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Abstract 
In this article, we  propose a new model of dark matter. According to this new model, dark matter is a substance, 
that is a new physical element not constituted of classical particles, called dark substance and filling the Universe. 
Assuming some very simple physical properties to this dark substance, we theoretically justify the flat rotation 
curve of galaxies and the baryonic Tully-Fisher’s law. We then study according to our new theory of dark matter  
the different possible distributions of dark matter in galaxies and in galaxy clusters, and the velocities of galaxies in 
galaxy clusters. 
Then using the new model of dark matter we are naturally led to propose a new geometrical model of Universe, 
finite, that is different from all geometrical models proposed by the Standard Cosmological Model (SCM). Despite 
that our Theory of dark matter is compatible with the SCM, we then expose a new Cosmological model based on 
this new geometrical form of the Universe and on the interpretation of the CMB Rest Frame (CRF), that has not 
physical interpretation on the SCM and that we will call local Cosmological frame. We then propose 2 possible 
mathematical models of expansion inside the new Cosmological model. The 1st mathematical model is based on 
General Relativity as the SCM and gives the same theoretical predictions of distances and of the Hubble’s constant 
as the SCM. The 2nd mathematical model of expansion of the Universe is mathematically much simpler than the 
mathematical model of expansion used in the SCM, but we will see that its theoretical predictions are in agreement 
with astronomical observations. Moreover, this 2nd mathematical model of expansion does not need to introduce 
the existence of a dark energy contrary to the mathematical model of expansion of the SCM. To end we study the 
evolution of the temperature of dark substance in the Universe and we make appear the existence of a dark energy, 
due to our model of dark matter.  
Keywords: Tully-Fisher’s law, dark matter, dark halo, CMB, galaxy clusters, gravitational lensing, galaxy 
rotation curve, velocity of galaxies, dark energy 
1. Introduction 
In the first part of the article, we expose a Theory of dark matter. In this part, we propose that a new physical 
element, called dark substance, constitutes the dark matter. According to the proposed model of dark matter, this 
dark substance fills all the Universe and has physical properties close to the physical properties of an ideal gas. We 
then show that it is possible, using those properties, to justify theoretically the flat rotation curve that is observed 
for some galaxies, in a new way, with a density of dark substance in 1/r2. A simple mathematical expression of the 
density of dark matter (in 1/r2) permitting to obtain this flat rotation curve has already been proposed, but a model 
of dark matter permitting to justify theoretically this mathematical expression (in 1/r2) has never been proposed. If 
moreover we assume simple thermal properties to this dark substance, we see that the new Theory of dark matter 
permits to justify theoretically the baryonic Tully-Fisher’s law. The theory called MOND (Milgrom, 1983) 
proposes also a theoretical justification of the flat rotation curve of some galaxies, but this theory is contrary to 
Newton’s attraction law and moreover it is contradicted by some astronomical observations. We then study 
according to our theory of dark matter the different models of distribution of dark matter in galaxies. We will then 
show that the new theory of dark matter gives theoretical predictions concerning the velocities of galaxies inside 
clusters and the masses of clusters that are in agreement with astronomical observations, in particular with 
gravitational lensing. Then we see that the new theory permits also theoretical predictions of the dark radius of 
galaxies, in agreement with observations, and also of the mean density of dark matter in the Universe, that is the 
origin of some anisotropies of the CMB. 
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Concerning the theory called MOND (Milgrom, 1983), (proposed by Milgrom) we remind that according to this 
theory, it only exists ordinary matter constituted of baryonic and leptonic particles, and we must replace the 
fundamental law of Newtonian dynamics F=ma (a acceleration of a particle with a mass m) by the law: 

 
0

( )am
a

μ=F a  (0a) 

With μ(x)=1 if x>>1 and μ(x)=x if x<<1. 
The MOND theory is not an interesting theory because it presents some weak points that are the following: 
-It consists to modify the mathematical expression of the Newtonian equation of dynamics in a completely 
artificial and arbitrary way in order to obtain the baryonic law of Tully-Fisher. 
-It makes the approximation that, M(r) being the baryonic mass inside a sphere with a radius r and whose centre is 
O, centre of a galaxy, then M(r)1/2 is constant. It also makes the approximation that the baryonic mass in a galaxy 
with a flat rotation curve presents a spherical symmetry. Both of those approximations are of very bad quality.  
-It does not permit to interpret dynamics of galaxies inside galaxy clusters nor the effect called gravitational 
lensing. It exists some complex theories as for instance TeVeS developing MOND theory but they are contested 
(Seifert, 2007) and moreover they need the existence of a very important mass of neutrinos inside galaxy clusters 
(Angus, Shan, Zhao, & Famaey, 2006), which has never been proved. 
The theory of dark matter that we propose does not present any of the preceding weak points of MOND theory. 
Moreover it is compatible with the Standard Cosmological Model (SCM). Nonetheless, it predicts the possibility 
of a new geometric model of the Universe. In the 2nd part of the article, we will see that our theory of dark matter 
and dark energy proposes a new Cosmological model that is based on the new geometrical form of the Universe 
introduced in the 1st part of the article, and also on the physical interpretation of the CMB Rest Frame (CRF), that 
has not physical interpretation in the SCM. Because of the importance of the CRF in the new Cosmological model, 
we will call it local Cosmological frame. We will see that the new Cosmological model permits to define distances 
in Cosmology that are completely analogous to distances in Cosmology defined by the SCM. As the SCM, the new 
Cosmological model is compatible with Special Relativity and General Relativity (locally) because according to 
this new Cosmological model the CRF cannot be detected using usual laboratory experiments but only by 
observation of the CMB. We will see that the new Cosmological model proposes 2 possible mathematical models 
of expansion of the Universe. The 1st mathematical model of expansion is based as the SCM on the equations of 
General Relativity. We  see that this 1st model gives theoretical predictions of distances used in Cosmology, of the 
Cosmological redshift and of the Hubble Constant that are identical to their theoretical predictions by the SCM. 
The 2nd proposed mathematical model of expansion is not based on General Relativity but is mathematically much 
simpler. Nonetheless its theoretical predictions, in particular predictions of Hubble’s Constant and of distances 
used in Cosmology, are in agreement with astronomical observations. Moreover, this 2nd model does not need the 
existence of a dark energy (contrary to the 1st mathematical model and to the SCM), and consequently brings a 
solution to the enigma of dark matter.  
To end we study according to our theory of dark matter and dark energy the evolution of the temperature of dark 
substance in the Universe and we see that according to this theory it exists a dark energy in the Universe, that is the 
internal energy of the dark substance modeled as an ideal gas. 
We remind that for many astrophysicists and physicists, the enigmas in the SCM, in particular the enigmas 
concerning dark matter and dark energy, make necessary a new paradigm for the SCM (Kroupa, Pawlowski, & 
Milgrom, 2015). Our article proposes such a new paradigm. 
We will see that the theory of dark matter and dark energy exposed in this article remains compatible with the SCM 
(Raine & Thomas, 2001; Narlikar, 2002; Kragh, 1999) in order to interpret most astronomical observations not 
directly linked to dark matter or dark energy, for instance primordial elements abundance, the apparition of 
baryonic particles (for the same Cosmological redshift z as in the SCM), formation and apparition of stars and 
galaxies (for the same z as in the SCM), apparition of the CMB (for the same z as in the SCM), evolution of the 
temperature of the CMB (in 1/(1+z)), anisotropies of the CMB…. 
2. Theory of Dark Matter 
2.1 Physical Properties of the Dark Substance 
As we have seen in 1.INTRODUCTION, we admit the Postulate 1 expressing the physical properties of the dark 
substance: 
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Postulate 1: 
a) A substance, called dark substance, fills all the Universe. 
b) This substance does not interact with photons crossing it. 
c) This substance owns a mass and obeys to the Boyle’s law (called also Mariotte’s law), to the Charles’law (called 
also Gay-Lussac’s law), and to the following law that is their synthesis: 
An element of dark substance with a mass m, a volume V, a pressure P and a temperature T verifies, k0 being a 
constant: 
PV=k0mT 
The preceding law is valid for a given ideal gas G0, replacing k0 by a constant k(G0), and this is a consequence of 
the universal gas equation, which is also obtained using Boyle and Charles’laws. For this reason we will call it the 
Boyle-Charles’law. 
We have 2 remarks consequences of this Postulate1: 
-Firstly despite of its name, the dark substance is not really dark but translucent. Indeed, because of the preceding 
Postulate 1b) it does not interact with photons crossing it. 
-Secondly because of the Postulate 1a), what is usually called “emptiness” is not empty in reality: It is filled with 
dark substance. 
2.2 Flat Rotation Curves of Galaxies 
Using the fact that the dark substance behaves as an ideal gas (Postulate 1c), we are going to show that a spherical 
concentration of dark substance in gravitational equilibrium can constitute the dark matter in a galaxy with a flat 
rotation curve. 
According to Postulate 1c) an element of dark substance with a mass m, a volume V, a pressure P and a 
temperature T verifies the law, k0 being a constant:   

 PV=k0mT (1) 
Which means, setting k1=k0T : 
 PV=k1m (2) 
Or equivalently, ρ being the mass density of the element: 
 P=k1ρ (3a) 
We then emit the natural hypothesis that a galaxy can be modeled as a concentration of dark substance with a 
spherical symmetry, at an homogeneous temperature T, in gravitational equilibrium. 
We consider the spherical surface S(r) (resp. the spherical surface S(r+dr)) that is the spherical surface with a 
radius r (resp. r+dr) and whose the centre is the center O of the galaxy. S(O,r) is the sphere filled with dark 
substance with a radius r and the centre O. 

 
Figure 1. The spherical concentration of dark substance 

The mass M(r) of the sphere S(O,r)is given by: 
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Assuming a spherical symmetry for the density of dark substance, using Newton’s law (ΣF=0 for a material 
element in equilibrium with a mass m, FG(r)=mG(r), FG(r) gravitational force acting on the element, G(r) 
gravitational field defined by Newton’s universal law of gravitation) and Gauss theorem in order to obtain G(r), we 
obtain the following equation (4) of equilibrium of forces on an element dark substance with a surface dS, a width 
dr, situated between S(O,r) and S(r+dr): 

 2
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Eliminating dS, we obtain the equation: 
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And using the equation (3) obtained using the Boyle-Charles’law assumed in the Postulate 1, we obtain the 
equation: 

 2
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We then verify that the density of the dark substance ρ(r) satisfying the preceding equation of equilibrium is the 
evident solution:  

 2
2( )
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ρ

π
=  (7) 

(A density of dark matter expressed as in Equation (7) has already been proposed in order to explain the flat 
rotation curve of spiral galaxies, but it has not been proposed a model of dark matter permitting to justify 
theoretically this density in 1/r2 or to obtain the constant k2. Here we give a theoretical justification of this density 
in 1/r2 and we are going to give the expression of the constant k2 (Equation (8)). This is the consequence of the 
model of dark substance as an ideal gas, Postulate 1)  
In order to obtain k2 , we replace ρ(r) given by the expression (7) inside the equation (6), and we obtain 
immediately that this equation is verified for the following expression of k2:  

 01
2

22 k Tkk
G G

= =   (8) 

Using the preceding equation (7), we obtain that the mass M(r) of the sphere S(O,r) is given by the expression:  

 2
2

0
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We then obtain, neglecting the mass of stars in the galaxy, that the velocity v(r) of a star of a galaxy situated at a 
distance r from the center O of the galaxy is given by v(r)2/r=GM(r)/r2  and consequently : 

 v(r)2=Gk2=2k1=2k0T (10) 
So we obtain in the previous equality (10) that the velocity of a star in a galaxy is independent of its distance to the 
centre O of the galaxy. 

 
Figure 2. Rotation curve of galaxies 
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2.3 Baryonic Tully-Fisher’s Law 
2.3.1 Recall 
Tully and Fisher realized some observations on spiral galaxies with a flat rotation curve. They obtained that the 
luminosity L of such a spiral galaxy is proportional to the 4th power of the velocity v of stars in this galaxy. So we 
have the Tully-Fisher’s law for spiral galaxies, K1 being a constant: 

 L=K1v4  (11) 
But in the cases studied by Tully and Fisher, the baryonic mass M of a spiral galaxy is usually proportional to its 
luminosity L. So we have also the law for such a spiral galaxy, K2 being a constant: 

 M=K2v4 (12) 
This 2nd form of Tully-Fisher’s law is known as the baryonic Tully-Fisher’s law. 
The more recent observations of Mc Gaugh (McGaugh, 2011) show that the baryonic Tully-Fisher’s law (equation 
(12)) seems to be true for all galaxies with a flat rotation curve, including the galaxies with a luminosity not 
proportional to their baryonic mass.  
We are going to show that using the Postulate 1 and a Postulate 2 expressing very simple thermal properties of the 
dark substance, (in particular its thermal interaction with baryonic particles), we can justify this baryonic law of 
Tully-Fisher. 
2.3.2 Theory of Quantified Loss of Calorific Energy (by Nuclei) 
We saw in the previous equation (10) that according to our model of dark substance the square of the velocity of 
stars in a galaxy with a flat rotation curve is proportional to the temperature of the concentration of dark substance 
constituting this galaxy. So we need to determinate T: 
-A first possible idea is that the temperature T is the temperature of the CMB. But this is impossible because it 
would imply that all stars of all galaxies with a flat rotation curve be driven with the same velocity and we know 
that it is not the case. 
-A second possible idea is that in the considered galaxy, each baryon interacts with the dark substance constituting 
the galaxy, transmitting to it a thermal energy. We can expect that this thermal energy is very low, but because of 
the expected very low density of the dark substance and of the considered times (we remind that the baryonic 
diameter of galaxies can reach 100000 light-years), it can lead to appreciable temperatures of dark substance.  A 
priori we could expect that this loss of thermal energy for each baryon (transmitted to the dark substance) depends 
on the temperature of this baryon and of the temperature T of the dark substance in which the baryon is immerged, 
but if it was the case, the total lost thermal energy by all the baryons would be extremely difficult to calculate and 
moreover it should be very probable that we would then be unable to obtain the very simple baryonic 
Tully-Fisher’s law. 
We are then led to make the simplest hypothesis defining the thermal transfer between dark substance and baryons, 
expressed in the following Postulate 2a) (Postulate 2 gives the thermal properties of the dark substance): 
Postulate 2a): 
-Each nucleus of atom in a galaxy is submitted to a loss of thermal energy, transmitted to the dark substance in 
which it is immerged. 
-This thermal transfer depends only on the number n of nucleons constituting the nucleus (So it is independent of 
the temperature of the nucleus). So if p is the thermal power dissipated by the nucleus, it exists a constant p0 
(thermal power dissipated by nucleon) such that: 

 p=np0 (13) 
According to the equation (13), the total thermal power transmitted by all the atoms of a galaxy towards the 
spherical concentration of dark matter constituting the galaxy is proportional to the total number of nucleons of the 
galaxy and consequently to the baryonic mass of this galaxy. So if m0 is the mass of one nucleon, M being the 
baryonic mass of the galaxy, we obtain according to the equation (13) that the total thermal power Pr received by 
the spherical concentration of dark substance constituting the galaxy from all the atoms is given by the following 
equation, K3 being the constant p0/m0: 

 Pr=(M/m0)p0=K3M (14) 
Concerning the preceding Postulate 2a): 
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-It is possible (but not compulsory) that it be true only for atoms whose temperature is superior to the temperature 
T of the concentration of dark substance.  
-It permits to obtain the very simple Equation (14). We will see that this equation is essential in order to obtain the 
baryonic Tully-Fisher’s law. 
2.3.3 Obtainment of the Baryonic Tully-Fisher’s Law 
In agreement with the previous model of galaxy (Section 2.2), we model a galaxy with a flat rotation curve as a 
spherical concentration of dark substance, at a temperature T and surrounded itself by a medium constituted of 
dark substance (called “intergalactic dark substance”) with a temperature T0  and a density ρ0. 
In order to obtain the radius R of the concentration of dark substance constituting the galaxy, it is natural to make 
the hypothesis of the continuity of ρ(r): R is the radius for which the density ρ(r) of the concentration of dark 
substance is equal to ρ0. We will call R the dark radius of the galaxy. So we have the equation: 

 ρ(R)=ρ0 (15) 
Consequently we have according to the equations (7) and (8): 

 2
024

k
R

ρ
π

=  (16) 
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So we obtain that the radius R of the concentration of dark substance constituting the galaxy is given 
approximately by the equation: 
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The constant K4 being given by: 
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We can then consider that the sphere with a radius R of dark substance at the temperature T is in thermal interaction 
with the medium constituted of intergalactic dark substance at the temperature T0 surrounding this sphere. The 
simplest and most natural thermal transfer is the convective transfer. We admit this in the Postulate 2b): 
Postulate 2b): 
The thermal interaction between the spherical concentration of dark substance constituting the galaxy (with a 
density of dark substance in 1/r2 and a homogeneous temperature T) and the surrounding intergalactic dark 
substance (at the temperature T0) can be modeled as a convective thermal transfer. 
We know that if φ is the thermal flow of thermal energy on the borders of the spherical concentration of dark 
substance with a radius R, Pl being the total power lost by the spherical concentration of dark substance 
constituting the galaxy is given by the equation:    

 Pl=4πR2φ  (20) 
But we know that according to the definition a convective thermal transfer between a medium at a temperature T 
and a medium at a temperature T0 and according to the previous Postulate 2b) the flow φ between the 2 media is  
given by the expression, h being a constant depending only on ρ0: 

 φ=h(T-T0) (21) 
Consequently the total power lost by the concentration of dark substance is: 

 Pl=4πR2h(T-T0) (22)  
We can consider that at the equilibrium, the total thermal power Pr received by the spherical concentration of dark 
substance constituting the galaxy is equal to the thermal power Pl lost by this spherical concentration. 
Consequently according to the equations (14) and (22), (M being the baryonic mass of the galaxy), we have: 

 K3M=4πR2h(T-T0) (23)  
Using then the equation (18) : 
 K3M=4πK4

2hT(T-T0) (24) 
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Making the approximation T0<<T  : 
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Consequently we obtain the expression of T, defining the constant K5 :  

 1/2 1/ 2 1/23
52

4

( )
4

K
T M K M

K hπ
= =  (26) 

And then according to the equation (10) : 

 v2=2k0T=2k0K5M1/2 (27) 
So : 

 2 4

0 5

1( )
2

M v
k K

=  (28) 

So we finally obtain: 

 M=K6v4 (29) 
The constant K6 being defined by: 
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So we obtain the baryonic Tully-Fisher’s law (12), with K2=K6. It is natural to assume that h depends on ρ0. The 
simplest expression of h is h=C1ρ0, C1 being a constant. With this relation, K6 is independent of ρ0, and we can use 
the baryonic Tully-Fisher’s law in order to define candles used to evaluate distances in the Universe.  
2.4 Temperature of the Intergalactic Dark Substance 
We introduced the temperature T0 of the intergalactic dark substance. We could make the hypothesis that this 
temperature is the temperature of the CMB but we remind that in order to get the baryonic Tully-Fisher’s law we 
supposed T0<<T (T temperature of the spherical concentration of dark substance in a galaxy). Consequently the 
previous hypothesis would lead to very high temperatures of spherical concentrations of dark substance 
constituting galaxies. We will see further that according to the theory of dark matter exposed here, the temperature 
T0 of the intergalactic dark substance is not equal to the temperature of the CMB, except for a particular 
cosmological redshift z. 
We could be in the following cases: 
a) The temperature T0 of the intergalactic dark substance at the present age of the Universe (equation (21)) is far 
less than the temperature of the CMB.  
b) Baryons can emit thermal power towards dark substance as assumed in the Postulate 2a) even if their 
temperature is inferior to the one of dark substance.  
We remind that according to the Postulate 1b), the dark substance does not interact with photons and in particular 
with the photons of the CMB. Consequently dark substance does not receive radiated energy.   
2.5 Form of the Universe 
The elements of the Theory of dark matter exposed previously, meaning the obtainment of the flat rotation curve of 
galaxies and of the baryonic Tully-Fisher’s law, are compatible with the Standard Cosmological Model. We will 
see that it is also the case for the full new Theory of dark matter. Consequently our Theory of dark matter is 
compatible with the different possible topological models of the Universe predicted by the SCM. Nonetheless, the 
model of dark matter proposed by the new Theory permits the possibility of a new and very simple geometrical 
model of Universe: 
This new geometrical model is a sphere filled of dark substance (called Universal sphere) and surrounded by a 
medium that we will call “nothingness”, which was the medium before the Big-Bang. RU(t) being the radius of the 
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Universal sphere at a Cosmological time t, and 1+z being the factor of expansion of the Universe between the 
Cosmological times t1 and t2:  

 RU(t2)=(1+z)RU(t1) (33) 
2.6 Superposed Sphere 
Let us consider a spherical concentration of dark substance with a density in 1/r2 (that we defined in previous 
sections) moving in the space. We could expect that its velocity or its mass be modified because of its motion, 
because of the Archimedes’s force or because of the absorption or of the loss of dark substance by the moving 
concentration of dark substance. This effect could be negligible, but we have a justification that it is nil much more 
interesting. 
Indeed according to our new theory the dark substance has 2 possible behaviors: It can behave as a substance 
owning a mass or as absolute emptiness. For baryonic particles immerged inside dark substance, it always behaves 
as absolute emptiness and consequently the velocity of baryonic particles is never modified due to an 
Archimedes’s force generated by the motion of baryonic particles through the dark substance. According to our 
new theory of dark matter, the intergalactic dark substance in which the spherical concentration of dark substance 
is immerged also behaves as it was absolute emptiness concerning the displacement of this spherical concentration 
of dark substance: Neither the velocity nor the mass of the spherical concentration of dark substance are modified 
by its motion through the intergalactic dark substance. In order to interpret this phenomenon, we will say that the 
spherical concentration of dark substance is a superposed sphere on the intergalactic dark substance surrounding it.  
We know that in the Newton’s theory of gravitation, it is assumed that only baryonic density exists, which is not 
the case in our theory of dark matter, and it is also assumed that the Universe is static, which is also not the case in 
the MSC nor in our theory of dark matter that as the MSC admits the expansion of the Universe. Consequently the 
equations of the Newtonian mechanics must be adapted to our theory of dark matter, and we are going to see 3 very 
simple examples of adaptation of those equations to this theory of dark matter. 
In section 2.2, in order to obtain our model of a superposed sphere with a density in 1/r2, we assumed that we had a 
spherical symmetry around the centre of the galaxy OGA. But we will see that usually this spherical symmetry does 
not exist if the galaxy is inside a cluster. In order to be able to use always this spherical symmetry inside a 
superposed sphere and to use the possibility that dark substance can behave as absolute emptiness, we propose the 
following rule of adaptation of Newton’s law, that could be exact but also be true with a good approximation: 
The rule of adaptation is the following: 
In the case of a galaxy GA constituted of a superposed sphere with a centre OGA and a radius RGA: 

a) In order to obtain the velocities and trajectories of the stars inside the superposed sphere in the frame whose the 
origin is OGA, in order to obtain the gravitational field GGA and the gravitational potential UGA permitting to obtain 
those velocities and trajectories, we take ρ(r)=0 in the equations of Newtonian mechanics if r>RGA. 
b) OGA is accelerated by an acceleration G(OGA), G(OGA) is defined by FG(GA)=m(GA)G(OGA), with FG(GA) is the 
gravitational force generated on GA by the dark substance in which GA is immerged, m(GA) mass of GA. So the 
dark substance in which GA is immerged acts on GA as if GA was a solid. 
We remark that the preceding rule of a adaptation is equivalent to the hypothesis that the dark substance in which 
GA is immerged generates a field uniform and equal to G(OGA) (defined previously) in all the galaxy. The 
preceding rule of adaptation involves that the model that we used in order to obtain a superposed sphere with a 
density of dark substance in 1/r2 is always valid, because we can already assume a spherical symmetry. 
So this is a possible 1st example of adaptation of the equations of Newtonian dynamics to our theory of dark matter. 
The preceding rule of adaptation could be exact or only with a good approximation. This is in complete analogy 
with the solar system in which we can obtain the equations of the trajectories of the planets without taking into 
account the gravitation generated by the other stars of the galaxy, meaning taking ρ(P) =0 in Newtonian equations 
of P is outside the solar system. 
We have seen in the section 2.3 a model of convective thermal transfer between the superposed sphere at a 
temperature T and the dark substance in which it is immerged at the temperature T0. The thermal flow was: 

 φ=h(T-T0) (34) 
It is possible that the dark substance in which the superposed sphere is immerged behaves as absolute emptiness 
not only from a gravitational point of view, but also from a thermal point of view. This brings us to propose a 2nd 
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model of thermal transfer between the superposed sphere and the dark substance in which it is immerged, with a 
thermal flow not given by the equation (34) but by the following equation: 

  φ=hT (35) 
The previous flow remains analogous to a convective thermal transfer. We remark that it has the same expression 
of a flow of a convective thermal transfer between a medium at a temperature T and a medium at a temperature 
T0=0. 
This 2nd model of thermal transfer is very interesting because it involves that the baryonic Tully-Fisher’s law that 
we established in Section 2.3 remains valid whatever be the temperature T0 of the dark substance in which the 
superposed sphere is immerged. It is true only with the condition T0<<T in the 1st model of thermal transfer. 
2.7 Baryonic and Dark Radius of a Galaxy 
We saw in the Section 2.1 that if r is the distance to the centre O of a spherical concentration of dark substance 
constituting a galaxy, then the expression of the density of dark substance ρ(r) is given by, k3 being a constant (See 
section 2.2, equation (7) k3=k2/4π):     

 3
2( ) k

r
r

ρ =  (36) 

So we obtain, M(r) being the mass of the sphere having its center in O and a radius r (See equation (9)): 

 M(r)=4πk3r (37) 
Consequently, v being the velocity of a star at a distance r of O (see equation (10)): 

 2
34GMv k G

r
π= =  (38) 

Consequently: 

 
2

3 4
vk

Gπ
=  (39) 

We know also that if ρ0 is the local density of the intergalactic dark substance surrounding the spherical 
concentration of dark substance constituting the galaxy, then the radius R of this concentration of dark substance is 
given by the expression (See equation (15)): 

 3
02( ) k

R
R

ρ ρ= =  (40) 

Consequently: 

 3

0 0

1
4

k
R v

Gρ π ρ
= =  (41) 

In a previous section, we called R the dark radius of the considered galaxy. 
So in a galaxy for which it exists a spherical concentration of dark substance with a density in 1/r2, we have 2 
different kinds of radius: 
The 1st kind of radius, called dark radius, is the radius of the spherical concentration of dark substance. The 2nd 
kind of radius is the radius of the smallest sphere containing all the stars of the galaxy. We will call baryonic radius 
this second kind of radius. We remark that at a given time, the dark radius must be greater than the baryonic radius. 
2.8 Other Models of Distribution of Dark Matter in the Universe. 
We remind that dark substance is not ordinary matter and consequently does not compulsory own the physical 
properties of ordinary matter. For instance we have seen that according to our model of dark substance, dark 
substance can behave as absolute emptiness. In this section and also in the following section interpreting dynamics 
of galaxy clusters, we will propose some new physical properties of our model of dark substance, those properties 
being simple but different from the physical properties of ordinary matter, and permitting to interpret the 
astronomical observations linked to dark matter. 
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2.8.1 The Double Possible Behavior of Dark Substance 
In addition to the 1st model exposed in the section 2.2 of distribution of dark substance with a density in 1/r2, 
obtained for galaxies with a flat rotation curve, we must also consider a 2nd model of distribution of dark substance 
with a constant density ρ(r)=ρ0, ρ0 density of dark substance in which the galaxy is immerged. Generally, ρ0 is the 
density of the intergalactic dark substance that we assumed to be homogeneous in temperature and in density in 
section 2.2. 
This 2nd model of distribution of dark substance is the consequence of a possible behavior of the dark substance 
that is to be homogeneous in density, in violation of the equation of the equilibrium of the forces.  
So we see that dark substance can behave in 2 different ways: Either it is homogeneous in density (in a given 
volume) in violation of the equations of equilibrium (as the intergalactic dark substance), either its density obeys to 
the equations of the equilibrium of forces (As in our model of galaxies with a flat rotation curve).  
We must now define, according to our model of dark substance, in which case dark substance behaves according to 
the first way and in which case it behaves according to the 2nd way. We remind that we have admitted that the dark 
halo of a galaxy with a flat rotation curve was constituted of a superposed sphere of dark substance. This brings us 
to admit the following hypothesis a) for our model of dark substance: 
Hypothesis a): 
Dark substance owns a constant density everywhere in the Universe outside the superposed spheres. 
It is attractive to assume that inside a superposed sphere S, dark substance keeps the main properties that it owns in 
the Universe out of any superposed sphere. Consequently, we  generalize for our model of dark substance the 
hypothesis a) by the hypothesis b):    
Hypothesis b): 
A local concentration of dark substance inside a volume dV belonging to a superposed sphere S (dV being small 
relative to the volume of S) can exist only if dV belongs to a sphere of dark substance S’ superposed to S. 
The preceding hypothesis a) and b) bring to obtain a very simple density of dark matter at any point of the 
Universe. 
We can wonder if it can exist several levels of superposed sphere, meaning if it is possible that a sphere full of dark 
substance S’ can be superposed to a sphere full of dark substance S, as in the case of the hypothesis b). The 
simplest hypothesis would be that this is not possible, and this hypothesis seems to be in agreement with 
observations. Consequently we will admit it in our model of dark substance: 
Hypothesis c): 
It cannot exist several levels of superposed sphere. 
The hypothesis a) implies that if in the Universe a star does not belong to a superposed sphere, there is not 
concentration of dark substance locally around it. The hypothesis b) and c) imply that inside a superposed sphere S 
constituting the dark halo of a galaxy with a flat rotation curve, there are no local concentrations of dark substance, 
no locally around stars nor locally around dwarf galaxies. 
Consequently if the hypothesis b) and c) are true there are no concentrations of dark substance locally around the 
Magellanic clouds. Nonetheless, if we discover using astronomical observations that the Magellanic clouds are 
galaxies with a flat rotation curve and obeying to the baryonic law of Tully-Fisher, this would imply that the 
Hypothesis c) is wrong (keeping the hypothesis b). But the hypothesis c) is not necessary to our theory of dark 
matter, and our justification of the baryonic law of Tully-Fisher can be applied to a sphere S’ superposed to a 
superposed sphere S. 
2.8.2 The Generation of the Superposed Spheres 
An interesting issue is to determine in which way the superposed spheres of dark substance appear in the Universe. 
We remark that we do not observe concentrations of dark matter locally around stars nor around black holes with a 
low mass. This means according to our preceding hypothesis a) and b) that there are none superposed spheres 
locally around stars nor around black holes with a low mass, and consequently we will admit the following 
hypothesis d): 
Hypothesis d): 
No planets, nor stars nor black holes with weak masses generate superposed sphere. 
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Nonetheless it is possible that superposed sphere be generated by super-massive black holes. If it is the case, it 
should exist a super-massive black hole at the centre of each galaxy with a flat rotation curve and reciprocally any 
galaxy whose the centre is a super-massive black hole should be a galaxy with a flat rotation curve. It is also 
possible that superposed sphere be generated by primordial black holes (meaning appeared in the primordial very 
dense Universe), but that are disappeared today. 
So we have 2 main possibilities for the formation of superposed sphere: Either they are generated by some celestial 
objects, as for instance the super-massive black holes, either they are generated by some phenomena in the 
primordial Universe. 
2.8.3 The Rotation Curve of Galaxies with a Flat Rotation Curve Close to the Centre of those Galaxies 
We remind that we obtained in our model of galaxies with a flat rotation curve a density in 1/r2 (r distance to the 
centre of the galaxy). Nonetheless the astronomical observations show that close to the centre the rotation curve is 
not flat, and that we have v(r)=0 for r=0. 
In order to justify this, we have the following simple explanation: 
We have previously seen that dark substance had 2 possible behaviors: Either it was homogeneous in density, 
violating the equations of equilibrium of forces, either its density obeyed to the equations of the equilibrium of 
forces. In order to justify the aspect of the rotation curve of galaxies close to r=0, we propose the simple following 
explanation, Hypothesis e), for our model of dark substance: 
Hypothesis e): 
T being any temperature, it exists a maximal density ρM(T) for which dark substance can behave in agreement with 
the equation of the equilibrium of forces. For a density superior or equal to ρM(T), dark substance behaves as a 
substance homogeneous in density.  
With the previous hypothesis e), we obtain that for a galaxy with a flat rotation it exist a distance d0 such that for 
0<r<d0 the density of dark substance is equal to ρM(T) and for d0<r ρ(r) decreases till ρ0, density of the intergalactic 
dark substance. For r sufficiently great, we obtain that the curve ρ(r) is asymptotic to the curve in 1/r2 obtained in 
our first model without the hypothesis e). So we obtain a rotation curve in agreement with observation. We could 
improve our model taking into account the baryonic matter. 
In order to determine ρ(r) with the hypothesis e) we proceed as follows (without taking into account the lower limit 
of ρ(r) that is equal to ρ0): 
a being a positive reel we define the function ρSa(r) by: 
(i) For 0≤r≤a: ρSa(r)=ρM(T) 
(ii) For a<r:ρSa(r) is solution is solution of the equation of the equilibrium of forces and is consequently asymptotic 
to the curve in 1/r2 obtained in the model without the Hypothesis e) 
We then define the function ρSam(r) as the (unique) function among the previously defined functions ρSa(r) 
verifying: 
(i) For any r, ρSa(r)≤ρM(T) 
(ii) a is minimal. 
Then the solution of the density of dark matter in a galaxy with a flat rotation curve taking into account the 
hypothesis e) is ρSam(r). Moreover d0=am. We can easily adapt what precedes taking into account the lower limit of 
the density of dark substance that is equal to ρ0.   
2.8.4 The Inter Cluster Medium and the Baryonic Law of Tully-Fisher 
The astronomical observations have showed the existence inside galaxy clusters of a plasma constituted of 
baryonic matter, this plasma being called inter cluster medium. This plasma constitutes an important part of the 
mass of a cluster, generally more important than the mass of all the galaxies belonging to this cluster. 
But in order to obtain the baryonic law of Tully-Fisher for a galaxy according to our theory of dark matter, we 
considered that all the baryonic particles inside the halo of the considered galaxy transmit thermal energy to the 
dark substance constituting this dark halo. And if we took into account the plasma, then we would not obtain the 
baryonic law of Tully-Fisher taking into account only the mass of the stars and the mass of visible gas of the 
considered galaxy, which was what we did. 
We propose the following explanation: The plasma is constituted of ionized particles, generally helium or 
hydrogen. We obtain the baryonic law of Tully-Fisher taking as baryonic mass only the mass of stars and visible 
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gas of galaxies if we admit that if a baryonic particle is charged as for instance a ionized particle, then it does not 
transmit thermal energy to the dark substance in which it is immerged. 
The astronomical observations show that the particles of the plasma do not cool down. 
2.8.5 Collisions between Dark Matter and Baryonic Matter 
None astronomical observations proved the existence of collisions between dark matter and baryonic matter. This 
is very well explained in our Theory of dark matter. Indeed according to this theory, dark substance is a substance 
filling all the space and that can behave as absolute emptiness. And it is evident that collisions between absolute 
vacuum and baryonic matter are impossible. We remind that for the same reason, according to our Theory of dark 
matter it does not exist Archimedes’s pressure acting on a particle moving inside dark substance. And so our 
Theory of dark matter does not predict any possible collision between baryonic matter and dark substance. 
2.9 Other Observations of Dark Matter 
We are now going to interpret using our new theory of dark matter experimental data linked to the velocities of 
galaxies in clusters. 
According to what precedes, the velocity of a galaxy in a cluster is determined by: 
-The baryonic mass inside the cluster (stars, gas..) 
-The mass of the dark halos of galaxies. 
-The mass of the intergalactic dark substance. 
We admit using the preceding section that the galaxy cluster contains only either galaxies with a density of dark 
substance in 1/r2 as defined in the section 2.1 (1st model of distribution of dark matter around galaxy) or galaxies 
with a homogeneous density of dark matter equal to ρ0, density of the intergalactic dark substance (2nd model of 
distribution of dark matter around galaxy). 
We obtain a very interesting result concerning the mean density of galaxies corresponding to the 1st model of 
distribution (density of dark substance in 1/r2): 
Indeed, according to the equation (18), for those galaxies the dark radius is: 

 RS=(2k0T/4πGρ0)1/2 (42) 
According to the equation (8) : 

 k2=2k0T/G (43) 
Consequently : 

 RS=(k2/4πρ0)1/2 (44) 
So according to the equation (9) the total mass of the dark halo is: 

 
3/ 2
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1/ 2
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Let us now calculate the mass of a sphere with the same radius RS and a density equal to the density of the 
intergalactic dark substance ρ0 : 
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Consequently : 

 MI(RS)=MS(RS)/3 (47) 
So the mean density of the halos of galaxies belonging to the 1st model of distribution of dark matter  is equal to 
3ρ0, whatever be the radius and the temperature of the considered halo, and consequently whatever be the orbital 
velocity of stars in the considered galaxy. 
According to the previous equation (47) we can expect that the dark mass of a cluster be much greater than the 
baryonic matter in the galaxies of this cluster. Indeed we have seen that according to the theory of dark matter 
exposed here, for a galaxy corresponding to the 1st model of distribution of dark substance, RB being the baryonic 
radius of the galaxy, then the mass MB(RB) of baryonic matter contained in the sphere with a radius RB (centre O, 
centre of the galaxy) was much lower than the mass MS(RB) of the dark substance contained in the same sphere. 
And consequently, because RB<RS, the total mass of the dark halo MS(RS) is much greater than the total mass of 
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baryonic matter contained by the galaxy . But according to the equation (47), the mean density of the halo is only 3 
times of the minimum density of dark matter inside the cluster. (Because we supposed that only the 1st and the 2nd  
model of distribution of dark matter existed for galaxies). Consequently we can expect that the dark mass of 
clusters be much greater than the baryonic mass of the galaxies belonging to this cluster. 
So for a cluster A with a mean density ρmA, we obtain if we neglect the baryonic density : 

 ρ0<ρmA<3ρ0 (48) 
Consequently the mean densities of clusters permit to obtain an estimation of the density ρ0 of the intergalactic 
dark substance. Moreover if A1 and A2 are 2 clusters with mean densities ρmA1 and ρmA2 with for instance 
ρmA1<ρmA2, then according to the previous relation : 

 ρmA2<3ρmA1 (49) 
We will see that the preceding theoretical prediction is in agreement with astronomical observations. 
It is interesting to introduce the mean volume of dark halo corresponding to the 1st model of distribution of dark 
substance per galaxy VolSG. Then if clusters contain the same kind of galaxies in the same proportions (which is 
not always the case), we can express the mean density of dark substance ρmA as a function of NA the number of 
galaxies inside the cluster A, and VolSG. Indeed we immediately obtain, using that the mean density of dark halos 
corresponding to the 1st model of distribution of dark substance is equal to 3ρ0 (Equation (47)) and that elsewhere 
the density of dark substance is equal to ρ0 ,VolA being the volume of the cluster:  

 0 0
1 [3 ( )]mA A SG A A SG

A

N Vol Vol N Vol
Vol

ρ ρ ρ= + −  (50) 

So we obtain, ρmAG being the mean density of the number of galaxies in the cluster, ρmAG=NA/VolA: 

 ρmA=ρmAG(2ρ0VolSG)+ρ0 (51) 
Moreover, VolA(H) being the volume of dark halo of galaxies belonging to the 1st model in the cluster A, we have 
always, still using that the mean density of dark halos corresponding to the 1st model of distribution of dark 
substance is equal to 3ρ0 (Equation (47)) and that elsewhere the density of dark substance is equal to ρ0: 
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1 [3 ( ) ( ( )]mA A A A
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An important particular case is the case in which we have VolA(H)/VolA<<1 for all clusters. Then we have for all 
clusters ρmA very close to ρ0 for all clusters. This implies, ρ0 depending on the Cosmological redshift z, that clusters 
corresponding to the same z have approximately the same mean density ρmA very close to ρ0(z).  
We remind that we assumed that we could neglect the contribution of baryonic matter in order to obtain the mean 
density of the cluster ρmA. In what follows we will assume that we have generally for clusters VolA(H)/VolA<<1 
and consequently ρmA≈ρ0. We remind that ρ0 depends on t, age of the Universe. We will see further that the 
previous assumption is in agreement with astronomical observations. 
Now we are going to study 3 dynamical models of clusters permitting to obtain some relations between the mass of 
clusters and the velocities of galaxies belonging to those clusters. Only the 3rd model is new and the 2nd model is 
generally admitted in the SCM, but without model of dark matter. We will see that the 3 models have theoretical 
predictions that are close one another concerning the relations for a given cluster A between the mass of this 
cluster, its radius, and the dispersion velocity of the galaxies or the maximal recession velocity of galaxies of this 
cluster A. Nonetheless, we will see that the 1st model is not compatible with astronomical observations, and the 3rd 
model is based on our model of dark matter and moreover permits to interpret some astronomical observations not 
interpreted by the 2nd model.   
According to a 1st dynamical model of clusters, galaxies turn around the centre of a cluster the same way planets 
turn around the sun or stars turn around the centre of the Milky Way. So we will call the planetary dynamical 
model of clusters this 1st model.  
RA being the radius of a cluster A, VMA being the orbital velocity of a galaxy at a distance RA from the centre OA of 
A (We will obtain that VMA is also the maximal orbital velocity of galaxies according to this 1st dynamical model), 
MA being the mass of the cluster A, we obtain assuming a spherical symmetry of the distribution of the dark 
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substance and neglecting the baryonic matter, using as in the previous sections the Newton’s Universal law of 
attraction, the Gauss theorem and the classical Newton’s dynamic law FG=mγ : 
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=  (54) 

 2A
MA

A

GM V
R
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Nonetheless, some astronomical observations that are very important in order to study the validity of our different 
dynamical models of clusters have been realized concerning the Coma cluster that we will name A4 (The Coma 
cluster, 2018). Using some astronomical observations of the Coma cluster, some astrophysicists realized a graph 
giving for some galaxies G belonging to the Coma cluster the recession velocity VR(G) observed from a point OT 
close to the earth and being the origin of an inertial frame RT in which the velocity of the earth is small relative to 
c, as a function of the angle a(G) between the lines (OT,O4) and (OT,OG), with O4 the centre of the Coma cluster and 
OG the centre of the galaxy G. 
According to this graph, the gap between the maximal recession velocity and the minimal recession velocity is 
maximal for an angle a(G)=0 (5000 km/s). Then it decreases. 
And this contradicts the 1st planetary dynamical model of clusters because according to this model for a galaxy 
with a(G)=0 the velocity of G (as a vector) is perpendicular to the line (OT,OG) and consequently the recession 
velocity v(G) should be close to 0 for a(G)=0. And also according to this model the gap between the maximal 
recession velocity and the minimal recession velocity should increase with a(G). So the previous astronomical 
observations concerning the Coma cluster contradict the 1st planetary dynamical model of clusters. 
A 2nd possible dynamical model of clusters is the model generally used in the Standard Cosmological Model 
(SCM) (Narlikar, 2002) based on the Virial’s theorem. So we will name this model the Virial’s dynamical model of 
clusters. 

According to this model, if σA is the velocity dispersion inside a cluster A, MA being the mass of the cluster and RA 
its radius:  

 2A
A A

A

GM
R

α σ≈  (56) 

In the previous expression, αA is of the order of the unity and depends on the cluster A. Very often we take it equal 
to 1 or 2. We can also replace in the preceding expression RA by the Abel radius (Raine & Thomas, 2001). 
We remind that the equation (56) obtained by the Virial’s model seem to be approximately in agreement with 
astronomical observations. We will see that it will be also the case for the 3rd dynamical model of cluster.  
We are now going to propose a 3rd dynamical model of clusters based on our model of dark matter. In this model, 
GA being a galaxy of a cluster A situated at a point P of the cluster,  we consider only the gravitational potential 
generated in P by the dark substance.  So we will name this 3rd model the dynamical model of the dark potential of 
clusters. 
In order to obtain in this 3rd model the gravitational potential generated by the dark substance at any point of the 
cluster, it is necessary to expose the elements of our theory of dark matter permitting to calculate the gravitational 
field G and the gravitational potential U at any point of the Universe. We have already seen 2 examples of 
adaptation of the equations of Newtonian mechanics to our theory of dark matter (Section 2.6 and 2.8). We have 
seen that those adaptations are necessary because in the Newton’s Theory of Gravitation, only baryonic matter 
exists and moreover, there is no expansion, which is not the case in our theory of dark matter. In order to obtain 
G(Q) and U(Q) at a point Q of the Universe using the equations of Newtonian mechanics, in order to take into 
account the density of dark substance at a point P, we must distinguish the cases in which P is inside a 
concentration of baryonic matter or if it is not the case: 
a) Let us suppose that P is a point of the Universe belonging to none concentration of baryonic matter, but 
belonging to the intergalactic dark substance. We know that the density of dark substance in P is equal to ρ0 
(Section 2.3 and 2.8). Because of the expansion of the Universe and of the properties of dark substance, we will 
admit in our theory of dark matter that there is a symmetry for all points P with the preceding properties, involving 
that we must take ρ(P)=0 in the equations of Newtonian mechanics in order to obtain G(Q) and U(Q) at a point Q. 
This means that dark substance behaves as it was absolute emptiness in P, the same way as in Section 2.8. 
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So the previous rule a) justifies that between clusters, dark matter behaves as absolute emptiness, in agreement 
with astronomical observations. 
b) If P belongs to an important concentration of baryonic matter (cluster, galaxy, star..), then the symmetry in P is 
broken: We must take ρ(P)=ρ0 (or ρ(P) is equal to the density of dark substance in P) in the equations of Newtonian 
mechanics in order to obtain G(Q) and U(Q). 
So we have a 3rd example of adaptation of the equations of Newtonian mechanics to our theory of dark matter that 
is due to the expansion of the Universe, that did not exist in the Newton’s Theory of Gravitation.       
In this 3rd dynamical model of cluster, we model a cluster as a system (ideal cluster) with the following properties: 
a) The cluster is a sphere with a radius RA, containing galaxies and dark substance, presenting a spherical 
symmetry. 
b) In order to obtain G and U in the cluster, permitting to obtain the velocities, accelerations and energies of the 
galaxies of the cluster, those galaxies being modeled as punctual masses (coinciding with their centre of mass), we 
can consider that inside the cluster, the density is homogeneous and equal to ρmA. (Because of the equation (53), 
assuming VolA(H)/VolA<<1 and neglecting the baryonic matter of the cluster). 
Concerning the galaxies of the cluster, the velocities and energies are calculated in the frame whose the origin is 
OA centre of the cluster. Galaxies of the cluster are modeled the following way : 
c) We define for a galaxy GA the ratio r(GA) defined by r(GA)=ET(GA)/m(GA) (ET(GA) total energy of the galaxy GA 
and m(GA) mass of GA)  and  rAMax as being the maximal value of this ratio. Then according to our model of galaxy 
cluster: 
(i) The radius RA of the cluster is the maximal possible distance between a galaxy GA of the cluster and OA centre 
of the cluster (with the condition r(GA)≤rAMax). 
(ii) The galaxies GA with r(GA)=rAMax have a great density in the cluster (not compulsory homogeneous). This 
means that at any point Q of the cluster, it exists a galaxy GA close to Q such that r(GA)=rAMax. Moreover in the case 
in which Q=OA centre of the cluster, because of the spherical symmetry if u is any unitary vector, it exists a galaxy 
GA0 close to OA with r(GA0)=rAMax such that, V(GA0) being the vector velocity of GA0: V(GA0).u ≈V(GA0), with 
V(GA0) norm of V(GA0). (This means that the vector V(GA0) is approximately collinear to u). 
d) The galaxies GA such that r(GA)=rAMax keep their energy and their mass, and consequently rAMax is constant. 
Therefore we obtain according to the preceding property a) of our model of cluster and also to our adaptation of the 
equations of the Newtonian mechanics (Preceding example):   

 U(RA)=-GMA/RA (57a) 
 G(RA)=-GMA/RA

2 u (57b) 
Moreover, GA being a galaxy situated at a distance r from OA, m(GA) and V(GA) being the mass and the velocity of 
GA the total energy ET(GA) of GA is therefore, U(r) being the gravitational potential at a distance r from OA:   

 ET(GA)=(1/2)m(GA)V(GA)2+m(GA)U(r) (58) 
Using the spherical symmetry of our model of cluster, applying the Gauss theorem, M(r) being the mass of the 
sphere with the centre OA and the radius r, the gravitational field G(r) is then:    

 2

M(r)(r) -G
r

=G u    (59) 

According to the property b) of our model of cluster, M(r)=(4/3)πr3ρmA and consequently : 

 4( )
3 mAr G rπ ρ= −G u  (60) 

By definition G=-Grad(U), so we obtain, CAU being a positive constant at a given age of the Universe: 

 U(r)=G(4/6)πr2ρmA-CAU (61) 
This equation can also be written, in the approximation that the density of dark matter in the cluster is 
approximately constant an equal to ρmA, M(r) being the mass of the sphere with the centre OA and a radius r : 

 U(r)=GM(r)/2r-CAU (62) 
Consequently we have, MA=M(RA) being the mass of the cluster, using the equation (57a) : 
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So we finally obtain, with MA and RA depending a priori on t, age of the Universe: 
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Therefore, using the equation (58), for a galaxy at a distance r from OA : 
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Moreover we have defined, in the property c) of our model of cluster, rAMax as being the maximal value of 
r(GA)=ET(GA)/m(GA). So we have for any galaxy GA: 
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+ ≤ +  (65b) 

We are now going to consider a galaxy GAl at the limits of the cluster (r=RA) and a galaxy GA0 in OA (r=0). 
According to the property c)(i) of our model of cluster, the radius RA of the cluster is the maximal possible distance 
between a galaxy GA of the cluster and OA the centre of the cluster with the condition r(GA)≤rAMax. Considering the 
previous inequality (65b) we have therefore for a galaxy GAl at the limit of the cluster, V(GAl)=0 and: 
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For a galaxy GA0 situated at the centre of the cluster (r=0), such that r(GA0)=rAMax, according to the equation (65a): 

 2
0
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Therefore, because of the equation (65b), V(GA0) is equal to the maximal velocity of the galaxies in the cluster 
VMA. Consequently, using the equations (66) (67) we obtain: 
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Moreover according to the property c) of our model of cluster, u being any unitary vector, it exists a galaxy GA0 
close to OA such that r(GA0)=rAMax and V(GA0).u≈V(GA0) (V(GA0) vector velocity of GA0 and V(GA0) its norm). 
Consequently if we define VMA(u) as the maximal value of V(GA).u, considering all galaxies GA of the cluster, then 
VMA(u)≈VMA. 
In the astronomical observations, GA being a galaxy of the cluster, u being the unitary vector of the direction of 
observation, we measure VT(GA)(u)= VT(GA).u, component on u of the vector velocity VT(GA), velocity of GA in 
an inertial frame RT whose the origin is a point OT close to the earth, and in which the velocity of the earth is small 
relative to c. We then obtain VMA(u) by the following expression, with evident notations: 

 VMA(u)=(1/2)[MaxA(VT(GA)(u))-minA(VT(GA)(u))] (68b) 
Considering that the validity of our model of cluster described by the properties a)b)c)d) is only an approximation, 
we introduce a constant βA, depending on the cluster and on the vector u, such that, VMA(u) being defined by the 
previous expression (68b): 

 ( ) A
MA A

A

GMV
R

β=2u            (69) 

So we obtain in our 3rd model of the dark potential an equation analogous to the equations (55)(56). Nonetheless, 
this 3rd model predicts that the velocity of galaxies is maximal for galaxies close to the centre of the cluster, in 
agreement with astronomical observations (Raine & Thomas, 2001), which is not the case for the 2nd Virial’s 
model. 
Moreover, Ai and Aj being 2 clusters, using MAi=(4/3)πρmAiRAi

3, we obtain immediately, using the equation (68a) : 

 2 2( ) ( )mAj MAj Ai

mAi MAi Aj

V R
V R

ρ
ρ

=  (70a) 
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But we have seen in the equation (53) that if Ai and Aj are 2 galaxy clusters corresponding to the same 
Cosmological redshift z, if moreover VolAi(H)/VolAi<<1 and VolAj(H)/VolAj<<1, then ρmAj/ρmAi should be close 
to the unity. 
Let us consider for instance the Virgo cluster A2 (z2<0,01) and the Coma cluster A4 (z4=0,03). According to 
astronomical observations considering the galaxies NGC4388 and IC3258 we obtain VMA2(u2)=1500 km/s (SEDS 
Messier Database, 2006). Moreover we can take RA2=2,2 Mpc (Fouqué, Solanes, Sanchis, & Balkowski, 2001). 
For the Coma cluster, we can take VMA4=2500 km/s (The Coma cluster, 2018) and RA4=12,5 million l.y=3,8 Mpc 
(Shu, 2008). (We took a median value among values given by scientific literature). Then we obtain using the 
previous experimental data and the equation (70a) ρmA4/ρmA2=0,93. The agreement between this value and the 
theoretical prediction (ρmA4/ρmA2 close to 1) is good because an error of only 10% on one of the parameters 
involves an error of 20% on the final result. 
In order to obtain the evolution of the mass and of the radius of a galaxy cluster, we use that according to the 
property d) of our model of cluster, rAMax keeps itself. According to the equation (64), replacing the Cosmological 
time t by the corresponding Cosmological redshift z, CAU(z)=(3/2)GMA(z)/RA(z). So using the equation (66) we 
obtain: 

 ( )
( )

A
AMax

A

M zr G
R z

= −  (70b) 

Therefore, because according to the property d) of our model of galaxy cluster rAMax keeps itself, MA(z)/RA(z) also 
keeps itself. Moreover MA(z)=(4/3)πRA(z)3ρmA(z), and according to the equation (53), with VolA(H)/VolA<<1, 
ρmA(z)≈ρ0(z), ρ0(z) being the density of the intergalactic dark substance for the Universe corresponding to a 
Cosmological redshift z. Therefore, according to the previous equation (70b), the evolution of MA(z) and RA(z) is 
in 1/ρ0(z)1/2. But we will see further in this section that ρ0(z)≈ρ0(0)(1+z)3. Consequently we have: 
MA(z)≈MA(0)/(1+z)3/2 

 RA(z)≈RA(0)/(1+z)3/2 (70c) 
For instance we obtain MA(2)≈MA(0)/5, MA(1)≈MA(0)/3. Which means that for instance the Coma cluster was 
approximately 5 times less massive for an Universe corresponding to a Cosmological redshift z=2. 
The fact that it seems that there is more dark matter close to the centre of clusters could be explained by the fact 
that the most massive galaxies with a flat rotation curve are close to the centre of clusters.  
The density of the intergalactic dark substance depends on the age of the Universe. We will use as previously the 
notation ρ0(0) in order to represent the density of dark matter at the present age of the Universe (z=0) and ρ0(z) in 
order to represent the density of the intergalactic dark substance at the age of the Universe corresponding to a 
cosmological redshift z. The estimation of the intergalactic density ρ0(0) obtained using the previous 3rd dynamical 
models of clusters permits other theoretical predictions confirming the validity of our model of dark matter. 
Indeed, according to the equation (18), for a galaxy corresponding to the 1st model (density of dark substance in 
1/r2) immerged in the intergalactic dark substance, the radius RS of this galaxy is given by, at the present age of the 
Universe: 

 1/20

0

2( )
4 (0)S

k T
R

Gπ ρ
=   (70d) 

Therefore, v being the orbital velocity of stars in this galaxy, according to the equation (10): 

 1/2
0(4 (0))S
vR

Gπ ρ
=  (70e) 

But the dynamical model of the dark potential exposed previously permits to obtain an estimation of ρ0(0). Let us 
for instance consider the case of the Milky Way. In order to get ρ0(0), we apply the dynamical model of the dark 
potential to the Virgo cluster A2(zA2<0,01). According to the equation (68) we obtain, ρmA being the mean density 
of the cluster A, and using MA=ρmA(4/3)πRA

3: 

 
2

2

1
(4 / 3)

MA
mA

A

V
G R

ρ
π

=        (70f) 

If A is a cluster with zA very close to 0, and assuming VolA(H)<<VolA in the equation (53), then ρmA≈ρ0(0). 
Therefore we obtain, replacing ρ0(0) in the equation (70e) by ρmA given by the equation (70f): 
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3

A
S

MA

RvR
V

=  (70g) 

Taking as the cluster A the Virgo cluster A2, with the preceding experimental data , zA2<0,01,  R2=2,2 Mpc=7,3 
million l.y, VM2≈1500 km/s and v≈210 km/s, we find the dark radius of the Milky Way RSM.W≈550000 l.y. This 
result is not only coherent, but it gives also a dark radius of the Milky Way superior to the distance between the 
centre of the Milky Way and the Magellanic clouds (approximately 250000 l.y) (Alves & Nelson,  2000). So this 
is also a new and remarkable prediction of our model of dark matter. 
We know that we observe an effect called gravitational lensing, predicted by General Relativity, that consists in a 
deviation of luminous rays due to the mass of clusters. We have seen, according to the 3rd example of adaptation of 
the equations of Newtonian mechanics, that the dark substance between clusters behaved as it was absolute 
vacuum in the equations of Newtonian mechanics. Consequently, generalizing this to the equations of General 
Relativity, in order to obtain the deviation of a luminous ray by a cluster, we can apply the equations of General 
Relativity as if the cluster was surrounded by absolute vacuum. It would be interesting to compare the mass of a 
cluster obtained by gravitational lensing with the mass obtained using the previous 3rd dynamical model of cluster.   
Moreover we know that the study of the CMB shows the existence of anisotropies due to the density of dark 
substance in the Universe. We can distinguish 2 kinds of density of dark matter: The 1st kind of density is the 
density of dark matter with a gravitational effect. Then in order to obtain the mean density of dark matter in the 
Universe corresponding to this 1st kind of density, we must only take into account the dark matter inside clusters. 
We easily obtain this density ρmUG(z) as a function of the volume of the Universe VolU(z), of the total volume of 
clusters VolU(A)(z) and of the intergalactic density ρ0(z) (corresponding to a Cosmological redshift z). We assume 
that the mean densities of clusters is approximately equal to the intergalactic density ρ0(z): 

 0
( )( )( ) ( )

( )
U

mUG
U

Vol A z
z z

Vol z
ρ ρ=  (70h) 

The 2nd kind of density of dark matter takes into account all the dark substance in the Universe. We are now going 
to obtain this last density ρmU(z).  
As in the case of clusters, it is interesting to introduce VolU(z) volume of the Universe corresponding to a 
Cosmological redshift z and VolU(H)(z) the volume of dark halos corresponding to distributions of dark substance 
with a density in 1/r2 in this Universe. We then obtain the same way we obtained the equation (53), neglecting 
baryonic matter, ρmU(z) being the mean density of dark substance in a Universe corresponding to a Cosmological 
redshift z: 

 ρmU(z)=2ρ0(z)(VolU(H)(z)/VolU(z))+ρ0(z) (70i) 
(If we take into account the dark substance on which are superposed the dark halos, we must replace in the previous 
equation the factor 2 by the factor 3). 
With the approximation VolU(H)(z)/VolU(z)<<1 we obtain: 

 ρmU(z)=ρ0(z)  (70j) 
We also remark that if we assume that the dark mass of the Universe keeps itself, 1+z being the factor of expansion 
of the Universe between the age of the Universe corresponding to the redshift z and the present age of the 
Universe:   

 ρmU(z)=ρmU(0)(1+z)3  (70k)  
Therefore, according to the equation (70j): 

 ρ0(z)=ρ0(0)(1+z)3   (70l) 
We have seen that we could obtain an estimation of ρ0(0), consequently we can obtain a prediction of ρ0(z), that we 
used previously in the study of the evolution of clusters.  
In what precedes we assumed a finite Universe, but it is evident that we can generalize the previous relations to the 
case of an infinite Universe.  
2.10 Formation of the Large Structures in the Universe 
According to the SCM galaxies, stars and more generally the large structures of the Universe observed today have 
appeared because of heterogeneities of the density of the primordial Universe. Nonetheless, if we estimate the 
heterogeneities of baryonic matter in the primordial Universe, they are by far insufficient in order to explain the 
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large structures observed today. Consequently it is admitted in the MSC that those heterogeneities were due to dark 
matter. 
According to our Theory of dark matter, those heterogeneities are explained generalizing our hypothesis 
introduced in the previous section: 
Because of the expansion of the Universe and of the properties of dark substance, in the primordial Universe, if a 
point P does not belong to a concentration of baryonic matter (the density of dark substance is assumed to be 
constant and the density of baryonic matter is supposed also to be constant in nearly all the Universe), then we 
must take in P in the Newtonian equations of gravitation ρSN(P)=0 for the density of dark substance in P and 
ρBN(P)=0 for the density of baryonic matter in P. 
We must take in those equations ρSN(P)=ρ0, ρ0 being the real density of dark substance and ρBN(P)=ρG(P), ρG(P) 
being the real density of baryonic matter in P if P belongs to a concentration of baryonic matter. 
So the previous hypothesis amplifies the gravitational effect of the heterogeneities of baryonic matter and could be 
the origin of the large structures of the Universe observed today.  
3. New Cosmological Model and Dark Energy 
3.1 Introduction 
In the preceding Part 2. we exposed a theory interpreting the whole of astronomical observations linked to dark 
matter. We have seen in the Section 2.5 that the concept of dark substance filling all the Universe led to propose a 
spherical geometrical form for the Universe. In this Part 3. we are going to propose a new Cosmological model 
based on this spherical form of the Universe also on the physical interpretation of the CMB Rest Frame (CRF). We 
will see that in this new Cosmological model we can define distances that are completely analogous to distances 
used in Cosmology in the Standard Cosmological Model (SCM), (angular distance, luminosity distance, 
commoving distance, light-travel distance) and also a Hubble constant analogous to the Hubble constant defined in 
the SCM. We will see that the new proposed Cosmological model is physically much simpler and much more 
understandable than the SCM. We will propose inside the new Cosmological model 2 possible mathematical 
models of expansion (permitting to obtain the factor of expansion 1+z and the Cosmological redshift z). The 1st 
mathematical model of expansion is based as the model of expansion of The Universe of the SCM on the equations 
of General Relativity. As the SCM it needs the existence of a dark energy, and it predicts the same values as the 
SCM for the Cosmological distances used in Cosmology and the Hubble’s constant. The 2nd mathematical model 
of expansion is much simpler but despite of its simplicity, it predicts values of the Hubble’s constant and of 
Cosmological distances that are in excellent agreement with astronomical observations. Moreover this 2nd 
mathematical model of expansion has the remarkable property of not needing the existence of dark energy, 
contrary to the 1st mathematical model of expansion and to the mathematical model of expansion of the SCM. 
Nonetheless we will see that our Theory of dark matter predicts the existence in all the Universe of a dark energy 
that is the internal energy of the dark substance that we modeled as an ideal gas in this theory. It will appear in this 
Part 3. that the new Cosmological model remains compatible with Special Relativity and General Relativity, 
because according to this new Cosmological model the CMB Rest Frame (CRF)  cannot be detected by usual 
physical experiments in laboratory but only by the observation of the CMB. So we will admit (locally) in this Part 
3. as in Part 2. the validity of Special Relativity and General Relativity even if its is not the only possibility (Delort, 
2000, 2017).  
As in the Part 2., we will see in this Part 3. that our theory of dark matter and of dark energy remains compatible 
with the SCM (Bekenstein, 2004; Seifert, 2007; Angus, Shan, Zhao, & Famaey, 2006), in order to interpret most 
Cosmological phenomena that are not directly linked to dark matter or dark energy, for instance primordial 
elements abundance, apparition of baryonic particles (for the same z as in the SCM), formation and apparition of 
stars and galaxies (for the same z as in the SCM), apparition of the CMB (For the same z as in the SCM), evolution 
of the CMB (in 1/(1+z) as in the SCM, anisotropies of the CMB… 
3.2 Physical Interpretation of the CRF. Local and Universal Cosmological Frames 
We remind that the CMB presents a Doppler effect that is canceled in a frame called for this reason the CMB Rest 
Frame (CRF). But this CRF has none physical interpretation in the SCM. We are going to give in our theory of 
dark matter and dark energy a physical interpretation of this frame, which will permit to define a new model of 
expansion of the Universe that is also based on the geometrical model of the Universe  (spherical), admitted in our 
theory. This new model of expansion of the Universe permits to define Cosmological variables (Cosmological 
time, distances used in Cosmology, Hubble Constant) completely analogous to their definition in the SCM. In 
order to obtain the Cosmological redshift z, which is fundamental in the new model of expansion of the Universe 
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as it was in the SCM, our theory of dark matter and of dark energy  proposes 2 mathematical models of expansion. 
The 1st mathematical model is based on the equations of General Relativity as the SCM. According to this 1st 
mathematical model of expansion, Cosmological variables, and in particular the Cosmological redshift z, are given 
by the same mathematical expressions as in the SCM, but for a flat Universe because according to the new model 
of expansion of the Universe, the Universe is flat. The 2nd mathematical model of expansion of the Universe is 
much simpler. Despite of this its theoretical predictions are in excellent agreement with astronomical observations. 
Concerning the physical interpretation of the CRF: 
-Firstly it is natural that in each point of the Universe (and not only on the earth), we can define a CRF. We then can 
suppose that all CRF have parallel corresponding axis. 
-Secondly we can think that the CRF permits to define very easily the Cosmological time, identified to the age of 
the Universe. The simplest definition of the Cosmological time would be that the time of the CRF (meaning the 
time given by the clocks at rest in the CRF) be precisely the Cosmological time. And we will see that this 
hypothesis is in agreement with  astronomical observations. Indeed this hypothesis implies that the Cosmological 
time is also with a very good approximation the time of our earth. Indeed let us suppose that the Cosmological time 
is the time of the CRF. We then will call the CRF local Cosmological frame, and we will designate it as RLC. Let HS 
be a clock linked to the sun and giving the time of the inertial frame RS linked to the sun, and VS the velocity of RS 
relative to RLC. According to Special Relativity the transformations between RS and RLC are Lorentz 
transformations, and consequently  if TS is a time measured by HS corresponding to a Cosmological time TC of 
RLC, then: TS=TC(1-VS

2/c2)1/2. Consequently if VS<<c, which is the case (VS is the velocity of the sun relative to the 
local CMB rest frame and observation of the CMB gives VS≈ 300km/s) we get TS≈TC. We remark that it is 
completely impossible that locally all the inertial frames (with Lorentz transformations between themselves) give 
the Cosmological time (Age of the Universe) and consequently it was not at all evident that the time of our sun be 
approximately the Cosmological time.    
-Thirdly we know that according to Special Relativity (We remind that we admit it as in the SCM) the velocity of 
a photon relative to the CRF in which it is situated keeps itself, as a vector or as a norm. We will call local velocity 
this velocity c. The problem is the evolution of this local velocity, the photon traveling in the Universe. It is clear 
that the simplest hypothesis   would be that the local velocity of the photon keeps itself the photon traveling in all 
the Universe, and consequently being situated in many different CRF. Here also we will see that this simple 
hypothesis involves theoretical predictions that are in agreement with observation. In particular we will see that it 
permits to justify very simply the effect of the expansion of the Universe on the lengths of wave of photons and on 
the distances between 2 photons following one another. (This effect is also predicted by the SCM).          
So we express the preceding hypothesis in the following Postulate 3: 
Postulate 3: 
a) At each point of the Universe, we can define a CRF. We will assume that all CRF have parallel corresponding 
axis. 
b) The Cosmological time (identified with the age of the Universe) is the time of all the CRF, meaning given by 
clocks at rest in any CRF. 
c) The local velocity of a photon, meaning measured in the CRF in which it is situated, keeps itself, the photon 
traveling in all the Universe.  
Considering its important in Cosmology, according to our theory of dark matter and dark energy, we will also call 
the CRF local Cosmological frame. 
We remind that because of the Postulate 3b), and since we know that the inertial frame RS linked to the sun is 
driven with a velocity vS<<c relative to the local CRF, the time of this frame RS is very close to the time of the 
CRF, that is the Cosmological time, which is an agreement with observation. So the Postulate 3b) justifies that the 
time of RS can be identified to the Cosmological time which was not at all evident. We remark that according to 
astronomical observations, locally (meaning close to the Milky Way) all galaxies have a local velocity (meaning 
relative to the local CRF) very small relative to c. Consequently, according to the Postulate 3b) the time of any star 
of any galaxy close to the Milky Way is very close to the Cosmological time.       
It is natural to assume that the previous property can be generalized to all the Universe, then we obtain that the time 
of any star (and consequently of any planet) of the Universe is approximately the Cosmological time. 
We know need to define completely all the CRF. We have seen previously that according to our theory of dark 
matter the Universe was finite with borders and we will assume that it is spherical, with a centre O. We remind that 
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Figure 4. New Cosmological model 

 
We are going to show using Thales Theorem that the previous relations (72)(73) remain valid, A(t), B(t) being any 
couple of commoving points of the sphere in expansion (defined by relations (71)), not compulsory belonging to 
the same segment [O,P(t)]. 
Let us consider any 2 commoving points (different from O) A(t1) and B(t1) at a Cosmological time t1. We assume 
that A(t) belongs to the segment [O,P(t)], P(t) point belonging to the border of the sphere in expansion, and in the 
same way B(t) belongs to the segment [O,Q(t)]. 
t2 being a Cosmological time strictly superior to t1, according to the  relations (71), O,B(t1) and B(t2) belong to the 
same straight line, and it is also the case for O,A(t1),A(t2). We then consider the triangle (O,A(t2),B(t2)). In this 
triangle, according to the relations (71), 1+z being the factor of expansion of the Universe between t1 and t2: 

 OA(t2)/OA(t1)=OP(t2)/OP(t1)=1+z (74) 
And in the same way: 

 OB(t2)/OB(t1)=1+z (75) 
Therefore: 

 OA(t2)/OA(t1)=OB(t2)/OB(t1)=1+z (76) 
Consequently applying the converse of Thales Theorem to the triangle (O,A(t2),B(t2)) we obtain the same relations 
as the relations (72)(73): 

 A(t2)B(t2)=(1+z)A(t1)B(t1) (77)  
And : 

  [A(t2),B(t2)]//[A(t1),B(t1)]  (78) 
The preceding properties, valid A(t), B(t) being any couple of commoving points, are very remarkable and very 
important in the model of expansion of the Universe proposed by our theory of dark matter and dark energy. 
We remark that if A(t) is a commoving point of a segment [O,P(t)], according to the relations (71), if VP(t) and 
VA(t) are respectively the velocities of P(t) and A(t)  measured in the Universal Cosmological frame RC, we 
obtain, a being a constant: 

 VA(t)=aVP(t)  (79a) 
The previous definition of the commoving points of the sphere in expansion permits us to complete the definition 
of the local Cosmological frames (CRF), in the following Postulate 4: 
Postulate 4: 
 

  
 
 
 
 
 
 
 
 
 
 
      OO 
 
 
 
 
 
 
 
 
 
 
 
 

      

Universal 
Sphere 
RU(t)=Ct 

Universal 
Cosmological 
frame 

CRF 

Dark 
substance 

nothingness 



apr.ccsenet.org Applied Physics Research Vol. 10, No. 5; 2018 

23 

a) The Universe is a sphere in expansion. 
b) The origins of the local Cosmological frames (CRF) are the comoving points of this sphere in expansion. 
Now we need to express the factor of expansion 1+z in our new model of expansion of the Universe. We propose 
are going to propose 2 possible mathematical models of expansion inside our new model of expansion of the 
Universe, permitting to obtain 1+z. Both mathematical models are not equivalent and do not give the same 
expression of 1+z. Nonetheless we will see that both models give theoretical predictions in good agreement with 
astronomical observations. Determining the mathematical model which has the best theoretical predictions should 
be an important element in order to know which is the best model.    
According to the 1st mathematical model of expansion, 1+z is obtained as it is obtained in the SCM, with a flat 
Universe: We apply locally the equations of General Relativity, assuming the same values as in the SCM for the 
densities of dark substance, baryonic matter and dark energy and assuming that those densities and that the 
Universe is flat. And consequently in this 1st mathematical model, the factor of expansion 1+z can be 
mathematically expressed the same way as in the SCM for a flat Universe. We will see that a consequence of this is 
that the 1st mathematical model of expansion predicts distances used in Cosmology and a Hubble constant that 
have the same mathematical expression as their expression in the SCM, for an observer sufficiently far from the 
borders of the Universe.  
Nonetheless, a priori, it is possible that the factor of expansion 1+z be not obtained by the equations of General 
Relativity. It is possible that as the local velocity of light, the  velocity VE(t) of the borders of the Universe 
measured in RC (defined by VE(t)=d(RE(t))/dt, t Cosmological time) be equal to a constant C. There is no reason for 
which C should be equal  to the local velocity of light c. So in our 2nd mathematical model of expansion, we 
assume that the velocity of the borders of the spherical Universe measured in the Universal Cosmological frame RC 
is equal to a constant C. We will see further that it is possible to obtain an inferior limit to this constant C. And we 
will also see that despite of this great simplicity, the theoretical predictions of this 2nd mathematical model are in 
agreement with all astronomical observations. Then if P(t) is a point belonging to the border of the sphere 
OP(t)=Ct. And we have a very simple expression of the factor of expansion 1+z: Between t and t0 (t0>t), the factor 
of expansion 1+z is given by: 

 1+z=(Ct0)/(Ct)=t0/t  (79b) 
We saw that the model of expansion of the Universe proposed by the SCM needed the existence of an enigmatic 
dark energy, and it is also the case for our 1st mathematical model of expansion of the Universe. In the 2nd 
mathematical model of expansion of our theory of dark matter and dark energy, this enigma is solved because this 
2nd mathematical model does not need the existence of a dark energy. And this is an important and attractive 
advantage of this 2nd mathematical model. But nonetheless, we will see further that according to our theory of dark 
matter and dark energy, it exists a dark energy in the Universe.  
In our model of expansion of the Universe we can prove that as in the model of expansion of the SCM, if 2 photons 
move on the same straight line towards the origin O of RC, then between t1 and t2 2 cosmological times (with t2>t1), 
then the distance between the 2 photons and the lengths of wave of the 2 photons are increased by the factor of 
expansion of the Universe between t1 and t2 1+z .This is true for both mathematical models of expansion. We will 
see further that it is possible to replace O by any commoving point O’ of the sphere in expansion. 
Indeed let us consider 2 photons ph1 and ph2. We take the following notations: At the Cosmological time t ph1 is 
situated at the point ph1(t) of RC, and ph2 is situated in the point ph2(t) of RC. Let us suppose that at a given 
Cosmological time t1, ph1(t1) coincides with a commoving point A1(t1) and ph2(t1) with a commoving point A2(t1). 
We also assume that it exists a unitary vector u of RC, such that A1(t1),A2(t1) belong to the same segment [O,P(t1)], 
with (O,P(t)) parallel to u, and that the local velocities of ph1 and ph2 are identical and equal to c=cu. We remind 
that according to the Postulate 3, those local velocities keep themselves.   Let 1+dz the factor of expansion of the 
Universe between t1 and t1+dt. Then we have according to the properties (77) of commoving points: 

 A1(t1+dt)A2(t1+dt)=(1+dz)A1(t1)A2(t1)=(1+dz)ph1(t1)ph2(t1) (79c) 
Moreover, the local velocity of photons being equal to c: 

 A1(t1+dt)ph1(t1+dt)=A2(t1+dt)ph2(t1+dt)=cdt (79d) 
According to properties (relations (77)) of commoving points, and the local velocities of ph1 and ph2 being 
parallel to u, O, A1(t1+dt), ph1(t1+dt),A2(t1+dt),ph2(t1+dt) are aligned on the same straight line as O, A1(t1) and 
A2(t1) (with the direction u) and moreover we assume that they are ranked in this order. Therefore: 

 ph1(t1+dt)ph2(t1+dt)=A1(t1+dt)ph2(t1+dt)-A1(t1+dt)ph1(t1+dt) (79e) 
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 ph1(t1+dt)ph2(t1+dt)=A1(t1+dt)A2(t1+dt)+ A2(t1+dt)ph2(t1+dt)-A1(t1+dt)ph1(t1+dt) 
Consequently according to the equation (79d) : 

 ph1(t1+dt)ph2(t1+dt)=A1(t1+dt)A2(t1+dt)  (79f) 
Therefore, according to the equation (79c) : 

 ph1(t1+dt)ph2(t1+dt)=(1+dz)ph1(t1)ph2(t1)  (80a) 
So between t1 and t1+dt, the distance between ph1(t1) and ph2(t1) is increased by the factor of expansion between t1 
and t1+dt 1+dz. Consequently between t1 and t2 the distance between ph1(t1) and ph2(t2) is increased by the factor 
of expansion of the Universe between t1 and t2 1+z : 

 ph1(t2)ph2(t2)=(1+z)ph1(t1)ph2(t1)  (80b)  
In order to show the previous effect on the lengths of wave of ph1 and ph2, we proceed as previously : We model 
the photon ph1 as a system whose extremities are 2 mobile points a(t) and b(t), the length a(t)b(t) being the length 
of wave of the photon. ph1(t) belongs as previously to a segment [O,P(t)], with (O,P(t) parallel to the unitary vector 
u and ph1(t) driven with a local velocity c=cu. We assume that for any photon ph1(t) a(t) and b(t) are driven with 
the same local velocity c, and that a(t),b(t) belong also to [O,P(t)]. We proceed then with a(t) and b(t) exactly the 
same way we proceeded with ph1(t) and ph2(t). So we obtain in our new model of expansion of the Universe, λ(t) 
being the length of wave of a photon, a relation analogous to (80b):  

 λ(t2)=λ(t1)(1+z) (80c) 
We remind that the relations (80b)(80c) were also valid in the model of expansion of the SCM. It is because of the 
previous relation (80c), valid for any photon according to our theory of dark matter and dark energy as it was in the 
SCM, that we use the notation 1+z in order to represent the factor of expansion in the Universe. We remind that in 
the previous relation (80c), λ(t1) and λ(t2) must be measured in the local Cosmological frame (CMB rest frame) in 
which is situated the photon, that also gives the distances measured in the Universal Cosmological frame RC 
according to the definition of RC.  
We can show more generally using an analogous way that if we only suppose that ph1 and ph2 own the same local 
velocity (ph1(t), ph2(t) not compulsory belonging to the same straight line containing O), then between 2 
Cosmological times t1 and t2 the distance measured in RC between ph1 and ph2 increases by the factor of expansion 
of the Universe between t1 and t2 1+z (as in the equation (80b)), and moreover we have the relation 
(ph1(t2),ph2(t2))//(ph1(t1),ph2(t1)).  
We remark that for any commoving point of the swelling sphere O’(t) we can define a  Cosmological frame RC’ 
whose the origin is O’(t), the time is the Cosmological time (time of RC), the axis are parallel to the corresponding 
axis of RC and defining the same distances between 2 points, at a given Cosmological time t, as the distances 
defined by RC. We will call RC’ secondary Universal Cosmological frame. 
Then if A(t) is any commoving point of the swelling sphere defined previously, t1 and t2 being 2 Cosmological 
times, according to the properties of commoving points (72)(73), if 1+z is the factor of expansion of the Universe 
between t1 and t2: 

 O’(t2)A(t2)=(1+z)O’(t1)A(t1) 
 (O’(t2),A(t2))//(O’(t1),A(t1)) (81) 
And consequently (O’(t1),A(t1)) et (O’(t2),A(t2) ) are in the same direction u. of RC’. 
Consequently the relations (71)(72)(73) remain valid, replacing RC by RC’and O by O’. P(t) is still defined as a 
point belonging to the borders of the sphere in expansion, but we have no more OP(t)=RE(t), RE(t) radius of the 
sphere in expansion at a Cosmological time t. 
Therefore it should have been possible to define commoving points in RC’ the same way we defined them in RC. 
Consequently the expressions of the distances used in Cosmology and of the Hubble constant obtained in RC are 
also valid in RC’. 
We will see that generally it is not possible to observe all the Universe from any commoving point O’( Which was 
also the case in the SCM: According to SCM it is not possible to observe all the Universe from our planet), but if 
O’ is sufficiently far from the borders of the Universe, then the Universe observed from O’ is approximately 
identical to the Universe observed from O.  
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The spherical form of the Universe could be confirmed if some celestial bodies would not own a homogeneous 
distribution in the Universe, but a distribution presenting a spherical symmetry relative to a point O. According to 
our models, O would be then the centre of the spherical Universe. 
3.3 Hubble’s Law-Distances Used in Cosmology 
We keep the notations of the previous section, RC is the Universal Cosmological frame, O is the origin of RC 
centre of the Universe. (We remind that we can generalize what follows replacing O by any commoving point O’ 
(sufficiently far from the borders of the Universe, and RC by a secondary Universal Cosmological frame RC’, with 
O’ as origin).  Let us suppose that a photon is emitted from a star S at a point Q(tE) of RC (Q(t) being commoving 
point of the sphere in expansion) at a Cosmological time tE towards O. We assume that the photon reaches O at the 
present Cosmological time t0. We assume that between tE and t0 the factor of expansion of the Universe is 1+z0. 
Between t and t+dt, we know that the photon covers the local distance cdt. Consequently between tE and t0 the sum 
of the local distances covered by the photon will be : 

 DT=c(t0-tE)  (82) 
We will call this distance, which is completely identical to the light- travel distance in the SCM, by the same name. 
We can also call it time-back distance because it permits to obtain the Cosmological time between the emission of 
the photon at the point Q(tE) and the reception of the photon in O, at the Cosmological time t0. 
According to the 1st mathematical model of expansion of the Universe, the theoretical prediction of the distance 
DT, given by the equation (82), as a function of Cosmological variables z0, t0…, is identical to the theoretical 
prediction of the SCM, because the equations giving DT are identical in those both models (equations of the 
General Relativity). 
But in the 2nd mathematical model of expansion of the Universe, we obtain very easily the Hubble’s Constant using 
the light-travel distance defined previously: 
Indeed according to this 2nd mathematical model and the equation (79b), 1+z0 being the factor of expansion of the 
Universe between tE and t0: 

 1+z0=(Ct0)/(CtE)=t0/(t0-DT/c)  (83a) 
When DT/ct0<<1 we obtain z0≈DT/ct0 and consequently the Hubble’s constant is equal to 1/t0. The preceding 
equation (83a) is very simple and can easily be verified. For instance taking t0=15 billion years, for z0=0.5,we 
obtain DT=5 billion light years and for z0=9 we obtain DT=13.5 billion years. These predicted values are in 
agreement with the usual admitted experimental values for the light-travel distance DT. 
We took for the previous examples of obtainment of DT according to our 2nd mathematical model of expansion a 
present Cosmological time (present age of the Universe) equal to 15 billion years corresponding to a Hubble’s 
constant H=1/t0 approximately equal to 65 km/sMpc-1 despite that it is often taken for the Hubble’s constant H a 
value of 72km/sMpc-1 corresponding to a time t0=1/H approximately equal to 13,5 billion years.  
Nonetheless many astrophysicists disagree with a Hubble’s constant approximately equal to 72 km/s Mpc-1 and 
find a Hubble’s constant approximately equal to 65km/sMpc-1, for instance Tammann and Reindl (Tammann & 
Reindl, 2013) in a very recent article (October 2012).  
So it is very remarkable that according to the 2nd mathematical model of expansion of our theory of dark matter and 
dark energy, the value of Hubble’s constant is very easily obtained and is equal to 1/t0, t0 present age of the 
Universe, in agreement with the observation. In the SCM (and in the 1st model), the obtainment of Hubble’s 
constant was much more complicated and moreover it was not exactly equal to 1/t0.   
We still assume that a photon is emitted by a star S at a commoving point Q(tE), tE age of the Universe when the 
photon is emitted, and reaches the origin O of the Universal Cosmological frame RC at the present age of the 
Universe t0. We have seen in section 3.2 that we could assume that the local velocity of S is small relative to c, the 
same way local velocities of stars close to our Milky Way (measured in the local CMB Rest frame) are small 
relative to c. Consequently if the photon emitted by S at a Cosmological time tE owns the length of wave λ0 
measured in the inertial frame linked to S, if it reaches at time t0 a planet T very close to O, with a local velocity 
very small relative to c, then if λT(t0) is the length of wave of the photon measured in the inertial frame linked to the 
planet T (at t0), according to the equation (80c), 1+z0 being the factor of expansion of the Universe between tE and 
t0: 

  λT(t0)≈(1+z0)λ0 (83b) 
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We then can define in our model of spherical Universe in expansion other kinds of distances used in Cosmology in 
a completely analogous way to their definition in the SCM: 
We have seen (Equation (82)) that we can express the light-travel distance as: 

 
0t

T
tE

D cdt=      (84) 

The local distance covered by the photon between t and t+dt is, according to the Postulate 3 equal to cdt. This local 
distance, considered  as a distance between 2 commoving points of the sphere in expansion, is increased by the 
factor of expansion of the Universe 1+z=t0/t between t and t0 (See equation (79b)).  
In complete analogy with the SCM, we will call commoving distance between O and S the distance between Q(t0) 
and O(t0) measured in the Universal Cosmological frame RC, which is the sum of all the local distances cdt covered 
by the photon, increased by the factor 1+z. Let DC be this distance:  
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From this expression we define the luminosity-distance DL between O and S (at the Cosmological time t0) and the 
angular-distance DA between O and S in complete analogy with their definition in the SCM: 

 DL=(1+z0)DC (86a) 
 DA=DC/(1+z0) (86b) 
The distance DA appears to be the distance measured in RC between Q(tE) and O. In complete analogy with the 
SCM it permits to obtain some angles with a summit O in RC. 
The distance DL, in complete analogy with its definition in the SCM, appears to be obtained measuring the 
luminous flow of a supernova taking into account the effect of the expansion of the Universe on the lengths of 
wave of the photons and on the distances between 2 photons (moving on the same axis). We saw in the section 3.2 
(Equations (80b)(80c)) that this effect, predicted by the SCM, was also true in the model of expansion of the 
Universe proposed by our theory of dark matter and of dark energy. 
The mathematical expressions of the different kinds of distances used in Cosmology (85)(86a)(86b) are in 
agreement with their mathematical expression in the SCM, in which the commoving distance DC is usually 
expressed as a function of the variable z, for a flat Universe. 
In the 1st mathematical model of expansion, since 1+z has the same mathematical expression as in the SCM the 
mathematical expression of those distances used in Cosmology as a function of z0 is identical to their mathematical 
expression in the SCM. Consequently we also obtain an identical Hubble’s constant. 
In the 2nd model, the expressions of distances used in Cosmology are much simpler. Using 1+z=t0/t we obtain 
(Equation (79b) and (85)): 
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So we obtain finally the mathematical expression of the commoving distance, using 1+z0=t0/tE: 

 DC=ct0Log(t0/tE)=ct0Log(1+z0)    (88a) 
Here also this simple expression is in good agreement with the usual admitted experimental values for the 
commoving distance. We deduce very easily from this expression the expression of the luminosity distance and of 
the angular distance (86a)(86b). We remark that in this 2nd model, according with the previous equations we have 
as in the SCM for z0<<1: 

  DT≈DC≈DA≈DL≈ct0z0 (88b) 
We know that according to the 2nd mathematical model, the velocity measured in RC of any commoving point Q(t) 
is constant. (According to the equation (79a) with VP(t)=C according to the definition of the 2nd mathematical 
model of expansion of the Universe.) Let VQ be this velocity. Then the distance in RC between O and Q(t0), that we 
called also the commoving distance DC is also equal to VQt0. Therefore, according to the equation (88a): 

 VQ=cLog(1+z0) (89) 
We can interpret in our new model of expansion of the Universe the observation of the explosion of a supernova 
the same way as in the SCM, taking into account the effect of the expansion of the Universe on the lengths of wave 
of photons and on the distances between photons moving on the same axis (Equations (80b)(80c)). So our new 
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model of expansion of the Universe can interpret the astronomical observations concerning the explosion of a 
supernova (Perlmutter et al., 1998) the same was as the model of expansion of the SCM.   
3.4 Cosmological Limits of the Observable Universe. 
In our model of finite Universe in expansion we cannot, as it was also the case in the SCM, observe the Universe 
(through the observation of galaxies) before a given time tOU. This implies that observing the Universe from a 
commoving point O’(t0) (t0 present Cosmological time) sufficiently far from the borders of the Universe, the 
observable Universe is isotropic and also that in many cases, the borders of the Universe cannot be observed from 
O’(t0). In this section we are going to see how we can obtain this time tOU according to our model of finite Universe 
in expansion, and more precisely according to the 2nd mathematical model of expansion of the Universe, that is 
much simpler than the mathematical model of the SCM. We must proceed the same way, just modifying 
mathematical expressions, in order to obtain tOU according to the 1st mathematical model of expansion of our 
theory of dark matter and dark energy. 
We keep in our theory the hypothesis admitted in the SCM of the existence of a dark age in the Universe during 
which light cannot propagate in the Universe. Let tD be the end of this dark age. It is evident that tOU must be 
superior to tD. Moreover, galaxies cannot be observed before the Cosmological time tG, that is the time of the 
apparitions of the first galaxies. It exist another limit according to our model of spherical Universe in expansion. 
This is very clear in our 2nd model: 
According to the equation (89), VQ being compulsory inferior to C, we have: 

 C≥cLog(1+z0) (90) 
Consequently, with the notations of the previous section: 

 t0/tE=1+z0=≤exp(C/c) (91) 
Which implies that the Universe cannot be observed in O(t0) (We remind that t0 is the present age of the Universe) 
before the time tI defined by: 

 tI=t0exp(-C/c) (92) 
So according to our theory of dark matter and of dark energy, tOU, minimal Cosmological time for which the 
Universe can be observed is the is the greatest time between tI, tG and tD. Moreover if tOU>tI, we cannot observe the 
borders of the Universe from O.  
We remark that the equation (90) permits to give an inferior limit to the constant C of the 2nd model: The fact that 
we have observed some redshift z equal to 10 implies that C>2,3c. If we take C=10c, we obtain tI of the order of 
1million years. 
We must use analogous methods if our galaxy is situated not in O but in another commoving point O’(t). Then only 
tI is modified, depending of the distance between O’(t0) and the borders of the spherical Universe. 
3.5 The Cosmic Microwave Background 
As in the SCM, we admit the apparition of a CMB at a Cosmological time very close to the Big-Bang (We admit as 
in the SCM that the Big Bang occurs at a Cosmological time equal to 0). Proceeding exactly as in the SCM, taking 
into account the effect of the expansion of the Universe on the lengths of wave of photons and on photons moving 
on the same axis (effect obtained in section 3.2 (Equations (80b)(80c)) , we obtain in our theory of dark matter and 
dark energy that if the CMB appears at a Cosmological time tiCMB corresponding to a temperature TiCMB, then at a 
Cosmological time t superior to tiCMB, if the factor of expansion between tiCMB and t is 1+z, then the CMB at a 
Cosmological time t corresponds to a temperature TCMB(t)=TiCMB/(1+z). (This is obtained exactly the same way as 
in SCM, because we have in both Cosmological models that with the same notations the density of photons is 
divided by (1+z)3 (Because the radius of the Universe RE(t) increases by a factor 1+z) and the lengths of wave of 
photons are increased by a factor (1+z)(Equation (80c)). Therefore, our new model of expansion of the Universe is 
in agreement with the observation of the CMB corresponding to a great redshift z0 (Bekenstein, 2004). 
If we admit that at the apparition of the CMB (z≈1500), the temperature of the CMB was equal to the temperature 
of the dark substance filling the Universe, then we obtain the isotropy of the CMB observed today, without needing 
to introduce the phenomenon of inflation, because we admitted that the dark substance was homogeneous in 
temperature.  
But now we have given a very complete physical interpretation of the CMB Rest Frame that did not exist in the 
SCM, permitting to define completely the CMB rest frame (Postulate 4) at any point of the Universe, and giving 
also fundamental physical properties of the CMB Rest Frame (Postulate 3. As we have seen in our 
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1.INTRODUCTION, our theory of dark matter and dark energy remains compatible with the SCM in order to 
interpret the anisotropies of the CMB . 
It is important to know what happens to a photon reaching the borders of the spherical Universe. It could be 
absorbed but it is not the only possible hypothesis. The simplest hypothesis would be that the photon is reflected, 
taking exactly as new local velocity after reflection the opposite of its local velocity before reflection (as a vector). 
With this last hypothesis, we could expect to observe the images of galaxies reflected on the borders of the 
Universe, but we have several explanations that this effect is not observed. Indeed with the notations of the section 
2.4, if tG>tI or tI<tD then an observer situated in O centre of the Universe cannot observe at the present time t0 
images of galaxies reflected on the borders of the Universe. Indeed in the 1st case, images of galaxies reflected on 
the borders of the Universe reach O after t0, and in the 2nd case the reflected photons are absorbed during the dark 
age.     
3.6 Dipole Contribution of the CMB 
We know that according to the SCM we have the following fluctuations of temperature of the CMB (Raine & 
Thomas, 2001):  

 1( ) (2 1)
4 l

l

T l l C
T π

Δ = +  (93) 

We will keep this expression in our theory of dark matter and dark energy. But according to the preceding theory, 
l=1 is the dipole contribution, corresponding as in the SCM to the motion of the earth relative to the CRF (CMB 
Rest Frame). So this dipole contribution is completely interpreted by our theory of dark matter and dark energy, 
which was not the case in the SCM, in which the CMB rest frame has non physical interpretation.  
3.7 Link between the CMB and the Temperature of the Intergalactic Dark Substance 
We have seen that according to the new Cosmological model, the Universe was a sphere filled with dark substance, 
surrounded by a medium called “nothingness” (See Section 2.5). In analogy with the spherical concentrations of 
dark substance defined in the Part 2., we could assume that it exist a convective transfer between the intergalactic 
dark substance and the nothingness. The convective flow F would then be given by the expression F=hnT0(t), T0(t) 
being the temperature of the intergalactic dark substance at a Cosmological time t. Generalizing the analogy with 
the case of spherical concentrations of dark substance, we obtain the equation of thermal equilibrium with K3 
constant (K3 given by the Equation (14)) , MB baryonic mass of the Universe, RE(t) radius of the Universe at a 
Cosmological time t:  

 K3MB=4πRE(t)2(hnT0(t)) (94a) 
Nonetheless, in order to obtain the previous equation, we assumed the existence of a convective thermal transfer 
between the Universal sphere and the nothingness (And it is possible that this transfer be nil), and moreover we 
neglected the other energetic factors acting on the temperature of the intergalactic dark substance (Which could be 
a non valid approximation. We will study in the following section all those energetic factors). 
We remark that if we had (in analogy with our hypothesis in the obtainment of the baryonic law of Tully-Fisher) a 
constant C2 such that hn=C2ρ(t), then we would obtain according to the equation (94a) that the temperature T0(t) 
would increase with t. This would be impossible with the 1st model of thermal transfer exposed in the Section 2.3, 
but would be possible with the 2nd model of thermal transfer exposed in the Section 2.7. But if we assume that hn is 
constant, then we obtain according to the equation (94a) that T0(t) evolves in 1/(1+z)2, 1+z being the factor of 
expansion of the Universe. In our theory of dark matter and dark energy, we admit as in the SCM that the 
apparition of the CMB in the Universe corresponds to a redshift z approximately equal to 1500. If we assume in 
our new Cosmological model that for this value of z, the temperature of the intergalactic dark substance was equal 
to the temperature of the CMB, we obtain that presently (with an age of the Universe of 15 billion years), the 
temperature of the intergalactic dark substance is 1500 times lower than the temperature of the CMB, which is an 
acceptable value, justifying our approximation in Section 2.3 expressing that the temperature of the intergalactic 
dark substance can be neglected in comparison with the temperature of spherical concentrations of dark substance 
corresponding to galaxies with flat rotation curve. 
Moreover the hypothesis of the initial temperature of the CMB and the temperature of the intergalactic dark 
substance implies, because we assumed that the latter was homogeneous in all the Universe, that the initial 
temperature of the CMB was also homogeneous in all the Universe. And so the previous hypothesis justifies the 
isotropy of the CMB relative to the CRF at the present age of the Universe (and at any age), without needing to 
introduce the phenomenon of inflation, as it was the case in the SCM.   
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3.8 Dark Energy in the Universe 
We saw in the first part of our theory (2.THEORY OF DARK MATTER) that according to this theory, the 
Universe was filled with a dark substance that could be modeled as an ideal gas (Section 2.1). So it is natural to 
assume that as an ideal gas this dark substance owns an internal energy, that can be identified with a dark energy, 
existing in all the Universe. 
We remind the equation (94a), with MB baryonic mass of the Universe, RU(t) the radius of the Universe at a 
Cosmological time t, T0(t) temperature of the intergalactic dark substance at the Cosmological time t,  K3 being a 
constant defined by the equation (14): 

 K3MB=4πRU(t)2(hnT0(t))   (94b) 
As we remarked in the previous section, taking hn constant brings to obtain a temperature T0(t) evolving in 
1/(1+z)2. 
In order to obtain T0(t) in the previous equation, we did not take into account the evolution of the internal energy of 
the dark substance nor the internal energy lost because of the dilatation of the volume of the intergalactic dark 
substance, modeled as an ideal gas. We will call 1st model of the evolution of the temperature of the intergalactic 
dark substance the preceding model. We remark that in the preceding section 3.7 we assumed its validity only for 
z<1500 and not just after the Big-Bang.. 
Let us consider a 2nd model of the evolution of the temperature of the intergalactic dark substance in which on the 
contrary we neglect the energy transferred from the baryons towards the dark substance (energy that is obviously 
nil before the apparition of baryons) and also the energy lost by the intergalactic dark substance at the borders of 
the Universe through  the convective transfer defined previously in comparison with the variation of the internal 
energy of the intergalactic dark substance and also with the energy lost because of the variation of the volume of 
the intergalactic dark substance (modeled as an ideal gas). We assume that in this 2nd model, the dark substance is 
homogeneous in all the Universe, because we consider its validity only for z>1500, and for this cosmological 
redshift z the galaxies did not exist. Consequently the dark substance obeys to the Boyle-Charles law (Postulate 1) 
and moreover we assume that it also obeys to Joule’s law for ideal gas: It exists a constant KES such that T(t) being 
the temperature of the dark substance, MS being the total mass of the dark substance and U(T(t)) being the total 
internal energy of the dark substance for an age of the Universe t: 

 U(T(t))=KESMST(t) (95) 
Moreover the energy lost that is the work corresponding to a variation of the volume of the dark substance dV 
under the pressure P is equal to: 

 W=-PdV (96) 
We assume in this 2nd model of the evolution of the temperature of the dark substance that the transformation is 
adiabatic reversible. Consequently we can apply the Laplace’s law: It exists a constant γ such that, V being the 
volume of the Universe for a temperature T at an age of the Universe t, and V1 its volume for a temperature T1 at an 
age t1: 

 TVγ-1=T1V1
γ-1 (97) 

Consequently if 1+z is the factor of expansion of the Universe between t1 and t, V(t)=V(t1)(1+z)3 and: 

 T(t)=T(t1)/(1+z)3(γ-1) (98) 
In a 3rd model of evolution of the temperature of the intergalactic dark substance we take into account every kind 
of energy received or lost by the dark substance. Nonetheless, we consider in this model that the dark substance is 
homogeneous in density and temperature in all the Universe, without taking into account the dark halos of galaxies 
with a flat rotation curve, and we have seen that this was justified because the total volume of those dark halos was 
very small relative to the total volume of the Universe. We will take the following notations: 
dW(t,t+dt) is the energy received by the dark substance as a work (negative) due to the variation of volume of the 
dark substance between the ages of the Universe t and t+dt. 
dETF(t,t+dt) is the energy received by the dark substance (negative) due to the thermal transfer between the dark 
substance and the medium that we called “nothingness” between t and t+dt. RU(t) being the radius of the Universe 
at the age of the Universe t, we have seen (equation (94b)): 

 dETF(t,t+dt)=(-hnT(t))(4πRU(t)2)dt (99) 
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dETB(t,t+dt) is the energy received by the dark substance (positive) received from the baryons , (Equation (14) and 
Equation (94b)) between t and t+dt. MB(t) being the mass of the baryons at the age t of the Universe we have: 

 dETB(t,t+dt)=K3MB(t)dt (100) 
Then the equation of equilibrium of the energy received and lost by the intergalactic dark substance between t and 
t+dt is: 

 dU(t,t+dt)=dW(t,t+dt) + dETF(t,t+dt) + dETB(t,t+dt) (101)  
We remind that according to the Boyle-Charles law, MS being the total mass of the dark substance (assumed to be 
constant):  

 P(t)V(t)=k0MST(t) (102) 
And, RU(t) being the radius of the Universe, V(t)=(4/3)πRU(t)3 and d(RU(t))=dzRU(t) (1+dz being the factor of 
expansion of the Universe between t and t+dt), dV(t)=4πRU(t)2dRU(t)=4πRU(t)3dz and consequently 
dV(t)/V(t)=3dz. So we have: 

 dW(t,t+dt)=-PdV(t)=-k0MST(t)(dV(t)/V(t))   (103a) 
 dW(t,t+dt)=-3k0MST(t)dz  (103b) 
So we obtain the following differential equation in T(t), because dz and RU(t) can be expressed as a function of t: 

 d(KESMST(t))=-3k0T(t)dz-hnT(t)(4πRU(t)2)dt+K3MB(t)dt (104a) 
 KESMS(dT(t)/dt)=-3k0MST(t)(dz/dt)-hn(4πRU(t)2)T(t)+K3MB(t) (104b)) 
We can easily prove that with the previous notations, the parameter γ used in Laplace’s equation (97) can be 
expressed by: 

γ=1+k0/KES 
Consequently in analogy with existing gas modeled as ideal gas,  k0 should be of the order of KES. Using the 
previous equation (104b) we can express the conditions of validity of the 1st model of the evolution of the 
temperature of the dark substance, in which we neglected the variation of internal energy and the work received by 
the dark matter due to the variation of its volume. Those conditions are: 

 -KESMS(dT(t)/dt)<< K3MB(t) 
 -KESMS(dT(t)/dt)<< hn(4πRU(t)2)T(t)  
 3k0MST(t)(dz/dt)<< K3MB(t) 
 3k0MST(t)(dz/dt)<< hn(4πRU(t)2)T(t) (106) 
The conditions for which the 2nd model of the evolution of the temperature of dark substance be valid are the 
inverse conditions (replacing “<<” by “>>”). 
3.9 Evolution of the Temperature of Dark Substance- 2nd Model of Expansion 
We are going to consider the application of the preceding section 3.8 in the case of the 2nd mathematical model of 
expansion of the Universe, meaning with RU(t)=Ct, (C constant, see Section 3.2), and consequently between t and 
t+dt, 1+dz=(t+dt)/t, so dz=dt/t. 
We remark that in the 1st model of evolution of the temperature T(t) evolves in 1/(1+z)2, consequently for this 2nd 
model of expansion in 1/t2.  In the 2nd model of the evolution of the temperature, T(t) evolves in 1/(1+z)3(γ-1) with 
γ>1, consequently in this 2nd model of expansion in 1/t3(γ-1) . So in both cases T(t) evolves in 1/tp, with p>0. For 
such a function T(t), we obtain that for t tending towards the infinite both functions T(t) and (dT(t)/dt)/T(t) tend 
towards 0. So for t sufficiently great the relations (106) are valid and the 1st model of evolution of the temperature 
of dark substance is also valid. 
On the contrary for t tending towards 0, the functions (dT(t)/dt)/T(t) and T(t) tend towards the infinite and 
consequently for t sufficiently small (for instance just after the Big-Bang), the inverse of the relations (106) are 
valid and consequently the 2nd model of the evolution of the temperature of dark substance is also valid.   
3.10 Dark Energy of Baryonic Particles 
We have seen in Section 3.8 that according to our theory of dark matter and dark energy it existed in all the 
Universe a dark energy that could be identified with the internal energy of the dark substance. We are going to see 
in this section that it is also possible that baryonic particles also contain a dark energy, meaning an energy that 



apr.ccsenet.org Applied Physics Research Vol. 10, No. 5; 2018 

31 

cannot be detected using classical laboratory experiments. Nonetheless, this hypothesis, even if it is interesting and 
must be considered, is not necessary to our theory. 
We defined in the Postulate 1 the Boyle-Charles’law for an element of dark substance with a pressure P, a volume 
V, a temperature T and a mass m, k0 being a constant: 

  PV=k0mT (107) 
Using the previous law and the Newton’s Universal law of gravitation, we obtained the equation (10), valid for all 
galaxies with a flat rotation curve. For instance for the Milky Way, TMW being the temperature of the dark halo of 
the Milky Way and vMW being the orbital velocity of stars in Milky Way, we have the equation: 

 vMW
2≈2k0TMW (108) 

Consequently taking vMW≈2. 105m/s we obtain k0TMW≈2. 1010 U.S.I .  
Let us compare the equation (108) with the analogous equation valid for hydrogen modeled as an ideal gas. We 
know that it exists a constant  kH such that for a hydrogen element with a mass mH, a volume V, at a temperature T 
and a pressure P:   

 PV=kHmHT (109) 
We know that for a mole of hydrogen, for T=TK=273°K, V=20. 10-3, P=105 Pa, mH=10-3 kg, we have: 

 kHTK≈PV/mH=105×20. 10-3×103= 2. 106 U.S.I (110) 
If we assume that dark substance and hydrogen obeys to Joule’s law, we therefore obtain that the internal energy of 
a kg of hydrogen at the temperature TK is of the order of kHTK meaning 2. 106 Joules despite that the internal energy 
of a kg of dark substance belonging to the halo of the Milky Way is of the order of k0TMW meaning 2. 1010 Joules, 
and therefore the latter energy is by far superior to the former (We use the equation (105), assuming that as for all 
existing gas modeled as ideal gas, k0/KES is of the order of the unity). Considering this important difference of 
energy, we must consider a 2nd possible model of energetic transfer from baryons towards the dark substance, 
permitting a transmitted power much greater than a power corresponding to a diminution quasi imperceptible of 
the temperature of the baryonic matter. In this 2nd model of energetic transfer, the transferred energy is dark 
energy. In this 2nd model, baryonic particles contain a very important quantity of dark energy, but this dark energy 
must not be taken into account in the mass appearing in the classical equations E=mc2 or Ep=mU. Consequently we 
cannot detect this dark energy using classical laboratory experiments. According to our theory of dark matter and 
dark energy, in order that the results of section 2.3 remain valid (permitting to obtain the baryonic Tully-Fisher’s 
law), the power of dark energy transmitted from baryons towards dark substance has the same expression as in the 
1st model of energetic transfer (thermal power):         

 Pr=K3SM  (111) 
With M the mass of the considered baryonic particles and K3S constant. p0S being the power of dark energy lost by 
nucleus and m0 being the mass of a nucleus we obtain K3S=p0S/m0.  
The hypothesis of a dark energy for baryonic particles is very attractive because not only it permits the 
transmission of an energy from baryonic particles to dark substance that  could be much greater than thermal 
energy, but also because it justifies that this transmitted energy is independent of the temperature of those baryons 
and the temperature of this dark substance. 
Nonetheless, the hypothesis of a dark energy for baryonic particles is not a hypothesis that is necessary to our 
theory of dark matter. Indeed according to our model of evolution of the temperature of dark matter (Section 2.8), 
we can expect that the initial temperature of the concentrations of dark substance be very high, equal to the 
temperature of the intergalactic dark substance, and then decreases till it reaches its final temperature. 
Consequently the variation of the internal energy of a spherical concentration of dark substance as defined in this 
article is very slow, and is therefore compatible with a very low thermal power emitted by baryonic particles 
towards the dark substance. 
3.11 Determination of the Centre of the Universe. 
An important issue is to know if it is possible to determine the centre of the Universe meaning the centre O of the 
Universal sphere in expansion. If Universe was homogeneous (in the Cosmological meaning of “homogeneous”), 
this seems to be impossible, unless with development of the Theory of dark matter exposed in this article. But it is 
possible that some celestial objects be distributed in the Universe not in a homogeneous way but with a spherical 
symmetry relative to a point O that should compulsory be the centre of the Universe. So if we found such celestial 
objects, then we would determine where is the centre of the Universe. 
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4. Conclusion  
In the Theory of dark matter exposed in this article, we have modeled dark matter as a dark substance whose the 
physical properties, and in particular the fact that it can be modeled as an ideal gas, permitted to interpret all the 
astronomical observations linked  to dark matter. For instance, those physical properties permitted us to justify 
theoretically the flat rotation curve of galaxies and the baryonic Tully-Fisher’s law. In order to obtain this, we 
interpreted galaxies with flat rotation curve as spherical concentrations of dark substance in gravitational 
equilibrium. We have also seen that our concept of dark substance led naturally to propose a new geometrical form 
of the Universe, flat, finite and spherical. 
We have studied according to our theory of dark matter the effects of the displacement of a concentration of dark 
substance on its mass and its velocity, and we have seen that those effects were nil. We saw that this theory 
permitted to define, in agreement with astronomical observations 2 kinds of radius for galaxies: The baryonic 
radius and the dark radius. We then exposed according to this theory the different models of distribution of dark 
matter in galaxies. Then we have seen that this theory predicted important relations between the masses of clusters 
and the velocities of galaxies in those clusters, and also relations between the mean densities of some clusters 
corresponding to the same Cosmological redshift. Finally we saw that our theory of dark matter permitted to give 
an estimation of the dark radius of galaxies, and we gave this estimation for the Milky Way, and also the mean 
density of the Universe and the density of the intergalactic dark substance for any Cosmological redshift z. 
We have seen that the new Theory of dark matter was compatible with the MSC. Moreover we have modeled the 
dark substance as an ideal gas. It is possible that the dark energy necessary in the MSC be the internal energy of the 
dark substance that is modeled as an ideal gas and consequently owns an internal energy. 
In the 2nd Part of our article (3.DARK ENERGY IN THE UNIVERSE), we have proposed a new Cosmological 
model based on the geometrical form of the Universe obtained in the 1st Part (spherical), and also on the Physical 
Interpretation of the CMB Rest Frame (CRF) that we also called the local Cosmological frame. This new 
Cosmological model permitted to us to give a simple interpretation of the Cosmological time, in agreement with all 
astronomical observations. This new Cosmological model also led us to define a new and fundamental frame, 
called Universal Cosmological frame. Then we defined inside the new Cosmological model a fist mathematical 
model of expansion of the Universe ,based as the SCM on General Relativity with most theoretical predictions 
identical to the predictions of the SCM. We also have seen that a 2nd mathematical model of expansion, much 
simpler than the 1st one, led despite its great simplicity to theoretical predictions in agreement with astronomical 
observations, for instance the theoretical predictions of luminosity distance, angular distance, light-travel distance, 
commoving distance and Hubble’s constant. Moreover this 2nd mathematical model of expansion of the Universe 
did not need a dark energy, contrary to the SCM and to the first mathematical model of expansion of the Universe, 
and consequently brought a solution to the enigma of dark energy. It should be possible to compare the agreement 
with the theoretical predictions and the astronomical observations for the model of expansion of the SCM and for 
the 2nd mathematical model of expansion, even they both have theoretical predictions that are approximately in 
agreement with astronomical observations. For instance we have seen that according to the 2nd mathematical 
model of our theory, the value of the Hubble’s constant was exactly equal to 1/t0, t0 present age of the Universe, 
which was not the case according to the SCM (And according to the 1st mathematical model of expansion whose 
theoretical predictions are identical to those of the SCM). Finally we studied according to our theory of dark matter 
and dark energy the evolution of the temperature of the dark substance from the Big-Bang till the present age of the 
Universe, and we have seen the existence in all the Universe of a dark energy that could be identified with the 
internal energy of our model of dark matter, the dark substance, identified with an ideal gas.   
We remarked that a very attractive element in favor of the geometrical model of the Universe proposed by our 
theory of dark matter and dark energy is that this geometrical model of Universe, finite, spherical and with borders, 
can be easily conceived by the human mind, which was not the case for models of Universe proposed by the SCM 
that were either infinite or finite but without borders.  It is our model of dark substance that permitted to us to 
define easily such a Universe, flat and finite.  
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