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Abstract:
We had explained electromagnetism by gravity before a recent publication in this Journal, in which we further incorpo-
rated the nuclear strong force in the framework of gravity. This paper, summarizing our cumulative results, continues to
integrate the nuclear weak force with gravity, where we go by the following line of logic: Planck’s formula shows energy
E = frequency = probability = wave; hence quantum waves have energies and the Universe is a diagonal spacetime mani-
fold containing {(particle pi, electromagnetic wave λ (pi))}. By Feynman’s analysis on electromagnetic mass, we assume
that the distribution of E over (p, λ (p)) is

(
3
4 ,

1
4

)
E. Then Newton’s gravitational acceleration formula yields E = 1.6 ×

the observed energy o f p, so that p exists only for a duration of 5
8
λ
c over the cycle

[
0, λc

]
, such as evidenced in quantum

tunneling, opening the possibility for λ (p) to be combined with other waves forming new particle(s) for t > 5
8
λ
c . By

the time ratios of two frames in General Relativity we deduce neutron’s lifetime, and by the Higgs mechanism we show
neutron’s decay products.
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1. Introduction

1.1 Unfulfilled Goal of Unifying the Four Forces

The quest for a unified field theory has been an ongoing endeavor in Physics for nearly a century (for a recent study, see
Kamada, 2018). Previously we explained electromagnetism by an extended (set of) Einstein Field Equations

Rµν −
1
2

gµνR = −
8πG
c2 Tµν, grav ∓ 16πG(

1 − γ−2g11,grav

)
c5

T att;rep
µν,em , (1)

and we invalidated the electroweak unification by noting the fact that in the Weinberg linear transformation an interchange
of the two entries in (Higgs ϕ, 0)T would fail the sought objective of distributing ϕ entirely to the Z boson to leave photon
without a rest mass.

1.2 Hypothetical Background of Our Unification of the Four Forces

We present a general description here (for analytical details, refer to Light, 2019): Before the Big Bang there had been
M[2] of electromagnetic waves (EMW’s) without their particle presentations (now recognized as ”dark energy”) along with
their collided standing masses (now recognized as ”dark matter”). Because of the gravitational constant G[2] ≈ 1085G[3]

(the Newton constant), a cosmic black hole B formed in M[2]. The interior of B had (has) a quotient topology due to
g[2]

11 < 0. Since the center of mass of B had to be averaged over one common equivalence class of spacetime and the least
class had length 10−63 meters < our assumed least indivisible unit of distance 10−35 meters, B blew up at its center (the
Big Bang), creating (particle pi, EMW (pi)) existing in a diagonal spacetime manifold M[3] = M[1] × B = the known
Universe with linearization (t + it, x + iy, y + iz, z + ix), where pi = electron e−, up quark u, down quark d, or neutrino ν
along with its anti particle of the same handedness; the pair-creation came about through a pair of (photon γ, EMW (γ))′ s
intersecting each other at 90, 60, 30, or 0 degrees respectively. For example, a left-handed electron e−L has its EMW

(
e−L

)
spin

e−L : from W ≡ (−1, 0, 0) to N ≡ (0, 1, 0)

to E ≡ (1, 0, 0) to T ≡ (0, 0, 1) and back to W, (2)

with
e+L = E → S ≡ (0,−1, 0)→ W → B ≡ (0, 0,−1)→ E, (3)

23



apr.ccsenet.org Applied Physics Research Vol. 11, No. 3; 2019

as formed by

γL : = W → N → E → S → W and (4)
γiL : = E → T → W → B→ E. (5)

A left-handed proton

PL = W → T → E → N → W (opposite to e−L), (6)
or W → S → E → T → W, maintaining 90◦.

Neutron n or ν = W → N → E → N → W (7)
≡ E → N → W → N → E

≡ E → T → W → T → E;

ν̃ = W → S → E → S → W, (8)
of opposite angular momentum to ν.

(Without loss of generality, the following analysis will be presented by the left-handed convention.)

2. Method and Results

To make this paper self-contained yet without undue redundancy to our previous publication (Light, 2019), we will present
the key logical elements of our integration of gravity with electromagnetism in Section 2.1 and that with the nuclear strong
force in Section 2.2; we will then show our new results of integrating gravity with the nuclear weak force in Section 2.3.
Our method will be that of mathematical proofs with conclusions followed as results.

2.1 Integration of Electromagnetism with Gravity

Einstein Field Equations (”EFE”)

Rµν −
1
2

gµνR = −
8πG
c2 Tµν, (9)

begins with a Lorentzian metric g, which defines the associated covariant derivative ∇XY by the Koszul formula, then in
turn the Riemann-Christoffel curvature (1, 3) − tensor R (U,V) W, in turn to the Ricci curvature (0, 2) − tensor Rµν and
finally to the Ricci curvature (0, 0)− tensor R. That is, the entire left-hand-side E := Ric− 1

2 gR, recognized as the Einstein-
Hilbert tensor, is dependent on g and is essentially the derivative of the total scalar curvature of a bounded manifold with
respect to g. E by its own nature is already an energy-momentum tensor T , for which the constant of proportionality(
− 8πG

c2

)
was (is) determined by Newton’s gravitational law. The reason why using flat spacetime to determine physical

constants is valid is owing to the algebraic homomorphism of tensors

A∗ (αT) = αA∗T, (10)

where A∗ is any pull-back operator of any tensor T that operates on vectors in a tangent space and α is any numerical
constant; A∗ corresponds to any arbitrary frame transformation in physics, which includes in particular a frame situated
in a flat spacetime. As such, c, G, and h are universal, and all weak-field ”approximations” (thus a misnomer) are to yield
exact physical relationships.

Consider now the dynamics of a proton Q (≡ P as denoted above) at (0, 0, 0, 0) ∈ U ⊂ R1+3 (flat spacetime with Minkows-
ki metric η := diag

(
1,− 1

c2 ,− 1
c2 ,− 1

c2

)
) that attracts an electron q (≡ e− as denoted above) at (0, x, y, z) ∈ U; set

r ≡
√(

x2 + y2 + z2).
Proposition 1 Let g be a local metric of a spacetime manifold M4 and express g as a matrix in the basis of B ≡{
∂ f
∂t ,
∂ f
∂x ,
∂ f
∂y ,
∂ f
∂z

}
, where f : (t, x, y, z) ∈ U → (

t̃, x̃, ỹ, z̃
) ∈ M4 is a local parametrization. Assume that M4 is near flat; then

a neighborhood Ũ of any point x̃ =
(
t̃, x̃, ỹ, z̃

) ∈ M4 can be identified with the tangent space Tx̃Ũ, i.e., Ũ ≡ Tx̃Ũ with x̃ =
(i) a point in Ũ or (ii) a vector in Tx̃Ũ (to be distinguished by a subscript ”o” for clarity of the underlying context, such
as a proper time t̃o, which is the projection of the vector

(
t̃, x̃, ỹ, z̃

)
onto the vector

(
t̃, 0, 0, 0

)
, but as a 1-dimensional value
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t̃o := t̃ − 0 ≡ t̃). Set the Lorentz transformation L = f ; then the derivative of proper time t̃o with respect to proper time to
is:

dt̃o
dto
= (1, 0, 0, 0) gB

(
−1, vx, vy, vz

)T
, (11)

where V =
(
vx, vy, vz

)
is the velocity of q.

Proof. Without loss of generality, consider

L = γ
(

1 v
c2

v 1

)
(12)

transforming frame S to S̃ , and calculate

(1, 0) gB (−1, v) (13)

= (1, 0)
((

L−1
)T

)−1 [(
L−1

)T
gB L−1

]
L (−1, v)T

≈ (1, 0)
(
γ

(
1 v
v
c2 1

)) (
1 0
0 − 1

c2

) (
∆t̃o
0

)
=

(
γ,−γv

c2

) (
∆t̃o
0

)
(observe that L : (−1, v)T 7−→ (

∆t̃o, 0
)T ,

where ∆t̃o is the proper time of S̃ by definition)

=
∆t̃o√

1 −
(

v
c

)2
=

∆t̃o∥∥∥(−1,−v)T
∥∥∥
η

=
∆t̃o∥∥∥L−1 (−1,−v)T

∥∥∥
η

=
∆t̃o
∆to
≈ dt̃o

dto
, (where L−1 : (−1,−v)T 7−→ (∆to, 0)T ,

analogous to the above Equation for L).

Remark 1 The meaning of dt̃o
dto
= (1, 0, 0, 0) gB

(
−1, vx, vy, vz

)T
is:

∆to →
(
∆to
∆to
,
∆x
∆to
,
∆y
∆to
,
∆z
∆to

)T

∈ U (14)

=
(
1,−vx,−vy,−vz

)T
(sign due to attractive action)

→
(
1 · ∂ f
∂t
− vx
∂ f
∂x
− vy
∂ f
∂y
− vz
∂ f
∂z

)T

∈ Ũ

→ gB

(
1 · ∂ f
∂t
− vx
∂ f
∂x
− vy
∂ f
∂y
− vz
∂ f
∂z

)T

=
(
1,−ṽx,−ṽy,−ṽz

)T
=

(
∆t̃o
∆t̃o
,
∆x̃
∆t̃o
,
∆ỹ
∆t̃o
,
∆z̃
∆t̃o

)T

→ ∆t̃o.

Remark 2 A geodesic from x̃1 to x̃2 equals

max
{(t≡to,x(t),y(t),z(t))}

∫ f −1(x̃2)

f −1(x̃1)

dt̃o
dto

dto, (15)

and corresponds to the least action

min
∫ (

kinetic energy KE − potential energy PE
)

dt (16)

⇐⇒ max
∫ (

a + b
(

PE − KE
rest energy RE

))
dt, a ∈ R, b > 0,

⇐⇒ dt̃o
dto
= a + b

(
PE − KE

rest energy RE

)
, by Equation (15) ,

= (1, 0, 0, 0) gB
(
−1, vx, vy, vz

)T
, by Proposition 1.
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I.e.,

(1, 0, 0, 0) gB
(
−1, vx, vy, vz

)T
= a + b

(
PE − KE

rest energy RE

)
. (17)

Remark 3 (1) dt̃o
dto
= the effect of the velocity V (to) of the electron q in the electromagnetic field as established by q and

the proton Q on q′s proper time. (2) t̃o
to
⌋to=t∗ = the eigenvalue of the Lorentz transformation λ (t∗) = γ (t∗)

(
1 − v(t∗)

c

)
=√

c−v(t∗)
c+v(t∗) = the ratio of the clock time of q to that of Q at to = t∗ (λ accounts for the Doppler effect of light). (3) The Lorentz

factor γ (t∗) = 1√
1−

(
v(t∗)

c

)2
=

the clock time of q at to=t∗

the universal time over U as synchronized with to=t∗ of Q (γ accounts for time dilation).

Proposition 2 Let v (t) := ∥V (t)∥ and vQ (t) :=
∥∥∥VQ (t)

∥∥∥; then

γ2
(

v (t)
c

)
=

the electric potential energy PE of Q and q
the rest energy RE of q

. (18)

Proof. (
v (t)

c

)
=

(
1

mq,oc2

)
· q

(
Q
q

vQ (t)
c

r
ro

)
· Q

4πϵor
(19)

≡ 1
RE
· K · qQ

4πϵor
, (20)

where

K ≡ Q
q

vQ (t)
c

r
ro
= −

vQ (t) ·
(

r
c

)
ro

(21)

is an electrodynamic adjustment factor of the electrostatic potential;

K = −1 if vQ (t) ·
( r
c

)
≡ vQ (t) · t = ro, (22)

i.e., the point charge Q travels to the boundary of its wave ball ro, or equivalently, Q is a stationary proton. Thus, taking
into account the effect of Special Relativity

F = (γmo)
(
γ2a

)
, (23)

we have

γ2
(

v (t)
c

)
=
γ2KQq/4πϵor

RE
=

PE
RE

. (24)

Proposition 3

− γ±2
(

v (t)
c

) (
v (t) vQ (t)

c2

)
=

qV (t) · A (t)
RE

, (25)

where A (t) := the vector potential, or curl A (t) = the magnetic field B (t).

Proof. Since

−v (t) vQ (t) = V (t) · VQ (t) and (26)
γ2KQVQ (t)

4πϵorc2 = A (t) , (27)

we have

−γ2
(

v (t)
c

) (
v (t) vQ (t)

c2

)
(28)

=
γ2KQ qV (t) · VQ (t)

RE · 4πϵorc2 =
qV (t) · A (t)

RE
. (29)
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Proposition 4 For any weakly attractive or repulsive electromagnetic field, the metric gatt; rep
em has the following matrix

representation in the basis of B (for generalization, we now include the repulsive case, shown as the second or lower
index):

gatt; rep
em =


λ±2

em − 2γ±2vQVx

c3 − 2γ±2vQVy

c3 − 2γ±2vQVz

c3

− 2γ±2vQVx

c3 o
(

v
c

)
− c−2 o

(
v
c

)3
o
(

v
c

)3

− 2γ±2vQVy

c3 o
(

v
c

)3
o
(

v
c

)
− c−2 o

(
v
c

)3

− 2γ±2vQVz

c3 o
(

v
c

)3
o
(

v
c

)3
o
(

v
c

)
− c−2


. (30)

Proof. First, we note that besides being symmetric, gatt; rep
em −→ η as V,VQ −→ 0. Second,

gatt; rep
11,em = λ±2

em =

(
t̃o
to

)2

att; rep
(cf. Remark 3 (2)). (31)

Third, by Proposition 1 we have

dt̃o
dto

= (1, 0, 0, 0) gB
(
∓1,Vx,Vy,Vz

)T
(32)

= ∓λ±2 −
2γ±2vQv2

c3 (33)

≈ ∓γ±2
(
1 ∓ 2v

c

)
+

2qV · A
RE

(by Proposition 3) (34)

≈ ∓
(
1 ±

(v
c

)2
)
+

2 (PE + qV · A)
RE

(by Proposition 2) (35)

= ∓1 − mov2

moc2 +
2 (PEe + qV · A)

RE
(36)

= ∓1 − 2
(
kinetic energy KE − PEe − qV · A)

RE
; (37)

thus, by Equation (17) we see that gatt; rep
em = gB, satisfying the least-action energy condition, and the theorem is proved.

Lemma 1 Assume that the energy-momentum tensor T ≈ 0 for M4; then

R ≈ 2R11 ≈ −
6
r2

K

, (38)

where rK > 0 denotes the radius of curvature of the space-time.

Proof. Let U :=
{(

x1 s, x2 im, x3 im, x4 im
)
|
(
x1, x2, x3, x4

)
∈ R4

}
be a parameter domain of M4; adopt the Cartesian

coordinate system on U; let (ei)4
i=1 be the standard basis of R4; define metric I to be the standard inner product of R4, i.e.,

I := diag (1, 1, 1, 1)(ei)4
i=1

. Since T ≈ 0, the space-time is asymptotically flat and thus any Lorentzian metric g on M4 is
such that g ≈ I. Consequently,

R ≡ R (g) ≈ R (I)

= R11 (I) + R22 (I) + R33 (I) + R44 (I)

=

4∑
i=1

Ri
1i1 (I) +

4∑
i=1

Ri
2i2 (I) +

4∑
i=1

Ri
3i3 (I) +

4∑
i=1

Ri
4i4 (I) ; (39)

now ∀i , j ∈ {1, 2, 3, 4} every sectional curvature
∣∣∣∣R j

i ji (I)
∣∣∣∣ ≈ 0 s−2 ≈ |K| s−2, where they fall into two categories: (t, x)

and (x, x), i.e.,

∀ (i − 1) ( j − 1) = 0,∣∣∣∣R j
i ji

∣∣∣∣ ≈ |K| s−2 ≈
(
3 × 108

)−1 |K| · s−1m−1

but ∀ (i − 1) ( j − 1) , 0,∣∣∣∣R j
i ji

∣∣∣∣ ≈ |K| s−2 ≈
(
3 × 108

)−2 |K| · m−2 ≈ 0 m−2. (40)
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Thus,

R ≡ R (g) ≈ R (I) ≈ R11 (I) +
[
R1

212 (I) + R1
313 (I) + R1

414 (I)
]

≈ 3 ·
(
3 × 108

)−1
K · s−1m−1 +

[
3 ·

(
3 × 108

)−1
K · s−1m−1

]
= 6 ·

(
3 × 108

)−1
K · s−1m−1

≈ 2R11 (I) . (41)

Since metric I is equivalent to the Minkowski metric

η : = diag
(
1 s2/s2,−c−2 s2/m2,−c−2 s2/m2,−c−2 s2/m2

)
(ei)4

i=1

= diag
(
1,−c−2,−c−2,−c−2

)
(ei)4

i=1
, (42)

we thus have

R11 ≡ R11 (g) ≈ R11 (η) = η11R11 (η) = I11R11 (I) = R11 (I) ;
i.e., R ≡ R (g) ≈ 2R11 (I) ≈ 2R11. (43)

Since η measures space-time distance by ds and

ds2 = dt2 − c−2dx2 is hyperbolic, (44)

we have for each space-time sectional curvature ≈ K < 0; denoting the radius of curvature by rK > 0, we then have

R ≈ 2R11 ≈ 6 ·
(
3 × 108

)−1
K · s−1m−1

≡ − 6
r2

K

m−2. (45)

Proposition 5 The Einstein tensor

Eatt; rep
em ≈



∓ 6v
r2

k c − 6vQVx

r2
k c3 − 6vQVy

r2
k c3 − 6vQVz

r2
k c3

− 6vQVx

r2
k c3 −O

(
r−2

k

)
O

(
r−2

k c−4
)

O
(
r−2

k c−4
)

− 6vQVy

r2
k c3 O

(
r−2

k c−4
)
−O

(
r−2

k

)
O

(
r−2

k c−4
)

− 6vQVz

r2
k c3 O

(
r−2

k c−4
)

O
(
r−2

k c−4
)
−O

(
r−2

k

)


B

. (46)

Proof. Eµυ := Rµν − 1
2 R · gµν; ∀M4 ≈ R1+3 we have

(
Rµν

)
≈ diag

− 3
r2

K

,− 1
r2

K

,− 1
r2

K

,− 1
r2

K

 and (47)

R ≈ − 6
r2

K

, (48)

(where rK ≡ the radius of sectional curvatures). Thus, substituting Equation (30) into
(
gµν

)
in

(
Eµυ

)
, we arrive at the

conclusion.

Proposition 6 Set

T att; rep
em,11 = ± ∥S∥ = ±

mo,QvQ

4πr3

3

· c2 and (49)

T att; rep
em,12 = −

∥S∥ vQ,x

c2 ; then (50)

Eatt; rep
em,12

Eatt; rep
em,11

=
T att; rep

em,12

T att; rep
em,11

. (51)
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Proof.

E12,em

Eatt; rep
11,em

= ± 1
c2

(vQ

v

)
Vx (by Equation (46) ) (52)

= ± 1
c2 ·

(−VQ,x
)

(53)

=
−∥S̄∥c2 VQ,x

±
∥∥∥S̄

∥∥∥ ≡ T12,em

T att; rep
11,em

(by Equation (50) ). (54)

Proposition 7
Eatt; rep

11,em

T att; rep
11,em

= − 16πG(
1 − γ−2g11,grav

)
c5

. (55)

Proof. By Proposition 5 and 6, we have
Eatt; rep

11,em

T att; rep
11,em

=
∓ 6v

r2
k c

±mo,QvQ
4πr3

3

· c2
, (56)

but as 1
r → 0, one has

∣∣∣∣ 1
r2 − 1

r2
K

∣∣∣∣→ 0, so that

Eatt; rep
11,em

T att; rep
11,em

= − 8πvr
c3mo,QvQ

= − 8πr
c3mo,q

, (57)

where

mo,q =
c2

(
1 − γ2g11,grav

)
r

2G
, (58)

as derived below: First g11,grav is the gravitation effect of q on the spacetime metric g, but by Remark 3(2)

g11,grav = λ2 ≈ γ2
(
1 − 2v

c

)
(59)

≈ γ2
(
1 − 2at

c

)
(60)

= γ2
(
1 −

2Gmo,q

r2c
· r

c

)
, so (61)

mo,q = =
c2

(
1 − γ2g11,grav

)
r

2G
. (62)

As such, continuing on Equation (57)

Eatt; rep
11,em

T att; rep
11,em

= − 8πr
c3mo,q

= −8π
c3 ·

2G

c2
(
1 − γ2g11,grav

)
= − 16πG(

1 − γ−2g11,grav

)
c5

. (63)

Theorem 1
Eatt; rep
µν,em := Rµν,em −

1
2

Rem · gatt; rep
µν,em = − 16πG(

1 − γ−2
grav · g11,grav

)
c5
T att; rep
µν,em . (64)

Proof. (By the above Proposition 7.)
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Remark 4 A distinct feature of gravity is the existence of the principle of equivalence between inertial masses and grav-
itational masses, so that the two cancel out and the size of the inertial mass does not need to be addressed explicitly, but
electromagnetism lacks the same principle and we solved this problem via

(
1 − γ−2

grav · g11,grav

)
, the greater the inertial mass

of the particle being acted upon, the smaller the g11,grav and hence the greater the denominator of the constant of propor-
tionality. In this connection, we also made a distinct identification of T att;rep

11,em with the norm of the Poynting vector S, and
as a result, the derived geodesics correspond exactly to the least action by Feynman. As the above showed that a Poynting
vector on the right-hand-side of EFE is in direct correspondence with a minimization of the integral of kinetic energy
minus potential energy over all trajectories on the left, we see the reasons why any other identifications of Tµν,em have
resulted in difficulties in geometrizing electromagnetism. In this regard, our T att;rep

11,em has unit joule/
(
second · meter2

)
, rep-

resenting energy flows in a specific direction across an area of square meter per second, and yet the common identification
of T11,em with the energy densities has unit joule/

(
meter3

)
, representing stationary energies.

Theorem 2 The set of Einstein Field Equations

Eµν := Rµν −
1
2

R · gµν = −
8πG
c2 Tµν,grav ∓

16πG(
1 − γ−2g11,grav

)
c5
T att;repul
µν,em (65)

has solutions:

Rµν = Rµν,grav ± Rµν,em, (66)
R = Rgrav + Rem, (67)

and gµν = wgrav · gµν,grav ± wem · gatt;repul
µν,em , (68)

with wgrav ≡
Rgrav

R
and wem ≡

Rem

R
≡ 1 − wgrav, (69)

where for expository appeal we denote

grepul
µν,em ≡ grep

µν,em ∀µν , 1, grepul
11,em ≡ −grep

11,em = −λ
−2
em;

T repul
µν,em ≡ T rep

µν,em ∀µν , 1, T repul
11,em ≡ −T

rep
11,em =

∥∥∥S̄ (t)
∥∥∥ .

Proof. Consider the operation Eµν,grav ± Eatt;rep
µν,em and denote

Rgrav · gµν,grav

Rgrav + Rem
±

Rem · gatt;rep
µν,em

Rgrav + Rem
(70)

by gµν
(
≡ wgrav · gµν,grav ± wem · gatt;rep

µν,em

)
; we see that the operation of Eµν,grav ± Eatt;rep

µν,em is valid if and only if gµν is form-
invariant with respect to measuring geodesics, possessing the same energy interpretations as ggrav and gatt;rep

em . Here we
have:

(1, 0, 0, 0) ◦
(
wgrav · ggrav + wem · gatt

em

)
◦
(
−1,Vx,Vy,Vz

)T
(71)

(cf. Equation (17) )

= wgrav ·
(
−1 − 2 ·

(
KEgrav

RE

)
+ 2 ·

(
PEgrav

RE

))
(72)

+wem ·
(
−1 − 2 ·

(
KEatt

em

RE

)
+ 2 ·

(
PEatt

em

RE

))
≡ −1 −

2KEatt
gravem

RE
+

2PEatt
gravem

RE
, (73)

where

KEatt
gravem ≡ wgrav · KEgrav + wem · KEatt

em, and (74)
PEatt

gravem ≡ wgrav · PEgrav + wem · PEatt
em. (75)

Now since (−R11,em
) − 1

2
R · grepul

11,em =
−16πG(

1 − γ−2g11,grav

)
c5
T repul

11,em
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and

(1, 0, 0, 0) ◦ grepul
em ◦

(
−1,Vx,Vy,Vz

)T

≡ (1, 0, 0, 0) ◦ grep
em ◦

(
1,Vx,Vy,Vz

)T
,

we have

(1, 0, 0, 0) ◦
(
wgrav · ggrav − wem · grepul

em

)
◦
(
−1,Vx,Vy,Vz

)T

= wgrav ·
(
−1 − 2 ·

(
KEgrav

RE

)
+ 2 ·

(
PEgrav

RE

))
−wem ·

(
1 − 2 ·

(
KErep

em

RE

)
+ 2 ·

(
PErep

em

RE

))
≡ −1 −

2KErep
gravem

RE
+

2PErep
gravem

RE
, (76)

where

KErep
gravem ≡ wgrav · KEgrav − wem · KErep

em , and
PErep

gravem ≡ wgrav · PEgrav − wem · PErep
em .

Consequently, gµν = wgrav · gµν,grav ±wem · gatt;repul
µν,em is form-invariant in measuring geodesics, with identical interpretations

of energies to that of gµν,grav and gatt;rep
µν,em . I.e.,

E := Egrav ± Eatt;rep
em = −8πG

c2 Tgrav ∓
16πG(

1 − γ∓2g11,grav

)
c5
T att;repul

em

results in a metric gµν that renders

g1· ◦ (−1,V)T = −1 −
2KEgravem

RE
+

2PEgravem

RE
.

2.2 Integration of the Nuclear Strong Force with Gravity

Most recently we showed that (Light, 2019): (1) quarks combine themselves by superpositions of coincidental fields,
hence inseparable, and (2) proton P has a mini black hole of radius 10−15 meters, attracting a neutron n with g11 ≈ 10−20

by the extended EFE, so that
G · 1010mP · 1010mn(

10−10r
)2 = 1040 · GmPmn

r2 . (77)

As such, the nuclear strong force is a manifestation of gravity. For the purpose of this paper we will give a sketch of the
proof of g11 ≈ 10−20 by the extended EFE.

A rest proton has its mass ≈ 1.67 × 10−27kg with Lorentz factor γ = 1, so that

1 − γ−2g11,grav = 1 − g11,grav (78)

= 1 −
(
1 − G × 1.67 × 10−27

rc2

)
=

G × 1.67 × 10−27

rc2 ; (79)

suppose we substitute
r = 10−15e meters, e ≈ 2.7, (80)

into the above equation; then we have

1 − γ−2g11,grav =
G × 1.67 × 10−27

10−15e × 9 × 1016 ≈ 0.46 × 10−39. (81)
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Since  T att
11,em

T11, grav

 =
1 · J/

(
sm2

)
1 · kg/m3 (82)

=
1 · kgc2/

(
c−1m3

)
1 · kg/m3

= c3,

we have

16πGT att
11,em

0.46 × 10−39c5 ·
c2

8πGT11, grav
(83)

=
2

0.46
× 1039 = 4.35 × 1039

=
∥EM (P)∥
∥Grav (P)∥ .

Consequently the Schwarzschild radius of proton is 4.35× 1039 times the radius as based on its (gravitational) mass alone
and

rS ch (P) ≈ rS ch,grav (P) × 4.35 × 1039 (84)
= 1.24 × 10−54 × 4.35 × 1039

≈ 10−15 (m) .

Therefore,

g11 =

 t[2]
0

t[1]
0

2

= 1 − rS ch (p)
r

= 1 − rS ch (P)

rS ch (P) + π6
λP
2

(85)

≈ 1.3 × 10−35

10−15

= 1.3 × 10−20.

where we calculate the gravitational strength of P outside its Schwarzschild radius rS ch (P) by our assumed least indivisible
unit of length, π6

λP (Planck length)
2 .

2.3 Integration of the Nuclear Weak Force with Gravity

In the above analysis we noticed that n, not possessing a mini black hole due to having no electric charge, is fundamentally
different from P (cf. Bigazzi, & Niro, 2018, for isospin-breaking); for example, while the radius of P is 10−15e meters,
that of n is 10−15 meters, smaller. Since in our hypothesized diagonal 4-manifoldM[3] of the Universe (cf. Brandenberger,
et al., 2018, and Sengupta, 2017, for other constructs of a dual universe not based on the particle-wave duality), black
holes are intersections of the visible particle universeM[1] and the invisible wave universeM[2], P being embedded in its
own mini black hole does not vanish fromM[1], but n without a mini black hole vanishes fromM[1] (cf. Barducci, 2018,
for ”disappearing into the darkness”), which motivates the following analysis.

2.3.1 Lifetime of Neutron

Proposition 8 Assume that the distribution of energy E over (particle p, EMW (p)) is
(

3
4 E, 1

4 E
)
. Then E = 1.6Ê, where

Ê ≡ the laboratory-measured energy of p.

Proof. Previously we derived the metric tensor g[3] ofM[3] to be

g[3]
11 =

G[2]

G[1] +G[2] g[1]
11 +

G[1]

G[1] +G[2] g[2]
11 , with (86)

G[1]G[2]

G[1] +G[2] = G[3]. (87)

32



apr.ccsenet.org Applied Physics Research Vol. 11, No. 3; 2019

Therefore,

m[3]a[3] = −[
(

G[2]

G[1] +G[2]

) (
G[1]M[1]m[1]

r2

)
+

(
G[1]

G[1] +G[2]

) (
G[2]M[2]m[2]

r2

)
] · r

r
; (88)

hence

a[3] = −G[3]M[3]

r2 ·
(

M[1]

M[3]

m[1]

m[3] +
M[2]

M[3]

m[2]

m[3]

)
· r

r

= −G[3]M[3]

r2 ·
(

9
16
+

1
16

)
· r

r

≡ −G[3]M̂
r2 · r

r
, where (89)

M[3] = 1.6M̂. (90)

Corollary 1 Any particle p that has its EMW (p) a union of two semi-circular rotations presents itself as (p, EMW (p))
for a duration of 5

8
λ
c and (0, EMW (p)) for a duration of 3

8
λ
c , where λ ≡ the wave length of EMW (p) (to define such

particles as ”single-cycle particles”).

Proof. E = 1.6Ê = 1.6hν = h · c
5
8 λ

.

Remark 5 The laboratory-measured energy of a single-cycle particle p is Ê owing to the existence of (p, λ (p)). Since
wave is probability of no energy in the quantum formulation (which contains the formula Ê = hν), p must carry the
entire energy E = 1.6Ê that would enjoy a higher frequency 1.6ν, but the measured frequency is (still) ν; therefore, p
exists (only) in

[
0, 5

8

]
λ. That is, the fact that p carries a wave length λ (p) does not imply p exists throughout [0, 1] λ, as

evidenced in, say, quantum tunneling. Equivalently, if p lasted for [0, 1] λ, then one would have E = h · c
λ
= hν = Ê,

contradicting E = 1.6Ê.

Remark 6 Single-cycle particles include electron, neutrino, proton, neutron, photon, and any hadrons that are made up of
u and/or d.

Proposition 9 Assume that in the motion of EMW (n): W → N → E → N → W, the stopping time at W and E is 10−24

seconds; then n in isolation has a lifetime about 900 seconds.

Proof. By the above Remark 3 (2) the ratio of two proper times is the eigenvalue λ of the Lorentz transformation,

λ =

√
c − v
c + v

. (91)

Set the proper time t[2]
0 to be that of EMW (n) and t[1]

0 to be that of the laboratory frame. Then

t[2]
0

t[1]
0

=

√
c − v
c + v

. (92)

Since by Corollary 1

t[2]
0 =

5
8
λ

c
=

5
8
ν =

5
8

h
E[2]

and (93)

E[2] = E[1]

√
c − v
c + v

(94)

(in analogy with m0 = mγ−1, but the relation here is that of λ = γ
(
1 − v

c

)
, not of the Lorentz factor γ), one has

t[1]
0 = 900 seconds if and only if

5
8

h

E[1]

√
c−v
c+v

=

√
c − v
c + v

· 900. (95)
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Substituting the rest mass m0 (n) = 1.68 × 10−27kg into E[1] = m0 (n) c2, one has

6.63 × 10−34

1.6 × 1.68 × 10−27 × 9 × 1016 =
c − v
c + v

· 900, (96)

i.e.,
c − v
c + v

≈ 3 × 10−27, (97)

implying that v / c and

1 − v
c
≈ 6 × 10−27; (98)

this reduction of speed in EMW (n) by a factor of 6 × 10−27 implies a prolongation of n to finish 5
8λ by (about) the same

factor (as in (1 − ϵ)−1 ≈ 1 + ϵ). Thus in the laboratory frame, EMW (n) stops at the intersection points W and E for about

900 × 6 × 10−27 = 5.4 × 10−24 seconds. (99)

Remark 7 The lifetime of n in its own frame is then 900
√

3 × 10−27 ≈ 5 × 10−11 seconds (cf. Leontaris, & Vergados,
2019, for recent interest in the neutron lifetime puzzle).

2.3.2 Neutron Decay

Proposition 10 Assume that the Higgs particle h has a representation

h = 2γL + γR + γiL, where
γL : = W → N → E → S → W,
γR : = W → S → E → N → W, and
γiL : = E → T → W → B→ E. (100)

Then

h = W− +W+, where
W− = W → N → E → T → W∗(branch point)

→ S → E → S → W

( = e− + ν̃ when at W∗ the flow splits into
e− = W → N → E → T → W and
ν̃ = W → S → E → S → W) (101)

and

W+ = E → S → W → B→ E∗(branch point)

→ N → W → N → E

( = e+ + ν when at E∗ the flow splits into
e+ = E → S → W → B→ E and
ν = E → N → W → N → E). (102)

Proof. We index the flows to keep track of the re-combination of waves:

W− = W1 → N2 → E3 → T4 → W5

→ S 6 → E7 → S 8 → W9

= (W1 → N2 → E3) ⊂ γL

(→ T4 → W5) ⊂ γiL

(→ S 6 → E7) ⊂ γR

(→ S 8 → W9) ⊂ γL; (103)
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W+ = Ei → S ii → Wiii → Biv → Ev

→ Nvi → Wvii → Nviii → Eix

= (Ei → S ii → Wiii) ⊂ γL

(→ Biv → Ev) ⊂ γiL

(→ Nvi → Wvii) ⊂ γR

(→ Nviii → Eix) ⊂ γL. (104)

Proposition 11 Set n = E → T → W → T → E; then W− + n = e− + ν̃ + P.

Proof.

W− + n =
(
W → N → E → T →Wbranch for e−

)
as e−

+ (Wbranch for ν̃ → S → Ebranch for ν̃ → S → W) as ν̃
+ [W→ S → Ebranch for P (→ T → W from n)] as P. (105)

Remark 8 Weak decay has many practical implications, for example, nuclear reactor operations (Gebre, & Surukuchi,
2018). Our graph-theory approach may serve as an added tool in quantum field theories.

3. Discussion

(1) Every single-cycle particle (p, λ (p)) exists inM[3] for a duration of 5
8
λ
c ; then it becomes (0, λ (p)) in B ⊂ M[2] for the

remaining 3
8
λ
c . This process repeats itself if p has a mini black hole; otherwise, λ (p) can combine with other waves to

form new particle(s) (for recent studies on beta decay, see, e.g., Deppisch, et al., 2018).

(2) Both the strong and the weak nuclear forces can be explained by General Relativity via the metric tensor g11 which
relates two proper spacetimes.

(3) As EFE also explains electromagnetism, gravity remains as the sole fundamental force as based on our geometry of
diagonal 4-manifold. We remark that the basic spacetime hypotheses determine the rest of Physics (cf. Minazzoli, 2018).
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