A Theoretical Characterization of Time Dependent Materials by Using a Hyperlogistic-Type Model

Marc Delphin Monsia, Yelome Judicael Fernando Kpomahou

Abstract


In this work, the classical mechanical Voigt model is modified and extended to finite deformations by using a rational elastic spring force function to describe accurately the nonlinear time-dependent deformation response of some viscoelastic materials. As theoretical results, a hyperlogistic-type function has been found as the deformation versus time relationship. This growth model appeared powerful to reproduce mathematically as shown by numerical works, any S-shaped experimental data. Compared with some previous models, the present one-dimensional formulation gives the advantage to assure or to control via an explicit material parameter, to speak, via the coefficient of inertia, the nonlinearity of the model. The proposed model demonstrated then the importance to consider in the material modeling the inertial coefficient.

Full Text: PDF DOI: 10.5539/mer.v2n1p36

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Mechanical Engineering Research   ISSN 1927-0607 (Print)   ISSN 1927-0615 (Online)

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.

------------------------------------------------------------------------------------------------------------------------------

lockss_logo_2_120 images_120. proquest_logo_120

doaj_logo_new_120