective Continuum Model and Electronic Band of TBG 

With the information of unit cell parameters of moiré lattice, we can further analyze the corresponding lattice in the 

reciprocal space. As shown in the left lower corner of Figure 7, a twist in real lattice will induce a twist with the 

same angle in the reciprocal lattice. The Dirac cones of both layers form new hexagonal corners (K points) and 

new saddle points (M points) between. The reciprocal lattice vectors are  

 𝑮1
𝑀 =

2𝜋(𝑳2
𝑀×𝑳3

𝑀)

𝑳1
𝑀∙(𝑳2

𝑀×𝑳3
𝑀)
𝑮2
𝑀 =

2𝜋(𝑳3
𝑀×𝑳1

𝑀)

𝑳1
𝑀∙(𝑳2

𝑀×𝑳3
𝑀)

 (12) 

The tight-binding model of the TBG for pz atomic orbital can be written as, 

 𝐻 = −∑ 𝑡(𝑹𝑖 − 𝑹𝑗)|𝑹𝑖⟩⟨𝑹𝑗|𝑖,𝑗  (13) 

where 𝑹𝑖 and |𝑹𝑖⟩ represent the ith lattice point and the ith atomic states, respectively. And 𝑡(𝑹𝑖 − 𝑹𝑗) refers to 

the hopping integral between the ith and jth site. An approximation is adopted as follows, 

 −𝑡(𝒅) = 𝑉𝑝𝑝𝜋 [1 − (
𝒅⋅𝒆𝒛

𝑑
)
2

] + 𝑉𝑝𝑝𝜎 (
𝒅⋅𝒆𝒛

𝑑
)
2

 (14) 

 𝑉𝑝𝑝𝜋 = 𝑉𝑝𝑝𝜋
0 𝑒𝑥𝑝 (−

𝑑−𝑎0

𝛿0
) (15) 

 𝑉𝑝𝑝𝜎 = 𝑉𝑝𝑝𝜎
0 exp⁡(−

𝑑−𝑑0

𝛿0
) (16) 

where 𝑎0 is the atomic distance between the nearest A and B sites in graphene, and 𝑑0 = 0.335⁡ 𝑛𝑚is the 

interlayer spacing. 𝑉𝑝𝑝𝜋
0  is the hopping integral between two  orbitals of the closest atoms of graphene and 𝑉𝑝𝑝𝜎

0  

is between the  orbitals of two vertically closest atoms between the neighboring sublayers. In this case, we use 

𝑉𝑝𝑝𝜋
0 = −2.7⁡ 𝑒𝑉 and 𝑉𝑝𝑝𝜎

0 = 0.48⁡ 𝑒𝑉 which can well fit the dispersive electronic bands of both monolayer and 

AB-stacked bilayer graphene. 𝛿0 is the decaying length of both the intralayer and interlayer hopping integral. 

At a small rotation angle, the superlattice period of Moiré patternis much bigger than the lattice size of monolayer 

graphene, only the long-wavelength components of the interlayer interaction remains. So, the twist bilayer 

graphene system can be treated by the effective continuum model. The continuum model can be constructed from 

tight-binding model. The Bloch basis of this system are 

 |𝒌, 𝑋𝑙⟩ =
1

√𝑁
∑ 𝑒𝑖𝒌⋅𝑹𝑋𝑙𝑹𝑋𝑙

|𝑹𝑋𝑙
⟩ (17) 
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where l is the layer index and N is the repetition of the monolayer unit cells in the TBG. And X=A, B is the 

sublattice of the monolayer graphene. k is the wave vector defined in the Moiré Brillouin zone (MBZ). 

The continuum model of TBG can be written in the Bloch basis. The intralayer matrix element can be written as 

 ℎ(𝒌, 𝝉) = ∑ −𝑡(𝑛1𝒂1 + 𝑛2𝒂2 + 𝝉) × exp⁡[−𝑖𝒌 ⋅ (𝑛1𝒂1 + 𝑛2𝒂2 + 𝝉)]𝑛1,𝑛2  (18) 

where 𝝉 is the vector linking site B with site A. The spectrum of the monolayer graphene at low-energy scale is 

taken care of approximately by the Dirac cones around K and K’ point. In the unrotated graphene we take K = 

(2π/a)(-2/3, 0) and K’ = (2π/a)(2/3, 0). The K points of layer l in the rotated graphene are given by 𝑲(𝒍) =
𝑅(∓𝜃/2)𝑲 and 𝑲′(𝑙) = 𝑅(∓𝜃/2)𝑲′ in which ∓ represents for l = 1 and 2, respectively. The intralayer (within 

the layer) coupling continuum model in the vicinity of the K and K’ is 

 𝐻𝑙 = −ℏ𝑣[𝑅(∓𝜃/2)(𝒌 − 𝑲𝜉
(𝑙))] ⋅ (𝜉𝜎𝑥, 𝜎𝑦) (19) 

where 𝜉 = ± is the valley index and 𝑣is the fermi velocity of monolayer graphene. The 𝜎𝑥 and 𝜎𝑦 is the Pauli 

matrix and 𝜃 is the relative twist angle between graphene layers. 

For the interlayer coupling, the matrix element in the Bloch basis is 

 𝑈𝑋2𝑋1 = −
1

√𝑁1𝑁2
∑ −𝑡(𝑹𝑋2 − 𝑹𝑋1)𝑒

𝑖𝒌⋅𝑹𝑋1−𝑖𝒌′⋅𝑹𝑋2𝑹𝑋1𝑹𝑋2
 (20) 

where 𝑹𝑋1 and 𝑹𝑋2 are the atomic site in the layer 1 and 2. The 𝑁1 and 𝑁2 are the number of the monolayer unit 

cells. The interlayer coupling matrix can be Fourier transformed as 

 𝑈𝑋2𝑋1 = −∑ 𝑡̃(𝒌 + 𝑮)𝑒−𝑖𝑮⋅𝝉𝑋1+𝑖𝑮′⋅𝝉𝑋2𝑮,𝑮′  (21) 

where 𝑡̃(𝒌 + 𝑮) is the in-plane Fourier transformation of the hopping integral 𝑡(𝑹𝑋2 − 𝑹𝑋1) defined by 

 𝑡̃(𝒌 + 𝑮) =
1

𝑆
∫ 𝑡(𝑹𝑋2 − 𝑹𝑋1)𝑒

−𝑖(𝒌+𝑮)⋅𝑹𝑑𝑹 (22) 

with S is the area of the monolayer graphene and R is in-plane distance between two atomic sites whose integral is 

taken over an infinite two-dimensional space. We only consider the electronic states near 𝑲𝜉  point, and the 

interlayer coupling matrix can be approximated as 

 𝑈 = (
𝑈𝐴2𝐴1 𝑈𝐴2𝐵1
𝑈𝐵2𝐴1 𝑈𝐵2𝐵1

) = 𝑡̃(𝑲) [(
1 1
1 1

) + ( 1 𝜔−𝜉

𝜔𝜉 1
) 𝑒𝑖𝜉𝑮1

𝑀⋅𝒓 + ( 1 𝜔𝜉

𝜔−𝜉 1
) 𝑒𝑖𝜉(𝑮1

𝑀+𝑮2
𝑀)⋅𝒓] (23) 

where we have  𝜔 = exp⁡(𝑖2𝜋/3) and 𝑡̃(𝑲) = 0.103𝑒𝑉in the present tight-binding parameters. 

The electronic structure of twisted bilayer graphene can be approximated using the following two equations 

(Koshino, 2015): 

 𝐻𝑙 = −ℏ𝑣[𝑅(∓𝜃/2)(𝒌 − 𝑲𝜉
(𝑙))] ⋅ (𝜉𝜎𝑥, 𝜎𝑦) (24) 

For interlayer interactions, where 𝜉 = ±is the valley index, 𝑣 is the fermi velocity of monolayer graphene, 𝜎𝑥 

and 𝜎𝑦 are the Pauli matrices, and 𝜃 is the relative twist angle between graphene layers; and 

 𝑈 = (
𝑈𝐴2𝐴1 𝑈𝐴2𝐵1
𝑈𝐵2𝐴1 𝑈𝐵2𝐵1

) = 𝑡̃(𝑲) [(
1 1
1 1

) + ( 1 𝜔−𝜉

𝜔𝜉 1
) 𝑒𝑖𝜉𝑮1

𝑀⋅𝒓 + ( 1 𝜔𝜉

𝜔−𝜉 1
) 𝑒𝑖𝜉(𝑮1

𝑀+𝑮2
𝑀)⋅𝒓] (25) 

For intralayer interactions, where 𝜔 = exp⁡(𝑖2𝜋/3) and 𝑡̃(𝑲) = 0.103𝑒𝑉. 

Combining these, we get the Hamiltonian of TBG: 

 𝐻 = (
𝐻1 𝑈†

𝑈 𝐻2
) (26) 

We used a MATLAB program to draw the electron band structure of TBG by dividing the reciprocal unit cell into 

many points and calculating the Hamiltonian for each of those points. We can also find the density of states (DOS) 

–– a measure that describes the number of electron states per unit volume per unit energy of a system –– by 
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counting how many points on the electron band structure are on each energy level, but since we cannot calculate all 

the points on the electron band structure, we use this equation to approximate the DOS: 

 𝑔(𝐸) = ∫
𝑑2𝒌

4𝜋2
𝛿(𝐸 − 𝐸(𝒌))

𝐵𝑍
 (27) 

Figure 8 shows the electronic band structure and the DOS of TBG at twist angles of 0.8°, 1.1°, 1.4°, 1.7°, and 2.0°. 

 

Figure 8. Electronic band and DOS of TBG at twist angles of 0.8°, 1.1°, 1.4°, 1.7°, and 2.0° 

 

5. Magic Angle Twisted Bilayer Graphene 

We realize that the band width and the distance between two diverging DOS van Hove singularities at the Fermi 

level decrease as the twist angle decreases from 2.0o. At turning angles close to magic angles (such as 1.1° in Fig 7), 

there is a very large spike right in the middle of the DOS. This spike indicates a flat band, which is when the 

electron bands are nearly completely flat. We can also detect flat bands by looking at the band width of the electron 

band structure, since flat bands have very small band widths due to being flat. We can see the relationship between 

twist angle and band width by calculating the band width as progressively increasing angles using the MATLAB 

program (Figure 9). We can see that there are more than one “magic angle” where flat bands appear. 0.4°, 0.9°, and 

1.1° are close approximations of the 1st, 2nd, and 3rd magic angles. 
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Figure 9. Width of flat band as a function of twist angle 

 

TBG at these “magic angles” are dubbed magic angle twisted bilayer graphene, or MATBG. The most important of 

these special properties is the creation of “flat bands”, where sections of the electron band structure are nearly 

completely flat. 

 

Figure 10. Electron band structure of 1.05° TBG from along points K, Γ, M, K’. The two inner most bands are very 

flat 

 

The flat bands cause electrons in a material to appear to have nearly infinite mass or zero velocity. It becomes more 

easily for the slow electrons to see each other and to feel the Coulomb repulsion between each other, which is the 

so-called strong correlation phenomenon and most probably leads the material to become superconductive upon 

doping, just like what happens in the high-Tc superconductors. 

 

6. Discussion 

Monolayer graphene also has flat bands, though not enough to give it superconductive properties. These flat bands 

are around saddle points in the monolayer’s electron band structure, where there are some relatively leveled zones. 
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In TBG, the twist creates some new saddle points when the Dirac cones of the two layers’ electron bands intersect. 

At magic angles, very flat bands are created. 

The emergence of flat bands with twist is still not clear in physics. Allen MacDonald and his colleagues from UT 

Austin considered that the electrons at the magic angle will quantum-tunnel with much higher probability between 

the top and bottom layers, leading to a slow-down within each layer. We speculate that the flat band may be 

understood more simply from the evolution of band structure from bilayer AA to AB stacking graphene. Looking 

back to Figure 5, band dispersion changes from linear in AA to quadratic in AB, suggesting that AB can suppress 

the electronic relativistic motion observed in monolayer graphene. The AB local stacking structure coexisting with 

the AA stacking in one twisted moiré superlattice can therefore contribute to the slow-down of electron. Reducing 

the twist angle increases the unit cell size of moiré superlattice and the size of the AB stacking structure, until 

magic angles are reached, where a total suppression of in-plane motion is gained, and a flat band appears. 

7. Conclusion 

Combining the tight-binding with the effective continuum models, we studied the electronic structures of 

monolayer, bilayer and twisted bilayer graphene, and demonstrated that “more is different” exists in the nanoscale 

from a single atomic layer to a double layer. In the double layer twisted moiré superlattice, we detected new and 

unique features of high-Tc superconductors, for example, flat band the related physical properties, which are not 

found in a single layer. This may arise from the symmetry breaking at quantum scale. 
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