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Abstract

Many astrophysical and cosmological observations suggest that the matter in the universe is mostly of the dark
matter type whose behavior goes beyond the Standard Model description. Hence it is justifiable to take a
drastically different approach to the dark matter particles which is here done through the bicubic equation of
limiting particle velocity formalism. The bicubic equation discriminant D in this undertaking satisfy D > 0
determined by the congruent parameter z satisfying 22 = 1, where formally z(m) = 3v/3muv? /2E, with m,
v, and E being respectively, particle mass, velocity and energy. Also nonlinearly related to the the particle
congruent parameter z is the particle congruent angle o . These two dimensionless parameters z and « simplify
expressions in the bicubic equation limiting particle velocity formalism when evaluating the three particle
limiting velocities, ¢1, co and c¢3, (primary, obscure and normal) in terms of the ordinary particle velocity, v.
Corresponding to these limiting velocities one then deduces, with equal values, dark matter particle energies
E(c1), E (cz) and E (c3). The exemplary values of the congruent parameters are in these regions, 1 < z < 3/3
/2 and 7/2 = a = w/3 . Already within these ranges of congruent parameters, the bicubic formalism yields for
squares of particle limiting velocities that ¢ and c2 are complex conjugate to each other, ¢?* = ¢3 ,and that
c? is real. The imaginary portions of ¢? and ¢3 do not change the realities of numerically equal to each other
dark matter energies E (¢;),i = 1,2,3. In fact, real E (¢ 2) energies can be equally evaluated with C%Q or Re
i 5 or even with I'mef , so that in new notation, E (cf,) = E (Reci,) = E (Imcf,) = E(c3) all with the
same real values. However, in these notations, the real particle momenta are ((ReciQ) and 7 ((c%)7 defined
with respective energies and, while in similar forms , numerically are different from each other.

Keywords: dark matter particles, astrophysics
1. Introduction

Many observations in astrophysical, cosmological, as well as, in electro-weak particle physics, show that a large
portion of matter, either luminous or non-luminous, exhibits different kind of behaviors, which people simply
call dark matter, as argued recently by Buchmueller, Doglioni, and Wong (2017), among others. These, so
called dark matter particles do not seem to be successfully described so far by other physical models such
as, for example, the Standard Model despite its large content. Here, based on the bicubic equation limiting
particle velocity formalism as developed in ’Soln (2014, 2015, 2016, 2017, 2018a, 2018b, 2019). One is trying to
understand dark matter particles with the formalism that is rather quite different from other descriptions. An
explicit difference that follows from the bicubic formalism is the fact that for three squares of limiting particle
velocities, primary ¢ and obscure ¢3 are not only complex but also complex conjugate to each other, while
normal c3 is real. The bicubic equation for particle limiting velocity, ¢, with global particle mass, m, velocity v
and energy E, we take it to be in the same form as in ’Soln (2014, 2019),

(€)' () () (&) -

In our approach the cubic equation discriminant D depending on the congruent parameter, z(m), is of the
following global form ’Soln (2014, 2015, 2016, 2017, 2018a, 2018b, 2019) with restrictions as indicated,
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o~ (2) s (o k) =

_ 3v/3muv?

E= 22(m) 22 (m) = 1. (1.3)

In Section 2 the exact solutions for squares of limiting velocities ¢?, ¢3 and c3 , respectively of the primary,

obscure and normal dark matter particles are given. Connecting the convenient squares of usual particle
velocities, v2(c;) with ¢2, i = 1,23, one can express the real particle energies in exact forms in terms of the

newly introduced congruent angle a(m). These energies,despite involving imaginary portions, are all real and
of the same value.

Section 3 is devoted to summarizing the results and speculative assumptions. Evaluations of c%Q (m) and 3 (m),
respectively for congruent angle o = /2 are compared with evaluations for @ < 7/2 and as well with some
experimental data. In this Section also the squares of limiting velocity solutions ci2 (m) are applied to the dark
matter particle believed to be a sterile neutrino (Ng et al., 2019) plus suggesting other physics attributes for
lighter dark matter particles.

2. Exact Limiting Velocity Solutions

With the help of (1.2) and (1.3) the solutions of (1.1), rather than in forms from (’Soln, 2019), are now
equivalently in these forms,

_ 3 [1£iv3cos(a(m))] v?

ciz (m) 22(m) sin{a(m)) = ReciQ (m) + z'ImciQ (m), (2.1)

ec? m*L me? ., (m) = 3\[731)207101771
Rect () = 5P Ty ) = £ 352 canta(r), (22
& (m) = ———" (23)

z (m)sin(a(m))’

In the physics evaluations with limiting velocities ¢; , co and c3,associated respectively with primary, obscure
and normal dark matter particles, a very useful parameter is the congruent angle a(m) nonlinearly related to
the congruent parameter z(m) ('Soln, 2019) with 22(m) = 1, a(m) < 7/2,

a(m) =2tan™! (tan (; sin~! (Z(lm)>>>é , (2.4)
Z(in) = sin [2 tan™? <tan (a(;n)»?’] ) (2.5)

Both of them z(m) and a(m), as we shall see shortly,have evolutionary roles on physical quantities. As long
as the quantities such as E, m and v together with z (m) and «(m) are real , from (2. 1,2) and (2.3), one
notices that ¢ (m) and c3 (m) are complex conjugate to each other and ¢ (m) is negative and real. When the
congruent angle o (m) = 7/2 , all ¢ (m),i = 12,3 are real. Next, with real z (m) and a (m) ,from solutions (2.
1,2) and (2. 3), one notices the zero sum rule for squares of limiting velocities ("Soln, 2016) which indicates the
correctness of ¢? solutions.

At this point, we wish to show the similarities and differences between our expression for energy from (1. 3)
and the so called relativistic expression (see Griffiths, 2008). To see that, we seek to change our congruent
parameter z (m) into z(m, relative) so that our energy from (1.3) becomes E(relative):

3\/§mv2 _ mu?
2z(m, relative) B2 (1— ,6’2)%

E(relative) = ) (3.1)
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?62 (-8t 8="2, (3.2)

z(m, relative) =

z(m, relative) S 1,8 < 1; z(m, relative) ~ 1,8 ~ 0.8 — 0.84, a (m) =~ (3.3)

0ol

It is apparent that the parameter z(m.relative) in (3. 2,3) is applicable to subluminal particles with luminal
limiting velocity ¢. However, as we shall see shortly, in general z (m) together with « (m) from ((2. 1,2,3,4,5),
may apply to subluminal, luminal or even superluminal particles because there are no prior restrictions on
values of limiting velocities, which may be from subluminal to superluminal values. The main reason for that is
that when z (m) is expressed in terms of the congruent angle a (m) there is more flexibility than when expressed
in terms of 8 as in in (3.2). This flexibility is needed particularly if dark matter particle is superluminal and
as such does not cover the same energy region as subluminal one. In other words, one should be aware that
superluminal dark matter particle energies while calculable from (1.3) cannot be derived from (3.1) with g
related to z(m,relative) as in (3.2) which is the main reason for introducing the bicubic equation particle
limiting velocity formalism in (2. 1,2,3,4,5) forms.

The inter-related congruent parameters z(m) and « (m) play interchangeable roles as evolution parameters. In
Table 1 we give some of their related numerical values, consistent with (2.4) and (2.5), which come very useful
when evaluating some physical quantities, such as the energy from (1.3), for example.

Table 1. Some numerics of congruent parameters « (m) and z(m)

a(m): 5 3% 33 55 375 5 3%
5 1 0876 0835 0669 0496 0371 0.283
Z(m): 1 1142 1198 1495 2.016 2.694 3.531

With the real quantities from the last raw in Table 1, it is evident how congruent parameter z(m) differs from
z(m, relative) , particularly since one may have z(m) > 1 with limiting velocity still being the velocity of
light ¢. To continue in new different directions, we show how the squared dark matter particle velocity, v?, is
directly related to primary,obscure Rec? , (o (m)), primary,obscure Imci 5 (o (m)) , the whole primary, obscure
i 5 (a(m)) and to normal 3 (a(m)), respectively for each of the primary, obscure and normal dark matter
particles. Taking into account that v? and z(m) are real quantities, specifically from (2. 1,2) and (2. 3) we
derive the relations between particle usual and limiting velocities, necessary in derivation of dark matter particle

energies. We start by inverting limiting velocity solutions (2. 1,2) and (2. 3),

032 = Reci2 + z'ImciQ, (4.1)
- 02  2sin (a(m)) ciz [1 F iv/3cos (a(m))] _ 2 2
‘L2t z(m) 3[1 4 3cos? (a(m))] B z(m)( 12) (42)
. v 2sin (a(m)) 9 9
Cia: “m) ~ 31 % 3o (a(m))] [Reci o V3 cos (a(m)) Imcq 5
02
41 (Imci2 ¥ V3 cos (a(m)) ReciQ)} = %(C%’Q), (4.3)
Reality : 1 (ImC?,z F V3 cos (a(m)) Recig) =0, (4.4)

v? 2sin (a(m))

2. -
L2 2(m) ~ 3[1+ 3cos? (a(m))]

[ReciQ + V3 cos (a(m)) ImciQ]

= zz’m) (2,), (4.5)
ReciQ zE}m) =3 sin (a(m)) Reci2 = szm) (Rect o), (4.6)
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, V2 sin (a(m))

s = -
z(m) 3
Due to the reality condition (4. 4), relation (4.3) shrinks to (4.5)) from which (4. 6) and (4. 7) follow so that
with (4. 8) we have complete limiting velocity presentations for evaluating respective primary, obscure and
normal dark matter particle energies. To this effect, it is worthwhile to see how the values of the congruent
angle a (m) from Table 1., according to the limiting velocity solutions (2. 1,2) and (2. 3), may affect such

calculations,

2
v 2

s = o) (c5). (4.8)

z(m)=1,a(m) = g
2 2 3 9 2 2 2
1clo = Reci = 50 ,Imcy 5 = 0,c5 = =307, (4.9)
z(m) = 1.495,a (m) = T
o 25
: ¢} 5 = 1.0550% +40.5650°, ¢ = —2.1v°. (4.10)

The dark matter particle energies labeled by specific limiting velocities, according to (1. 3) together with
relations (4. 1-10) will follow. We start with the exemplary general expression:

3vV3m 02 9

E (Cizs(m)) = 5 %(31,2,3(7”))- (5)

Next, in the fashion of (5), we deduce from (4. 2) the following dark matter particle energies for the primary
(c1) and obscure (c2) dark matter particles:

B a(m) = 223y ()
= V3msin (a(m)) cf ,(m) [1 F iv3cos (a(m))]

[1+ 3cos? (a(m))]

_ V3m3v? [1 £ iv/3cos (a(m))] [1 F iv/3cos (a(m))]
2z(m) [1 + 3 cos? (a(m))]

_ 3v/3mu?
(- 72z(m) ) . (5.1,2)

In this evaluation, the reality condition is automatically taken into account without specifying it in the
course of evaluation with the solutions of limiting velocities (4.1) -(4. 7). This is so, since from the lim-
iting velocity solutions (2. 1,2) for the primary (¢;) and obscure (cg) particles, one has implicitly that
Imc? 5, = £v/3cos (a(m)) Rec}, . Similarly we can evaluate the energy of the normal (cs) particle from (4. 8),

E(c3(m))

~3vV3m o vr 5,0 V3Bmsin(a(m))3 [ 3v3mo? 53
T2 z(m) (c3) == 2 2z(m) ) (53)
All three of these, numerically equal, energies are real despite the fact that (primary, obscure) dark matter
particle’s squares of limiting velocities, ¢f 5,are complex. Just knowing Rec , or Imci , one can still find out
the corresponding energies of which each, as we shall see, equals the energy appearing in (5. 1,2) . Specifically,
for Reci 5 and Imci 5 from respectively (4. 6) and (4. 7) we write

3vV3m 02

E(Rec?g(m)) =5 m(ReC%Q)
mu?
= V3msin (a(m)) Reci , ( 32\/2'3(771)) (5.4)
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3vV3m 02

B(tm y(m) = 25" - (1l )
= +m tana(m) Imci, (: m) . (5.5)

The common value of energy 3v/3muv?/2z(m) in (5. 1-5) follows from solutions for (primary, obscure) ¢ § ,(m),
Rec? 5(m) and Imcf 5(m) in (2. 1,2) and for (normal) ¢ 3(m) (2.3) limiting velocity squares. The easiest way
to demonstrate that is to take specific congruent parameters with unspecified dark matter particle mass and
velocity and inserting them into (5. 1-5) :

a(m) = m) = 1.495

25
: Reci y = 1.0550%, Imc} , = +0.5650°, c§ = —2.10°,
E(cf 5(m)) ~ 1.738mv”, E(Reci ,(m)) ~ 1.738mv?,
E(ImciQ(m)) ~ 1.739mv?, E(c3(m)) ~ 1.729mv?. (5.6)

One may see the energy as a sacred quantity, as all these energy expressions give the same value even from
Imec2(m)).This particularly so as the zero sum rule for squares of limiting velocities holds for both real and
imaginary portions.

Rec?(m)) 4+ Reci(m)) +c3 = 0, Imci(m)) + Imci(m)) = 0. (5.7)

As long as the congruent parameters satisfy z(m) # 1 and a(m) # /2, dark matter particle energies and
momenta appear not to be expressible in the Lorentzian like forms as in ’Soln (2019). However, as also in ’Soln
(2019), they are expressible in more general usual forms. All the numerically equal energy expressions, including
E(1I mciQ(m)), are real, indicating energy as fundamental quantity in physics. The particle momentum is more
a quantity of convenience, as its real value is associated with Rec?(m)) or ¢3 but not also with I'mc?(m)).

The dark matter particle momenta are defined with their energies, preferably in such a way , as to be real in
values. With that in mind, we write down the particle momenta for primary, obscure and normal dark matter
particles,

m&asm&ﬁ»=ﬂgif = V3mT sin (a(m)). (6:12)

c3) = —m sin (a(m)) . (6.3)
( C?a( ) 2
For primary,obscure dark matter particles with c; o limiting velocities, in the definitions we use (primary,
obscure) Rec ,(m) with E(Rec 5(m)) (numerically equal to E(cf 5(m))) to define the equal value momenta
of which each in form is very similar to normal particle momentum but double in value.

3. Discussion with Example Applications and Conclusion

One notices interesting things happening to dark matter particles once the congruent parameter z(m) # 1 and
congruent angle a(m) # 7/2. As one sees , the nonlinearly connected dimensionless congruent parameter z(m)
and dimensionless congruent angle «(m) are essential in evaluating not only all forms of particle energies but
also of linear particle momenta. In fact, as we can see from (3. 1,2,3), they have similar roles in evaluating
particle energy E as does the relative velocity S from Special Relativity. For one thing, the Lorentzian like
form is not favored by either the dark matter particle energy or the momentum as seen respectively in each
of (5.1-5.7) and (6.1-6.3). The most amazing things are that different forms of dark matter particle complex
limiting velocity-squares (primary, obscure) ¢f 5(m), (primary, obscure) Reci,(m) and (primary, obscure)
Imc3 5(m) (2. 1,2) separately yield the same value dark matter energy E(c? 2(m)) while the real ¢3 (m) (2. 3)
yields E (c3(m) (numerically equal to E(c? 5(m))). Similarly, one has the expressions for dark matter particle
momenta, ?(cl 5) = ?(Rec1 5) from E(C% o(m)) together with (primary, obscure) Recf ,(m); while normal
dark matter partlcle momentum ? (c3) follows in a usual way from limiting velocity-square c3 (m) and the

energy E(c3(m).
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Recently Ng et al.(2019), from studying dark matter from NuSTAR M31 observations have put forward well-
motivated dark sterile neutrino dark matter candidate, denoted as y,which radioactively can decay into mono-
energetic photon, v plus active neutrino v, y — y+v. Here, we wish to move on from the congruent parameters
values of z(m) = 1 and a(m) = 7 , as in "Soln (2019), to different values with z(m) # 1 and a(m) # 5.
In doing so, also here as in ’Soln (2019) with Ng et al.(2019), we shall accept that the dark sterile neutrino
mass satisfies m, = 12keV/c? | with ¢ the velocity of light . Continuing with the example of of the dark
sterile neutrino candidate, we shall demonstrate the evolutionary qualities of congruent parameters z(m,,) and
a(my) by changing them in succession as z(m,) = 1,1.2 and 1.5 with a(m,) = 7/2,7/2.3 and 7/2.5. These
demonstrations will show that for m, ~ 12keV/c? the dark sterile neutrino energy will change in decreasing
order as E(m,) ~ 20.8,20.3 and 20 keV . With more details we have

m, o~ 12 l{:eV/cz,Reci2 =c%

(22) : V= ;Z(mx) sin(a(my)) Re(cf , = ),
2 _ 3v? — 92
@3 alm) == Y emtatm) ~ 2
myv?
(5.4) = B(Re( ymy)) = (S y(my)) = V3my sin(a(my))e = S’f’(m
V3 . 3V3myv?
53) ¢ B (my) = Grmysin(a(my)) (e (my) = 0
almy) = %,z(mx =1,v2:§c2

a(my) = %ﬂ(rnx) =1.2,0% = 0.78¢

E(Reiz) = E(c3(my)) ~ 20.3keV ~ 2.2 m,v?,
almy) = %,z(mx) =1.5,v% = 0.95¢2

E(Re? ) = E((my)) ~ 20k eV ~ 1.73m,0>.

Similar analyses one can perform for dark sterile neutrino momenta, but restricting to just the real ones (6.1,2)
and (6.3).

In conclusion, the fact that through the bicubic equation limiting particle velocity formalism the real particle
energy can be equally well evaluated from the complex, real or imaginary particle limiting velocity-squared
expression, makes the particle energy exceptional and important,almost, a sacred quantity, particularly as
relations (5. 6) shows explicitly in succession numerically equal real values F (C%,z) =F (ReciQ) =F (I mc%Q)
=F (cg) for each velocity-squared, complex ¢?, complex 3 and real c2. What this shows that one should not
automatically discard complex or imaginary quantities in physics as their contents may support real physical
quantities, such as energy.
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