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Abstract  

The stability of two interfaces separating three fluids, where the fluids are assumed to be incompressible, 
inviscid, and of constant density, has been investigated for a system that is acted upon by a general rotation. The 
effect of surface tension at the two interfaces is taken into account. A general dispersion relation for the system is 
obtained analytically by formulating the problem in terms of complex variables. Numerical calculations were 
performed for a hexane-NaCl-CCl4 system to investigate stable case, and special cases that isolate the effect of 
various parameters on the growth rate of the Rayleigh-Taylor instability are discussed. It is found that the two 
cutoff wave numbers for the system with surface tension are unchanged by the addition of a general rotation, and 
that for the system considered, all growth rates are reduced in the presence of a general rotation.  
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1. Introduction  

The Rayleigh-Taylor instability (RTI) (Rayleigh, 1883; Taylor, 1950) refers to the instability of the plane 
interface between two fluids of different density which were superimposed one over the other and were subjected 
to gravity. When the upper fluid has a density greater than the lower fluid, the interface can be unstable to small 
perturbations. The amplification which is well described by linear theory with dependence on the density ratio 
and gravity, where the disturbance depends on the gravitational acceleration g  and the Atwood number 
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 and grows exponentially in time like exp( )nt (  1/ 2
n gkA ), where ρ(1), ρ(2) are the densities of 

the lighter and heavier fluids and k  is the wave number. As the amplification continues and the problem enters 
the nonlinear regime, the fluid mixing can become chaotic, characterized by bubbles of lighter fluid rising up 
into the heavier fluid, and spikes of heavier fluid falling down into the lighter fluid, with regions of high vorticity 
near the spike/bubble interface. The most striking feature of RT turbulence is the formation of a turbulent mixing 
zone with width L (or amplitude) that grows quadratically with time, i.e. L=αAgt2, where α is constant (Sharp, 
1984).    

Over the past years growing interest in the Rayleigh-Taylor instability, because Such a phenomenon is present in 
a wide variety of situations such as in physics (e.g., inertial confinement fusion, for example, in 
inertial-confinement fusion (ICF) (Lindl, 1995) a directed high energy density provided by a set of laser beams, 
is used to strongly compress a small pellet filled with deuterium-tritium in order to initiate nuclear burn. The 
perturbations which are generated in various locations in the pellet may grow with time through RT-type 
instabilities. On the other hand, the interest of RT instability goes beyond the above applications) or in 
astrophysics (e.g., supernovae, Fryxell et al., 1991; supernova remnants Chevalier et al., 1995; Jun et al., 1995) 
SNRs, HII regions (Williams et al., 2001). Indeed, this is a classical problem in fluid dynamics. The appearance 
of such instabilities in previous topics has inspired us to study it and this is the main motivation of this work.  

The role that plays the surface tension on Rayleigh-Taylor instability problem on linear stage has been studied by 
several authors (Bellman, 1954; Chandrasekhar, 1961; Daly, 1976; Mikaelian, 1983). Recently, the effect of 
surface tension and rotation (about the z-Axis) on Rayleigh-Taylor instability of two superposed fluids with 
suspended particles studied by (Sharma et al, 2010). All results show that, the presence of surface tension will 
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bring about stability on the growth rate of unstable configuration, also the surface tension has critical strength to 
suppress the instability completely. 

The effect of rotation with and without other factors in the z-Axis or x-Axis and in x-Axis and z-Axis on interface 
between two superposed fluids studied by several authors (Hide, 1954; Chandrasekhar, 1961; Chakraborty et al., 
1974; Davalos, 1993). Also, the results show that, the presence of rotation will bring about stability on the 
growth rate of unstable configuration, while the rotation has no critical strength to suppress the instability 
completely. 

The effect of a general rotation with and without surface tension or horizontal magnetic field on linear stage for 
two fluids was considered by (Davalos et al., 1989; Davalos, 1996) and in the presence of surface tension 
through porous media was studied by (Hoshoudy, 2011).  

The Rayleigh-Taylor instability problem in multi-layer fluids was considered by (Chakaraborty et al., 1976; 
Mikaelian, 1982; Khater et al., 1984; El-Shehawey et al., 1985; Mohamed et al., 1986; Mikaelian, 1990; 
Obied-Allah, 1991; Parhi et al., 1991; Mohamed et al., 1994; Cherfils et al., 2000; Defne et al., 2000; El-Ansary 
et al., 2002; Hoshoudy, 2007). The effect of general rotation on the Rayleigh-Taylor instability of three fluids 
through porous media under the influence of uniform magnetic field was investigated by Hoshoudy (2011). The 
Rayleigth-Taylor instability of a system three fluids separated by one unstable and one stable interface is 
investigated experimentally by (Jacobs et al., 2005).  

In this paper, we consider the linear Rayleigh-Taylor instability for three incompressible fluids in the presence of 
both the surface tension and the general rotation ( , , )x y z     . The system consists of three fluids of constant 
densities. The goal is to obtain the dispersion relation that determines the growth rate n  as a function of the 
physical parameters of the system considered. It also determines the role of vertical and horizontal components 
of rotation on instability of the system considered.       

2. Formulation of the Problem   

Consider the motion of an incompressible, inviscous fluid in the presence of a general rotation ( , , )x y z     . 
Let U ( , , )1 y1 z11 xu u u

 , p1, ρ1 denote the perturbations in the velocity, pressure p , and density  , respectively. 
The relevant linearized perturbations equations of a fluid flowing are (Davalos et al., 1989; Davalos 1996; 
Hoshoudy, 2011) 
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where g is the acceleration due gravity directed anti-parallel to z-axis.                   

If our system is arranged in horizontal strata, then we suppose that the density is a function of the vertical 
coordinate z only. Then the system of Equations (1)-(3) can be put as  
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Considering the perturbation in the physical quantity takes the form 
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where xk , yk  2 2 2
x y( k k k )   are horizontal wave numbers and n  denotes the rate at which the system 

departs from the equilibrium. 

Making of the expression (9) in Equations (4)-(8) and eliminating some variables, we get the following 
differential equation in z1u     
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x x y yk k      and y x x yk k     . 

3. The Instability for Three Layers  

In this section we consider the effect of a general rotation and surface tension on RTI for three-layers, where the 
3rd top and 1st bottom layers are bounded by a two horizontal parallel panels (two interfaces), where the first 
panel at z h  and the other one at z h (see Figure 1). In other words the two interfaces are horizontal on the 
direction of gravity. Moreover, the density is constant in each region. i. e., we specialize to the case of three 
constant-densities, which could be written in the form: 
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Figure 1. The geometry of the problem 
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For the case of constant-density equation (10) becomes 
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2
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The general solution of Equation (12) is exp( ) exp( )z1 1 2u A q z B q z  . Using the boundary conditions that the 
velocity is zero at large distances above and below the interface. Then in three region the vertical velocity takes 
the from 
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where A1, B1, B2 and C1 are constants  
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The boundary conditions which are to be satisfied at the two interfaces z = ± h are 

(i) At the interfaces between two various fluids we consider that uz1 is continuous at z = ± h. 

(ii) In the presence of surface tension, the jump conditions at the two interfaces z = –h and z = h are, respectively 
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where, T12 and T23 are the surface tension at the lower and upper interfaces, respectively. 

Using Equation (13) in the above boundary conditions and eliminating the constants A1, B1, B2 and C1. The 
dispersion relation is given by equation 
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Setting 0x y   , Equation (16) reduces to Equation (24) of (El-Ansary et al., 2002). If we also set 0z   

we recover Equation (12) of (Mikaelian, 1990). If, in addition, we set 12 23 0T T  , we recover Equation (7) of 

(Mikaelian,1982). 

Inversion symmetry, meaning the dispersion relation is invariant under (2) (1) (3) (2)/    , is valid in the 

absence of surface tension (Mikaelian,1982, 1990). Setting 12 23T T 0   in Equation (16) and dividing it by 
( )2  we see that in the resulting equation ( )2  occurs only in the combination (2) (1) (3) (2)/     and we 

conclude that inversion symmetry is valid in presence of general rotation.  

Looking for the cut-off wave number kc, i. e., the wave number where n vanishes, we note that Equation (16), 
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   (23) 

Equation (22) is the similar to Equation (3) of the work (Davalos, 1996a). 

(2) For the case of long wavelength ( h  ) and FT12=FT23=0, Equation (19) becomes 
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     (24) 

where the growth rate independent on ( )2 .   

(3) From equation (19) N is purely imaginary (i. e. N iI ), then the dispersion relation takes the form  
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Then the stability condition is                                            
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.              (27) 

4. Discussion  

Equation (16) is the dispersion relation of three fluids under the effect of general rotation, where the roots of this 
equation are complex numbers, which mean physically, that we have unstable perturbation.    

We consider the case Ω-=0 for which Equation (16) yields two real solutions denoted by 2n . Only for very short 
wavelengths, h  , do these solutions separately describe the growth of perturbations at each interface, 
independently of the other. For intermediate and long wavelengths each interface evolves under the influence of 
both growth rates and the interfaces are said to be "coupled" (Mikaelian, 1982, 1990). We shall plot the growth 
rates obtained numerically from Equation (16) for different values of thickness, surface tension, and rotation.    
In order to investigate the effect of both the surface tension with the general rotation on the system considered, 
the dispersion relation (16) in the case of Ω-=0 is to be numerically solved. At Ω-=0 we find that kyΩx = kxΩy. If 
we put Ωx=Ωy, we have kx= ky. Thus, in equation (16) we put x2k    or 

y2k . Numerical calculations 

are presented in Figures 2–4. Our numerical example is the Hexane-NaCl solution-carbon tetrachloride system 
which has densities (ρ(1),ρ(2),ρ(3)) = (0.66,1.027,1.593) gcm-3 and the surface tensions are (T12, T23) = (26, 22) 
dyn·cm-1. Also we will consider the acceleration of gravity is g = 980 cm-2, Ωz=Ωx=Ωy 5 or 10 rads-1, kcritical = kc 
is the critical value for instability (at the point kc the growth rate goes to zero) and kcoup is wave number at which 
the growth rate changes its behavior. 

Figures 2(a) and 2(b) present the numerical results (positive roots ( ,n n  )) of equation (16) in the absence of 
surface tension and presence of the general rotation at 0.5h cm . One can see that both vertical and horizontal 
components of rotation have a stabilizing influence on the growth rate unstable configuration for inviscous fluids. 
For n (Figure 2(a)) and for the same values the effect of the vertical component of rotation is greater than the 
effect of horizontal components for short wave number values, while for n  (Figure 2b) the effect of horizontal 
components of rotation is greater than the effect of vertical component for all wave number values considered. 
The effect of z  suppresses the perturbations for _n  only for 10.6k cm  which are unstable otherwise. 
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Figure 2. The effect both vertical and horizontal components of rotation on the (ρ(1),ρ(2),ρ(3)) = (0.66,1.027,1.593) 
gcm-3 system in the absence of surface tension ( 12 23T T 0  ) at 0.5h cm , 0 2k  , we consider 

z 5  and x y 0   , z 0  and x y 5    and z x y 5     (a) for n  (b) for n  

 

Figures 3(a) and 3(b) show our numerical results of the growth rate ( ,n n  ) with respect to the wave number at 
different thickness (h=0.1 and h=0.5 cm) for hexane-NaCl-CCl4 systems under the influence of T12 and T23 with 
and without the vertical and horizontal components of rotation. It clearly shows that behavior of n  (Figure 3a) 
in the presence of or absence of general rotation n  increases with increasing h. Also 13.72ck cm  for all 
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cases. In Figure 3(b) we note that the magnitude of n  decreases with increasing h  below 13.9coupk cm  in 
the presence of surface tension and in the absence of general rotation, while above 13.9coupk cm  the magnitude 
of n  increases with increasing h . The same phenomenon holds in the presence of general rotation but at 

13.5coupk cm and 15.02ck cm  for all cases. 
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Figure 3. The effect both vertical and horizontal components of rotation on the (ρ(1),ρ(2),ρ(3)) = (0.66,1.027,1.593) 
gcm-3 system in the presence of surface tension ( ( , ) ( , ) -1

12 23T T 26 22 dyn cm ) at .h 0 1cm , .h 0 5cm  and 

z x y 5     (a) for n , .0 k 3 71   (b) n , .0 k 5 02   
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Figure 4. shows ,n n   against the wave number at .h 0 5cm  for various values of the vertical and 
horizontal components of rotation ( z x y 5    and z x y 10     ). It is clear that both ,n n   
decrease with , ,z x y   increase. 
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Figure 4. The values of ,n n   at different values of the vertical and horizontal components of rotation 

( z x y 5    and z x y 10    ) for ( ) ( ) ( )( , , ) ( . , . , . )1 2 3 30 66 1 027 1 593 gcm    system in the 
absence of surface tension at .h 0 5cm  and 0 k 2   

                                                          

5. Conclusion   

We have presented the analytical results of the Rayleigh-Taylor instability with general rotation for a system 
consisting of three non-viscous fluids in the presence of surface tension. Numerical calculations for the 
Hexane-NaCl solution-carbon tetrachloride system have been analyzed, where the growth rate is plotted against 
the wave number. Whereas the surface tension has a critical strength to suppress the instability completely, while 
the general rotation has no such strength.  

Finally, the general rotation has no essential influence on the general behavior of the growth rate, but the 
magnitudes of the growth rate in the presence of a general rotation are slightly less than their magnitudes in 
absence of the general rotation. In the presence of surface tension, the value of the critical point still that as in the 
presence and absence of general rotation, while the coup point in the presence of general rotation is less than its 
value with no general rotation. Also, we have noticed that, the influence of general rotation is felt more for small 
wave numbers. The inversion symmetry property is conserved in the presence of general rotation and in the 
absence of surface tension, which is given by (Mikaelian, 1982, 1990).   
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