
Applied Physics Research; Vol. 10, No. 5; 2018 
ISSN 1916-9639   E-ISSN 1916-9647 

Published by Canadian Center of Science and Education 

57 

Effects of Height of F2-Layer on Critical Frequency by Use of Data at 
Ouagadougou Station 

Emmanuel Nanéma1,2, Moustapha Konaté2, Doua Allain Gnabahou2 & Frédéric Ouattara2 

1 Centre National de la Recherche Scientifique et Technologique (CNRST), Institut de Recherche en Sciences 
Appliquées et Technologies (IRSAT), 03 BP 7047 Ouagadougou 03, Burkina Faso 
2 Université Norbert ZONGO, Laboratoire de Recherche en Météorologie de l’Espace (LAREME), Koudougou, 
Burkina Faso 
Correspondence: Emmanuel Nanéma, Centre National de la Recherche Scientifique et Technologique (CNRST), 
Institut de Recherche en Sciences Appliquées et Technologies (IRSAT), 03 BP 7047 Ouagadougou 03, Burkina 
Faso. E-mail: nanema_emmanuel@yahoo.fr 
 
Received: August 13, 2018 Accepted: August 29, 2018 Online Published: September 27, 2018 
doi:10.5539/apr.v10n5p57           URL: https://doi.org/10.5539/apr.v10n5p57 
 
Abstract 
Ionosphere investigation leads to the knowledge of its composition in particles. The particle density and 
composition determine the capacity of this region to reflect radio waves in the atmosphere at different heights. 
Some variables such as season, solar cycle phase also influence the ionosphere behavior. Radio waves 
frequencies pass through the ionosphere layer without reflection above a critical value determining the critical 
frequency. This study determines the critical frequency of radio waves in the F2 layer (foF2) of the ionosphere 
by use of data at Ouagadougou station during the minimum and the maximum of solar cycle 22, at different 
seasons with the height of F2-layer (hmF2). Daytime and nighttime also influence ionosphere parameters. The 
study presents the hourly behavior of foF2 according to hmF2 values. 
Keywords: Ionosphere, critical frequency, height of F2-layer, solar cycle phases 
1. Introduction 
This work deals with the critical frequency variability in the F2-layer. In previous studies (Ouattara & Nanéma, 
2014), (Ouattara, 2013) we determined the foF2 variability at Ouagadougou (lat = 12.4˚N, long = 358.5˚E, West 
Africa) station. By use of foF2 and foE data provided by Telecom Bretagne and with the help hmF2 values 
(Ouattara & Nanéma, 2013), we determine the hourly profiles of  critical frequency of F2-layer under quiet 
time variation at Ouagadougou station during the minimum and the maximum of solar cycle 22 and the effects of 
hmF2 hourly variability on this parameter. The study also considers the seasonal effects on foF2 and hmF2 
hourly variability during equinox and solstice months. Some hourly data of foF2 are missing in Telecom 
Bretagne database. 
2. Materials and Methods 
The methodology of the study is based on the five quietest days of each month in the minimum and the 
maximum of solar cycle phases. Solar cycle phases are determined by the yearly average of Zürich Sunspot 
number Rz. The minimum phase is obtained for Rz < 20 while the ascending phase and maximum phase are 
respectively obtained with 20 ≤ Rz ≤ 100 and Rz >100 (Zerbo et al, 2011; Ouattara et al 2012; Gnabahou & 
Ouattara, 2012). Quiet days are determined by considering Aa ≤ 20 nT. 
With these criteria, the retain days are indicated in the Table 1. 
 
Table 1. Retain days for the study 

   Months 
Solar 
cycle 

Phase Year 
March 

(Equinox) 
June 

(Solstice) 
September 
(Equinox) 

December 
(Solstice) 

22 
Min 1985 9,13,21,22,25 3,14,16,18,19 2,3,4,5,29 8,9,21,23,29 
Max 1990 4,10,16,17,31 16,17,20,21,30 2,3,27,29,30 10, 11, 19, 21, 29 
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