Nonlinear Relationship between the Radii of Droplets and the Contact Angle of Wetting


  •  Xiao-Song Wang    
  •  Xiao-Bin Fan    
  •  Aijun Hu    

Abstract

Wetting abilities are important in many industrial applications, for instance, the wetting abilities of electrolytes on electrodes plays a key role in improving the specific energy density of supercapacitors and lithium-ion batteries. For nano-scale wetting phenomena, we should consider the curvature effects of the surface tension and the line tension. However, previous works have not analyzed the influence of the curvature effects of the surface tension. In this manuscript, the nano-scale wetting phenomena of spherical droplets on smooth non-deformable substrates were studied by methods of thermodynamics. The total Helmholtz free energy total and the grand potential of this system are calculated. A generalized Young’s equation for wetting of spherical droplets with large enough radius is derived. It is shown that there exists a nonlinear relationship between the contact angle and the radii of droplets or the line tension.



This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1927-0607
  • ISSN(Online): 1927-0615
  • Started: 2011
  • Frequency: annual

Contact