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Abstract 

In this study the results of optimum design of perforated cylindrical shell dryings drums are considered. These 
drums are used for pressurised drying of wet mass. They are important also in filter technology in macro, micro 
and nanoscales. The goal is formulated as maximisation of customer satisfaction on the most important decision 
variables. These are the fatigue endurance measured by crack propagation life, rate of water removal from mass 
through holes, risk of crack initiation and total cost. For perforated cylinders and plates basic engineering models 
are developed to get loads on the drum and to get equivalent material models to be used cost effectively in FEM. 
The validity of the surrogate models is tested using detailed FEM models. The results give a reasonable trade-off 
between many contradictory requirements. One optimal geometry is obtained and the softer steel is preferable 
due to better fatigue endurance and lower costs. Different surrogate models apply for static and dynamic loading.  

Keywords: perforated cylinders, equivalent models, optimal fuzzy design, drum drying 

1. Introduction 

The use of multi-holed or perforated plates and shells is important in process industry and in heat exchangers, 
drying drums and energy production. Perforated shells are important in the processing industry when wet masses 
need to be dried in a continuous process. The material to be dried may be wood chips or pulp mass, biomass, 
fabric, inorganic granular materials. Various wetness removal methods include gravity, centrifugal forces, 
mechanical pressure, vibration, under pressure, hot air flows. Water removal by mechanical pressure can be more 
cost effective than by evaporation. The shells are subjected to large static and dynamic and contact loads. Their 
manufacturing is costly and produces inevitably some initial cracks at welds and at hole edges.  

The goal has been set to design large scale structures using equivalent material models which give accurate 
enough stress strain results in static and dynamic loading. The equivalent elastic constant can be chosen to give 
the same strain as the original solid material under the same load. This concept is used by (Slot & O‘Donnell, 
1971). Jhung and Jo (2006) have derived equivalent elastic modules and Poisson’s ratio for use in FEM modal 
analysis of perforated circular plates. They determined the natural frequency in air and from it the Poisson’s ratio. 
Now static analysis is used to get the equivalent elastic modulus, wall thickness and from these the actual 
ligament maximum stress. The results found by (Slot et al., 1971) and (Jhung & Jo, 2006) are reliable within 
their ranges of validity. The theory discussed by (Gibson & Ashby, 1997) can be used to derive equivalent 
material properties for cellular structures. The perforated materials are a mixture of metal and holes and thus they 
are a member of a broad class of composites. Now the plate is an orthotropic material. 

For steels the fatigue endurance is important and the models of (Gurney, 1978) are useful to evaluate differences 
in fatigue life between steels of different strengths. Analytical models for plates are discussed by (Szilard, 1975) 
and (Ventsel & Krauthammer, 2001). Now a case study of a drying rotating drum is considered. Wet mass is fed 
inside and compressed between inner drum and the perforated shell. Water flows out through the holes and the 
dried mass is conveyed out. The goal is to obtain optimal dryness with satisfactory fatigue life. The optimum 
design method used by as (Martikka & Pöllänen, 2009) and (Pöllänen & Martikka, 2010) is applied. It is based 
on the results of (Diaz, 1988). The concept and surrogate models accuracy are checked using FEM. 
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2. Basics of a Drying Drum Case Study 

2.1 Geometry of the Case Study Drum 

Basic geometry and loads are shown in Figure 1. 
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Figure 1. Basic model: a) Geometry and loads; b) Side view. Average pressure p=1.7MPa 

 

Dimensions, stress and force loads are shown in Figure 2. 
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Figure 2. Perforated shell structure: a) Dimensions. b) Fracture locations. c) Free body model for the drum shell 

 

2.2 Simple Stress-strain Models for Perforated Plates  

Simple models can be derived using basic mechanics. A plate with regularly spaced circular perforation can be 
approximated by a grid type model, Figure 3. The ligament efficiency  is defined as 

2 1
2 1 2 1 1

k r r P
P r k

P P k k



                                   (1) 
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Figure 3. Material models: a) Basic model; b) Grid model from the plate with rectangular circular holes; c) FBD 
model for a ligament mosaic; d) Grid model with a FBD; e) Surrogate material; f) Two springs model 

 

2.3 Force Equilibrium in Axial Direction of Drum Using Free Body Models 

The FBD model in Figure 3c gives the force balance  

lig,nom 0x ligF hP h k                                (2) 

Here  is the nominal stress acting plate area hP, h is the actual thickness and P is width. The ligament thickness 
hlig is now equated to the plate thickness h since they refer to the same plate 

ligh h                                       (3) 

The surrogate model geometry and material properties can be defined in various ways depending on the chosen 
design goals. Now the thickness and elastic modulus are chosen as variables  

g gh hE E                                     (4) 

They are determined by FBD statics and Hooke’s law. The same force is transmitted by all models  

lig,nom lig

lig,nom g g lig, ,

g g

g g

F A A A

F Ph Ph kh A Ph A Ph A kh

  

  

  

      
                  (5) 

Here g is the stress at the surrogate material. The nominal ligament stress lig,nom is higher than the nominal 
stress  on solid material. It is by Figure 3c and Equation (5) 

lig,nom

1P

k
  


                                    (6) 

The Equation (5) gives the surrogate plate stress g 

g
g

h

h
                                        (7) 
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Using Hooke’s law one obtains one Equation with three unknowns defining the fictive surrogate material and 
plate thickness. Two more Equations are needed. 

g g gE h E h                                      (8) 

The strain is one important variable. One convenient and feasible choice to define the surrogate material g is to 
require that it gives the same strain as the original solid material     

g                                         (9) 

Using this in Equation (9) one obtains an equation for two unknowns. 

g gEh E h                                     (10) 

The surrogate elastic modulus Eg of the perforated shell can be obtained by using a model for two rod springs in 
series as in Figure 3f 
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From this the surrogate spring constant is obtained and from it the surrogate elastic modulus 
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                     (12) 

Now the definition of ligament efficiency is used to relate the thickness and elastic modulus ratios 

g g g
g

1
, ,gEh

h h E E
h E

   


                                (13) 

This can be used in the FEM models of the perforated cylinder shell. From Equation (6) and Equation (13) the 
nominal ligament stress lig,nom can be obtained using the surrogate stress concept  

lig,nom 2

1 1 1 1
g g   

   
                                  (14) 

The maximum ligament stress lig,max is now obtained from the surrogate stress 

   lig,max t lig,nom t 2

1
gK K    


                              (15) 

Here Kt() is the stress concentration factor depending to the ligament efficiency. A reasonable model for it may 
be obtained by data fitting to Peterson’s model for a row of circular holes under tension as by (Pilkey & Pilkey, 
2008). In Figure 4a the model is shown. The Neuber stress concentration is shown in Figure 4b. It is based on 
models by (Martikka and Pöllänen, 2010). The steel has yield stress Rp =250 and UTS Rm=360 MPa. Plastic 
yielding decreases the stress concentration factor to close to unity.   
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Thus the simple model is obtained 



www.ccsenet.org/mer Mechanical Engineering Research Vol. 2, No. 2; 2012 

35 
 

   p1 2K                                    (16b) 
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Figure 4. Stress concentration models: a) Elastic stress concentration for a uniaxially stressed infinite plate with 
an infinite row of circular holes; Stress is perpendicular to the axis of the holes; b) Effect of plastic yielding and 

work hardening on the stress concentration factor of the Neuber type 

 
As a numerical example is shown to illustrate the basic ideas and to check the logic. 

A. Stress Calculation without Using the Surrogate Material Model 

The stress far away from the multi-hole row is   

   
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

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                        (17) 

Stress concentration factor when  = 0.34 is    

 K t,nom
p      1 2 1 2 0 34 138

1
0 65. ..                      (18) 

FEM results with the same models and steel material gave mean stress ate the ligament 



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When the load force is set to 20.144MN then this will become  

 lig,max,FEM t,nom,FEM lig,nom,FEM 1.31 86 2 225K MPa                     (20) 

The ligament nominal and maximum stresses are 



lig,nom   

1 57

0 34
167

.
,MPa                             (21) 

The maximum ligament stress is  

   lig,max t lig,nom   K 138 167 230.                          (22) 

This agrees with the FEM result of 225 MPa. 

B. Stress Calculation Using the Surrogate Material Model to Get the Actual Maximum Stress 

The same force F is applied to the surrogate plate by Equation (5). The surrogate thickness is  
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The surrogate material stress is  
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The ligament maximum stress is given by Equation (14) 

  


lig gK.max .
.

.      t
1

138
1

034
194 231

2 2
                     (25) 

This demonstration shows that actual stress can be obtained from the surrogate stress  

2.4 Load Force and Torque Analysis Using Statics 

Torque equilibrium around the axis of the drum in Figure 1a 

T rF R N      r F R N1 10                       (26) 

Here the friction force depends on the coefficient of friction between non-metal wet mass and metal. Generally is 
between 0.3...0.35. Now a realistic value is about  = 0.32. Using this normal force can be calculated as 

F MN r R1 03 106 0835  . , . , .                            (27) 

N
rF

R

MN
MN 




1

1

106 0 3

0 32 0 835
12


. .

. .
.                            (28) 

The angles between forces are shown in Figure 1 

1 2 3 N37.5, 5, 67, 37.5 5 42.5, 110, 270                            (29) 

The friction coefficient and the compressive resultant normal force are   

0.32, 1.2 ,N MN                                  (30) 

Force balance can be written as 

F F N N F F     1 2 3 0                              (31) 

In component form  
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Substitution of known data gives two equations with two unknowns. They can be solved from 

 
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             (33) 

The external reaction forces due to supporting cylinders are 

F MN F2 30 964 0 . ,                               (34) 

2.5 Local Bending Model of a Tube with Mid Stiffener 

Local bending line moment at the shell due to the stiffeners is 

2
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1 1
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                   (35) 
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Where 

   
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2 4
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
 
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               (36) 

2.6 Plate Model with Even Pressure Model  

A plate model with stiff supports can be applied to the locally pressured area. 
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Figure 5. Surrogate models: a) Cylinder with a plate model; b) Plate and beam model 

 
According to (Szilard, 1975) the line bending moment of a plate with stiff supports at all ends is 
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2.7 Simple Beam and Plate Models for Maximum Bending Moment  

Bending moment approximations are  
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Where the model parameter s depends on the chosen approximation model 
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The nominal bending stress depends on the moment   
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2.8 Global Dending of a Cylinder 

The dominant bending forces can be obtained by projecting all forces to F2 direction  

      e e e e e2 1 1 2 2 0    F N N FN N                     (41) 

In matrix form one obtains 

 
 

cos

sin

cos

sin

cos

sin

cos

sin

cos

sin











 

 



2

2
1

1

1

1
2
1
2

2
2

2
0







 







 







 















 







 F N N FN

N

N

N

        (42) 

The result is 
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      e e e e e e2 1 1 2 2 2 0      F N N FN N                     (43) 

The force F2 acting at the roller 2 is 

      F F N NN N2 2 1 1 2 2
1
2

       cos cos cos                    (44) 

Bending moment M (Nm) at mid point and bending stress are  

2
bend,M 2

,
2 4

F l M M
M

W R h



                             (45) 

2.9 Bending Stress to Local Pressure Bulging on the Shell  

The nominal local bending stress at the ligaments is higher due to ligament efficiency factor 
2

bend,p
bend,p lig,nom,p21

6

,
pl

s h


 


                            (46) 

The maximal stress is higher at hole edges due to stress concentration factor Kt,nom. 

 max,p t,nom lig,nom,p K                               (47) 

3. Total Stress 

The total maximum stress due to inner pressure (p) and bending moment (M) constraints is  

max,p t,nom bend,p max,M t,nom bend,M

1 1
,K K   

 
                   (48) 

Total maximum stress is sum of pressure and moment caused stresses 

  max max, max, p M                              (49) 

Constructional method of increasing the fatigue life can be derived from the stress equation. The cracks start at 
the holes edges situated at the maximum moment. The bending moment by the beam model can be used to find 
safe enough locations of the holes, Figure 4c.  

     
 

M x Q x
M l

M l
Xx

l
     1

2
3
4 0 9

0 5 0 5
.

. .M
                      (50) 

Thus the optimal location for the fist row of holes is at 90% of the length l since there the maximum stress has 
decreased sufficiently from the extreme position at x = l. When the moment is halved the stresses also are halved 
and fatigue life is increased by 8 fold. 

    max max.0 9l l X M                                (51) 

4. Design Variables and Goal  

The design goals can advantageously expressed using fuzzy logic. One may proceed in the followings stages. 

4.1 Technical and Economic Design Variables 

Geometrical design variables are thickness and ligament geometry. Material variables are material classes and 
their properties. Functional variables are safety factors.  
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Table 1. Geometrical design variables options. Principle of modelling of the general satisfaction functions. Its 
position and skewness can be varied 

 
index 
  

ligament  
efficiency  
lig(ilig)= 

drum wall  
thickness 
h(ih) (m) 

1 
2 
3 
4 
5 
6 
7 
8 

0.34 
0.35 
0.36 
0.37 
0.38 
0.40 
0.42 
- 

0.030 
0.032 
0.034 
0.036 
0.038 
0.040 
0.041 
0.042 

 

a 
 
  b 
 
  c 
 
  d 
 

  e 

 xk     x2

1

 0   z1               z2 1  
  

P1 s1

P2 

P3

P4 

P5

s2

s3

s4

s5

Small s1 values are desired 
 
 

Indifference to s2 values  
   
Medium s3 values are desired  
 
Narrow range of s4 is desired 
 
Large s5 values are desired 

 

Table 2. Material variables. The Paris law C and m parameters are calculated with Gurney’s (1978) model  

Stress ratio Rs = min/ min = 0, Kth (Nmm3/2)  

 OX steel im = 1 St52 steel im=2 

Yield strength (Pa) 

unit cost (eur/kg) 

density (kg/m3) 

ecological value 

corrosion resistance 

Elastic modules 

Threshold intensity 

critical crack 

initial crack size 

Paris C parameter 

Paris m exponent 

Re(1) = 1E+09 

Cm(1) = 20 

rho(1) = 8000 

eco(1) = .1  

corres(1) = .8 

E(1) = 2.1eE+11 

Kth(1) = 275 

a0kr(1) = 1/127 

a0(1) = .1 ' mm 

C(1) = 4.64E-12 

m(1) = 2.52 

Re(2) = 3.4E+08 

Cm(2) = 5 

rho(2) = 8000 

eco(2) = .7 

corres(2) = .15 

E(2) = 2.1E+11 

Kth(2) = 190-144  Rs 

a0kr(2) = 1/14.6 

a0(2) = .1, mm 

C(2) = 1.67E-14 

m(2) = 3.36 

 

4.2 Fuzzy Goal Formulation Using Decision Variables  

Any vague goal of a concept can be defined easily as  maximisation of  total customer satisfaction on it (A. 
Diaz, 1988).The total event is decision variable s and  intersection of  other decision variables sk 

s s s s s s s     1 2 3 4 5 6                           (52) 

The design goal is maximisation of the total satisfaction of the customer on the product 

         P s P s P s P s P s Q P     1 2 ..... , maxn                      (53) 

Now all goals and constraints are formulated consistently by one flexible fuzzy function. This is illustrated in 
Table 1. 

5. Decision Variables 

5.1 Fatigue Life   

This may defined as fatigue life N in cycles of operations in years. The fatigue life of a perforated plate depends 
on the third power of the ligament efficiency. The equation suggests =1 as optimal.     

 3
opt3

max

max, 1
C

N k 


                                 (54) 

When the structure contains initial flaws then the fatigue life is about the same as time spent in crack growth 
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since initiation time is not needed. According to (Gurney, 1978) the Paris-Erdogan law is applicable,  

 
2

m Ic
f max min

e

1
, ,

Kda
C K K Y a a

dN R
    


 

         
 

             (55) 

Where 

a is crack length, in mm units   

K is stress intensity factor range,  

 is stress, (MPa) 

Y is factor due to geometry close to crack. Now Y = 1.2, at the edge of the holes Y = Ktn 

af is the final crack length, mm 

Re is yield strength and KIc is fracture toughness.  

a0 is initial crack size. It depends on steel strength. For steels with Rm >700, a0 =0.015, mm and with Rm < 700, 
a0 = 0.05mm. Now a0 is estimated conservatively as 0.1mm. 

The factor C is estimated according to (Gurney, 1978). In this model the exponent m depends on the yield 
strength approximately as    

  m R C
A

B
C C C  


600

0 264
e m corrPa

.
' '                      (56) 

Here the parameters are A = 131.510-6, B = 895.4 at the stress ratio, Rs = min/max = 0, Ccorr is corrosion 
enhancement factor. Some rough estimates are: Ccorr =1 with no corrosion and Ccorr = 10 with wet corrosion.  

Ccorr increases when the surface moisture is increased from dry to 80%.  

At very low K values Ccorr is 20 and at high K values it is about 3. 

The fatigue life in number of cycles from initial to final crack length is   

  
1 1
2 2

1m 61 1
1

0 f2

1 1 1
,

101
m m

N
N s

a aC m Y 
 

 
   

    

                    (57) 

High value if s1 is desirable 

1 1min 1 1max 1 2, 0 8, : , 2,0.1s N s s s bias p p                      (58) 

5.2 Wetness Removal Rate   

The wetness removal outflow rate Q (m3/s) depends on pressure difference and ligament efficiency     

   
4

4 42 2
out out2 2

1 , 1
Q Q d

k kP kP w w
A P P

                        (59) 

Here using models by (Dimarogonas & al, 1992) (p 83) for piston damper 

k
p

h
t C p p MPa           


 


128

996 0 802 10 0 8 10 30 0 173 3, . . , , .       (60) 

Large value of wet removal rate is desired 

 4

2 out

2min 2 2max 1 2

1 ,

0 1, : , 0.2,0.2

s w

s s s bias p p

  

    
                 (61) 

5.3 Crack Initiation Risk 

Crack propagation rate may be expressed as  

da

dN
C

K

E

n

 





 I                                  (62) 
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If the ratio in the exponent is small then the crack growth is slow 

   K a E
N

mm
mm  




   

2
45 10

1
2                    (63) 

According to the statistical work hardening the accumulation of internal defects is small if 

  2
3

Re  

     
2

a0kr 2
0kr e 03

1
, , 0.1

C E im
a im R im a mm

 
 

     
                 (64) 

The crack initiation risk may be defined as  

 
   s

a im

a im
a im mm

kr
3

0

0
0 01 , .                              (65) 

Small value of s3 is desirable although high values may be inevitable  

3min 3 3max 1 20.1 20, : , 0.1,3s s s bias p p                      (66) 

5.4 Cost of Material and Manufacturing   

This may defined as total cost of material including manufacturing   

4 4 min 4 4 max 1 2, , : , 0.1,3s K s s s K Cost bias p p                   (67) 

Cost is defined as material cost, unit cost time the mass 

K cm c hP
r

P

r

P
   

















  2
2

1
2 2

1,                         (68) 

Or 

       K c hP c hP K            2 2 21 1 2 2max                (69) 

6. Optimisation Results 

Fatigue life may be increased by closing the nearest row of holes close to the mid parts since the bending 
moment at 0.9 l hole ligament will decrease to half and the fatigue life increase by 8 fold using the beam model.  

 
Table 3. Results of optimisation. The holes start at distance x=0.9l from the maximal moment. Here im = 1 
denotes the high strength steel and im =2 denotes the medium strength steel 

property Ox im=1 Fe52 im=2 

PG, Total satisfaction 4.710-6 667210-6 

lig = , ligament efficiency 0.34 0.34 

h (m) wall thickness 0.042 0.042 

s1/Ps1,fatigue life/satisfaction 1.05/0.025 2.8/0.18 

s2/Ps2,wetness removal rate/satisfaction 0.19/0.05 0.19/0.05 

s3/Ps3,crack initiation risk/satisfaction 12.7/0.074 1.46/0.96 

s4/Ps4, cost/satisfaction 6.810-5/0.05 1.710-5/0.74 
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One may note the following. Total satisfaction on the drum with low strength steel was higher than with the 
drum with high strength steel. The satisfaction on water removal rate does not depend on the steel strength but 
only on the geometry. The difference in satisfaction is that the high strength steel has a low fatigue life and 
higher crack initiation risk and higher material cost than the low strength steel, 

7. FEM Results 

In FEM modelling (IDEAS) perforated surrogate model used. Wall thickness is the same h = 0.42 and  = 0.34 
and loads are the same as previously.  

7.1 Elastic Modulus and Thickness of Perforated Material 

Elastic modulus and density are needed in dynamical modelling. In static calculations the material properties are 
not needed only loads and geometry. Same total strain and thickness are assumed 

             
k

P

k
k r P k0 34

012
0 0408 012 0 04 0 041

2
1
2

.
.

. , . . .               (70) 

Thus surrogate elastic modulus as function of ligament strength is estimated as  

E E E MP MPag 
 









     


 

 
1

0 34 200000 2 68000 1
2

. ,           (71) 

The surrogate thickness is as function of ligament strength is  

h hg   
1 1

0 34
0 042 01235

 .
. .                             (72) 

7.2 Poisson’s Ratio Estimations 

When perforations are large the material approaches a grid or even a planar cellar orthotropic structure. In 
normal load direction loading it behaves as steel but in transverse directions as a cellular solid plate loaded at 
in-plane loading. Thus the reciprocity relationship may now be applied using the model by (Gibson & Ashby, 
1997)   

   x x g
g

z
z    

E

E

68000

20000
03 01. .                        (73) 

7.3 FEM Analysis of the Drum 

FEM results are shown in Figure 6. For steel models with optimal dimensions the FEM stress concentration 
factor was 1.31 and the analytical rough model gave 1.38. 

  lig,max,FEM t,nom,FEM lig,nom,FEM     K MPa131 86 2 225.              (74) 

The surrogate material was orthotropic. In the normal to surface z direction it was like steel. But in transverse x 
and y direction a honeycomb likes structure. 

 
E MPa G MPa

E MPa G MPa

E MPa G MPa

1

2

3

  
  
  

68000 3091 01

68000 3091 01

200000 76923 0 3

12 12

23 23

13 13

, , .

, , .

, , .





                    (75) 

The surrogate material stress by analytical model is   

  g
g g g g

  



     

F

A

F

h P

MN

m m

hF

h Ph

h

h
MPa

2 0144

0123 012
0 34 57 19 4

.

. .
. .  

The FEM stress was calculated as principal stress. 

 g,FEM 1951. MPa  

The results of the surrogate model are reasonably close to the accurate FEM result. 
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a)                                                                                       b) 
 

 
 
 
c)                                                                  d)                                                                         e)  

F 

r = 0.04m 
  

a = 0.06m 
b =0.06m 

h =
0.042m 

 
Figure 6. FEM results: a) Actual steel model for getting the stress concentration factor; The mean tensile stress at 
the ligament is 86 MPa and the maximum stress is 113MPa at hole edge. Thus the nominal stress concentration 
factor is 1.31. The analytical estimate was 1.38; b) strains in tensile direction, max 0.0182 mm; c) The surrogate 

model showing boundary conditions and load of even load force distribution; Dimension in load direction is 
0.06m, in transverse to load direction 0.06m and height is 0.1235 m; d) Maximum principal stress is 19.51MPa; 

e) Translation in the tensile direction (x) is 0.0172 mm 
 

FEM model of the drum and picture of a typical drying drum machine are shown in Figure 7. 

      

Figure 7. a) FEM model of the drum; b) Picture of a typical drying drum machine 

 
8. Conclusions 
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In design tasks there appear cases when the structure is macrogeometrically complex and large and the material 
microgeometry is also complex, like perforated shells. FEM is an efficient tool to solve such tasks. But a large 
amount of elements is needed and calculation times become too long with many degrees of freedom. One 
solution to speed up calculations is to use super elements. Another way to use FEM effectively is to use 
simplified homogeneous surrogate materials which are geometrically simple and give satisfactorily accurate 
results after a moderate simple post-processing. 

One advantage of these physical simple models is that they can be used both in FEM analysis and also in concept 
innovation in analytical optimisation work. Another advantage is that the models are useful in concept 
optimisation and the stresses at critical locations are accurate enough. One disadvantage is that additional 
post-processing models have to be used to get strains and stresses. The other disadvantage is that the range of 
satisfactory accuracy needs to be considered. The future goal is to apply these methods to design of similar 
equipment. 
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