Applied Physics Research; Vol. 10, No. 5; 2018
ISSN 1916-9639  E-ISSN 1916-9647
Published by Canadian Center of Science and Education

Effects of Height of F2-Layer on Critical Frequency by Use of Data at
Ouagadougou Station

Emmanuel Nanéma'?, Moustapha Konaté?, Doua Allain Gnabahou® & Frédéric Ouattara®

' Centre National de la Recherche Scientifique et Technologique (CNRST), Institut de Recherche en Sciences
Appliquées et Technologies (IRSAT), 03 BP 7047 Ouagadougou 03, Burkina Faso

? Université Norbert ZONGO, Laboratoire de Recherche en Météorologie de I’Espace (LAREME), Koudougou,
Burkina Faso

Correspondence: Emmanuel Nanéma, Centre National de la Recherche Scientifique et Technologique (CNRST),

Institut de Recherche en Sciences Appliquées et Technologies (IRSAT), 03 BP 7047 Ouagadougou 03, Burkina
Faso. E-mail: nanema_emmanuel@yahoo.fr

Received: August 13, 2018 Accepted: August 29, 2018 Online Published: September 27, 2018
doi:10.5539/apr.v10n5p57 URL.: https://doi.org/10.5539/apr.v10n5p57
Abstract

Ionosphere investigation leads to the knowledge of its composition in particles. The particle density and
composition determine the capacity of this region to reflect radio waves in the atmosphere at different heights.
Some variables such as season, solar cycle phase also influence the ionosphere behavior. Radio waves
frequencies pass through the ionosphere layer without reflection above a critical value determining the critical
frequency. This study determines the critical frequency of radio waves in the F2 layer (foF2) of the ionosphere
by use of data at Ouagadougou station during the minimum and the maximum of solar cycle 22, at different
seasons with the height of F2-layer (hmF2). Daytime and nighttime also influence ionosphere parameters. The
study presents the hourly behavior of foF2 according to hmF2 values.
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1. Introduction

This work deals with the critical frequency variability in the F2-layer. In previous studies (Ouattara & Nanéma,
2014), (Ouattara, 2013) we determined the foF2 variability at Ouagadougou (lat = 12.4°N, long = 358.5°E, West
Africa) station. By use of foF2 and foE data provided by Telecom Bretagne and with the help hmF2 values
(Ouattara & Nanéma, 2013), we determine the hourly profiles of critical frequency of F2-layer under quiet
time variation at Ouagadougou station during the minimum and the maximum of solar cycle 22 and the effects of
hmF?2 hourly variability on this parameter. The study also considers the seasonal effects on foF2 and hmF2
hourly variability during equinox and solstice months. Some hourly data of foF2 are missing in Telecom
Bretagne database.

2. Materials and Methods

The methodology of the study is based on the five quictest days of each month in the minimum and the
maximum of solar cycle phases. Solar cycle phases are determined by the yearly average of Ziirich Sunspot
number Rz. The minimum phase is obtained for Rz < 20 while the ascending phase and maximum phase are
respectively obtained with 20 < Rz < 100 and Rz >100 (Zerbo et al, 2011; Ouattara et al 2012; Gnabahou &
Ouattara, 2012). Quiet days are determined by considering Aa <20 nT.

With these criteria, the retain days are indicated in the Table 1.

Table 1. Retain days for the study

Months
Solar March June September December
Phase Year . . . .
cycle (Equinox) (Solstice) (Equinox) (Solstice)
” Min 1985 9,13,21,22,25 3,14,16,18,19 2,3,4,5,29 8,9,21,23,29
Max 1990 4,10,16,17,31 16,17,20,21,30 2,3,27,29,30 10, 11, 19, 21, 29
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The study uses the data values of foE and foF2 provided by Telecom Bretagne database. The height of F2-layer
(Dudeney, 1983; Zhang et al, 2003) is given by (1)

1490MF

_ _ 1
hmE2 = T am M
where
0.0196 M2 + 1
=M — T @
MF =M 1.2967 M2 — 1 )
And
AM = 0253 0.012
P2 _q215 )

foE
M indicates the factor of propagation M(3000)F2, and foE the critical frequency in the E-Region. The

knowledge of foE and foF2 helps to determine the hourly values of AM.
Note that for missing hourly data of foE and foF2, the profiles are not completed.
3. Results and Discussion

hmF2 and foF2 time variation given by data for solar minimum (year 1985) are shown on Figure 1 (Panels (a),
(b), (c), (d)). On Figure 2 (panels (a’), (b*), (¢’), (d’)), we present hmF2 and foF2 time variation given by data for
solar maximum (year 1990) of C22.

The linear trend lines show that foF2 grows rapidly while hmF2 is quiet constant (Figure 1: panels (a), (b), (c)
and (d)) on solar minimum. This is shown by a steep slope of the linear trend line for foF2 while hmF2 presents
a flat slope. On solar maximum, hmf2 and foF2 linear trend lines present a steep slope (Figure 2: panels (a’),
(b%), (¢’) and (d’)). hmF2 and foF2 present higher values at solar maximum than those at solar minimum. So,
during solar maximum, the critical frequency gets high value, compared to minimum solar cycle phase. While
hmf2 grows from solar minimum to solar maximum, foF2 also grows. This means that from solar minimum to
maximum, the critical frequency gets high values. This can be explained by the growth of particles density in the
ionosphere region from solar minimum to maximum.
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Figure 1. Time variation of hmF2 and foF2 on minimum solar cycle phase of C22
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Figure 2. Time variation of hmF2 and foF2 on maximum solar cycle phase of C22

4. Conclusion

During solar maximum, foF2 values are higher than those of foF2 on solar minimum. So, rather hmF2 is high,
than foF2 is great. hmF2 influences the behavior of foF2 by the growth of particles density in the ionosphere
region from the minimum to the maximum of solar cycle phase. These results have good correlation with those
found during the studies of foF2 and hmF2 by Thermosphere Ionosphere Electrodynamics General Circulation
Model (TIEGCM) and International Reference Ionosphere (IRI) models.
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