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Abstract 
This paper deals with the voltage regulation in a weak system which contains large inductive loads and wind 
turbines using Doubly Fed Induction Generators (FDIGs). The DFIGs demand large amounts of reactive power 
from the grid and as a result, there is a voltage drop in the system which may be extra deteriorated if large inductive 
loads and motors are also present in the same line.  The problem of the voltage regulation in these cases is treated 
with the installation of a Static Var Compensator (SVC) besides the capability of the DFIGs to partially regulate 
the voltage themselves. In this paper, new modeling procedures based on optimal control are developed for the 
design of the SVC controller and a novel strategy for the grid side converter of the DFIG is presented. The 
nonlinear system is simulated in the SIMULINK software so that the performance of the new controllers is 
validated.  
Keywords: wind turbine, voltage regulation, doubly fed induction generator, optimal control.  
1. Introduction 
The increased need for wind energy development makes the installation of wind turbines in ‘weak’ ac grids 
necessary. On the other hand, many voltage instability incidents have taken place around the world the last years 
(Custem & Vournas, 1998; Berizzi, 2004). The distributed generation with wind power stations installed in weak 
distribution systems may enlarge this problem especially when large inductive loads are connected to the same 
line. So, voltage regulation has become a major research area in the field of power systems (Chondrogiannis, 2007; 
Ledesma, 2002; Kesraoui, 2016). 
This paper deals with the design of the necessary control loops so that good performance of the grid voltage can be 
attained in a very weak system which contains a wind park (WP) and large inductive loads. The WP consist of 
wind turbines with Doubly Fed Induction Generators (DFIGs). The DFIGs demand reactive power from the grid. 
These amounts of reactive power make the grid voltage very sensitive to load variations. The voltage performance 
can be improved by means of FACTS devices and better voltage controllers inside the DFIG. 
The system under study is shown in Figure 1. A medium voltage line is connected to the main grid at bus 1 with 
short circuit capability of 150 MVA. There is a steam power generation system (SPGS) at bus 2 with rated power 
of 50 MVA and a wind park at bus 3 connected to this line. This system can be a part of a local grid in an island to 
which wind parks are to be installed.  
The WP includes 11 wind turbines each with rated real power of 1.5 MW. At bus 4 there are inductive loads with 
rated power of 2 MVA and power factor 0.9 lagging. These loads also include three asynchronous motors each 
rated 300 kW. The nominal line voltage of the system is 25 kV. The variation of the reactive power demanded from 
the WP causes the load voltage at all buses to deviate from the rated values despite the presence of the SPGS in the 
system. At t = 50 sec there is an increase in the wind speed from 8 m/s to 14 m/s and at t = 75 sec the large induction 
motors start to operate. Figure 2 shows the rms value of the load voltage at bus 4. The real power produced from 
the WP is shown in Figure 3 and the reactive power from the WP is shown in Figure 4. The real power production 
of the SPGS is kept constant at 15 MW.  
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X’q ( = Xq - X2
mq/X1q) is the q axis transient reactance,  

ω is the rotor electrical angular speed, 𝜔  is the electrical speed of the magnetic flux,  
δ is the power angle, H is the inertia constant,  
Tm is the mechanical torque, TD is the damping torque (being neglected from now on).  
Finally, T’do, T’qo are time constants on field and damper winding respectively (we consider the machine to have 
one damping winding on q axis) and Rs is the stator resistance.  
By neglecting the equations regarding the stator magnetic fluxes (equations (a) and (b) above) and replacing the 
relevant values from the Appendix we have: 

  = −0.22 𝐸′ − 0.31𝑖 + 0.22𝐸      (1b) 

  = −1.5 𝐸 + 1.7 𝑖    (2b) 

   = 𝜔 − 314  (3b) 

It also is: 𝜓 = −𝑥 𝑖 + 𝐸 ,    𝜓 = −𝑥 𝑖 − 𝐸′  
By replacing to (4a) we finally reach in: 

  = 180.46 𝑇 − 180.46 𝐸 𝑖 − 180.46 𝐸 𝑖 + 37.89𝑖 𝑖   (4b) 

As we have already seen, the SPGS is connected to the bus 2 and there is a small line up to the main bus 1. The 
Figure 7 depicts the vectors of the voltages at the buses. The voltage v2 at the bus 2 will be a little ahead of the 
voltage v1 at the bus 1 (approximately 3 degrees). We consider the main axes D, Q and the axes d, q internally in 
the synchronous generator to which the various quantities of the SG have been analyzed in the equations (1b)-(4b). 
We arbitrarily consider that the voltage v2 is lying on the D axis. 
The stator current i of the SG with its components id, iq onto the axes d, q is also the current I of the line between the 
buses 2 and 1 with the components ID, IQ onto the axes D, Q respectively. It is (Pai et al., 2014): 
 𝑖 = 𝐼 𝑠𝑖𝑛𝛿 − 𝐼 𝑐𝑜𝑠𝛿, 𝑖 = 𝐼 𝑐𝑜𝑠𝛿 + 𝐼 𝑠𝑖𝑛𝛿 (5a) 

D
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q
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δ
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Figure 7. Vector analysis of the system 

 
Applying the D-Q analysis on the line between the buses 2 and 1 we have firstly on the D axis: 𝑉 = 𝑉 + 𝑅 𝐼 + 𝐿 + 𝑋 𝐼  ⇒ 𝑉 − 𝑉 = 𝑅 𝐼 + 𝐿 + 𝑋 𝐼   

Due to the small value of the angle between v1 and v2 it is approximately: 𝑉 − 𝑉 ≈ 0. So from the previous 
equation we conclude to: 
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𝐿 = −𝑅 𝐼 − 𝑋 𝐼   

and by replacing the values from the Appendix we have: 

  = −0.35𝐼 − 𝐼   (5) 

From the line analysis on the axis Q we have: 𝑉 = 𝑉 + 𝑅 𝐼 + 𝐿 𝑑𝐼𝑑𝑡 − 𝑋 𝐼  ⇒ 𝑉 − 𝑉 = 𝑅 𝐼 + 𝐿 𝑑𝐼𝑑𝑡 − 𝑋 𝐼  

By taking into account that v2Q = 0 and by replacing the values we have: 

   = −0.35𝐼 + 𝐼 − 3.8𝑉   (6) 

The equations (1b)-(4b) can be rewritten if we replace the quantities id, iq by ID, IQ using the equation (5a). Then we 
can reach in: 

  = −0.22𝐸 − 0.31𝐼 𝑠𝑖𝑛𝛿 + 0.31𝐼 𝑐𝑜𝑠𝛿 + 0.22𝐸   (1) 

  = −1.5𝐸 + 1.7𝐼 𝑐𝑜𝑠𝛿 + 1.7𝐼 𝑠𝑖𝑛𝛿  (2)  

   = 𝜔 − 314   (3) 𝑑𝜔𝑑𝑡 = 180.46𝑇 − 180.46𝐸 𝐼 𝑐𝑜𝑠𝛿 − 180.46𝐸 𝐼 𝑠𝑖𝑛𝛿 − 180.46𝐸 𝐼 𝑠𝑖𝑛𝛿 + 180.46𝐸 𝐼 𝑐𝑜𝑠𝛿 − 

   −18.95𝐼 𝑠𝑖𝑛2𝛿 + 18.95𝐼 𝑠𝑖𝑛2𝛿 − 37.89𝐼 𝐼 𝑠𝑖𝑛 𝛿 + 37.89𝐼 𝐼 𝑐𝑜𝑠 𝛿  (4) 
The nonlinear system that consists of the voltage v1 at the bus 1 and the internal quantities of the SG is actually 
described by the equations (1)-(6). By linearizing the above equations around the operating point given at the 
Appendix we finally conclude to the linear system given by the following equations: 

  ∆ = −0.22∆𝐸 − 0.06∆𝛿 − 0.155∆𝐼 + 0.27∆𝐼 + 0.22∆𝐸  (7) 

  ∆ = −1.5∆𝐸 − 0.385∆𝛿 + 1.47∆𝐼 + 0.85∆𝐼   (8) 

   ∆ = ∆𝜔 − 314  (9) 

  ∆ = −37.45∆𝐸 − 40.89∆𝐸 + 20.7∆𝛿 + 137.2∆𝐼 − 25∆𝐼 + 180.46∆𝑇   (10) 

  ∆ = −0.35∆𝐼 − ∆𝐼   (11) 

  ∆ = −0.35∆𝐼 + ∆𝐼 − 3.8∆𝑉   (12) 

The equations (7)-(12) form the linearized model of the SG and the line between the buses 1 and 2.  

2.2 Model of the grid – side converter of the WT 
A schematic configuration of the grid side converter, is shown in Figure 8 in which the grid phase voltages are 
denoted as ea, eb, ec and the converter phase voltages as va, vb, vc are respectively. The d,q components (id, iq) of the 
line currents ia, ib,ic concerning the d,q components (vd, vq) of the converter voltages va, vb, vc can be given by the 
following equations (Vittal & Ayyanar, 2013): 
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Appendix  
 
Table 1. WT parameters (Abad et al., 2011) 

Nominal active power PN 1.5 MW 
Nominal electrical torque TelN or Tg 9555 Nm 
Stator voltage VSN 690 V 
Nominal generator speed ηgo 1800 rpm 
Speed range of generator 900-1850 rpm 
Pole pairs 4 
Blades diameter d 60 m 
Nominal wind speed VwN 12 m/sec 
Maximum power coefficient Cp 0.44 
Air density 1.125 kg/m3  
Nominal turbine speed ηto 22.5 rpm 
Speed range of turbine speed 9-23 rpm 
TSR optimum 5.43 
Grid side components (mΩ) Rg = 0.33 Xg = 31.4 

 
Table 2. Medium voltage lines  

Rated voltage VN 25 kV 
Inductive reactance Xo   0.4 Ω/km 
Resistance Ro 0.1 Ω/km 
Length between buses 1-2 5 km 
Length between buses 1-4 and 3-4 10 km 

 
Table 3. Synchronous generator parameters (Pai et al., 2016) 

Rated voltage VN 11 kV D axis open circuit time constant Tdo’ 4.5 sec 
Rated power SN 50 MVA Q axis open circuit time constant Tqo’ 0.67 sec 
Transient reactance on d axis Xd’ 0.25 p.u. Inertia constant H 0.87 sec 
Reactance on d axis Xd 1.65 p.u. Stator resistance Rs 0.0045 p.u. 
Transient reactance on q axis Xq’ 0.46 p.u. Power angle operating point δo =300 
Reactance on q axis Xq 1.59 p.u. Bus 1 voltage operating point V1qo=-0.052 p.u. 
Subt. int.voltage on q axis Eq’ operating point E’qo=0.68 p.u. Line current on D axis operating point IDo=0.28 p.u. 
Subt. int.voltage on d axis Ed’ operating point E’do=0.22 p.u. Line current on Q axis operating point IQo=-0.1 p.u. 
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