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Abstract 

Cracking of cylindrical shafts is an important area for research, since the changes observed in their vibration 
characteristics even during large-sized cracking are much smaller than those observed for rectangular beams; 
hence early identification of crack existence becomes essential to prevent sudden failures in rotating shafts. In this 
paper experimental and numerical investigations are carried out to identify the presence of a crack in a cylindrical 
overhanging shaft with a propeller at the free end. In the experimental study, cracks of different depths are located 
at the (un-cracked) maximum bending moment position. Shaft response parameters for lateral (using an 
accelerometer) and torsional vibrations (using shear strain gages fixed at three different locations) are obtained 
using the modal analysis software, LMS Test LabTM. The experimental results are used to validate the numerical 
results obtained using the three-dimensional isoperimetric elements available in the ANSYS FEM program; the 
open crack is embedded in the shaft and the mesh generation is suitably modified to incorporate the stress intensity 
effects present at the crack tip. The results indicate that the use of the rate of change of frequencies, modal 
amplitudes (of displacements, velocities and accelerations) as a function of crack depth ratio will indicate the 
presence of crack in the shaft from a crack depth ratio of 0.2. Also the use of the rate of change of torsional 
frequency will indicate the presence of a crack in the shaft from the initiation of the crack. The approach indicated 
in this paper will provide a sound and robust procedure for a first level of damage assessment by using vibration 
techniques.   

Keywords: experimental investigation, cracked shaft, FEM, modal analysis, ANSYS 

1. Introduction 

The appearance of transverse cracks in overhanging shafts having propellers carries with it a greater risk of 
sudden collapse. Even though the presence of a crack (or cracks) may not lead to sudden failure, it will 
considerably affect its dynamic behavior. In the last four decades, many numerical and experimental studies have 
been carried out to identify the effects of different type of cracks, such as transverse, longitudinal, slant, 
breathing cracks and notches. In these studies the researchers have used different methods to identify crack 
presence in structures, viz., (i) Traditional vibration-based methods using modal testing and numerical analysis; 
(ii) Non-traditional methods based on ultrasonic guided waves, magnetic induction, radiofrequency identification 
tag, acoustic intensity and acoustic Laser-Doppler vibrometry (Sabnavis, Gordon, Kasarda, & Quinn, 2004); and 
(iii) Numerical procedures using FEM in conjunction with modal analysis, wavelet transforms, neural net works, 
genetic algorithms and fuzzy set theory.  

There are two stages of crack development in rotating shafts: crack initiation, and crack propagation. The first is 
caused by mechanical stress raisers, such as sharp keyways, abrupt cross-sectional changes, heavy shrink fits, 
dents and grooves, and/or metallurgical factors, such as fretting and forging flaws. The second stage can 
accelerate the growth rate under certain conditions, viz., (i) operating faults like sustained surging in 
compressors; (ii) negative sequence current or grounding faults in generators and coupled turbines; (iii) the 
presence of residual and thermal stresses in the rotor material; and (iv) environmental conditions such as the 
presence of a corrosive medium. Also, from the physical morphology of a cracked rotor, cracks can be classified 
based on their geometries as follows: (i) transverse cracks that are perpendicular to the shaft axis; (ii) cracks 
parallel to the shaft axis known as longitudinal cracks; (iii) slants cracks that are at an angle to the shaft axis; (iv) 
open and close cracks when the affected part of the material is subjected to tensile stresses and stress 
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reversals(breathing cracks); (v) gaping cracks or notches that always remain open; and (vi) surface cracks and 
subsurface cracks. A number of studies have been carried out on the above crack types (Sabnavis, Gordon, 
Kasarda, & Quinn, 2004). 

2. Literature Review 

Hamidi, Piaud and Massoud (1992) developed two mathematical models (using three-dimensional stress 
intensity factors at the crack region) to determine the bending natural frequencies of a rotor. They used natural 
frequencies, mode shapes and frequency response functions to identify the crack presence. The analytical 
methods were compared with the results of experimental measurements. The following conclusions were made: 
(i) When crack depth was more than 30% of the shaft radius, the rate of change of natural frequencies was very 
high; and (ii) The speed of rotating shaft did not affect the values of natural frequencies; this was probably due to 
the fact that the stiffness of the shafts were not reduced significantly by the rotating speed effects on the shaft.  

Schwarz and Richardson (1999) reviewed some of the important articles related to modal testing during the past 
30 years. They covered three aspects in this paper, frequency response function measurement techniques, sources 
of excitation, and methods for extracting modal parameters directly from a set of FRF measurements (frequency, 
damping, and mode shape). Frequencies, damping and mode shapes were estimated. Also they stated that the 
mode shapes were obtained from peak values of the imaginary part of the FRF when they used displacement and 
acceleration FRFs; also mode shape components were obtained from peak values of the real part of the FRF 
when they used velocity FRF. Zakhezin and Malysheva (2001) used a numerical Finite Element based crack 
detection technique and modal tests on a single span shaft. They included system damping in their model and 
calculated the system’s eigen-values and eigen-vectors up to a frequency of 1,100 Hz. These values were 
calculated for a rotor with and without cracks at varying locations and depths. The method was tested and results 
verified to indicate the good quality of results obtained. 

Sekhar and Srinivas (2003) used shell elements with 4 nodes using the CQUAD4 elements available in 
commercial finite element analysis software NASTRAN and FEMAP to model hollow cracked composite shafts, 
fabricated using stacking sequences of boron-epoxy, carbon-epoxy and graphite-epoxy materials. The finite 
element formulation was based on first order shear deformation theory. They created crack on the shaft by using 
bullion operations. Also spring elements were used to represent the effect of the bearings. They have stated that 
the stacking sequences such as 90/0/90/0 and 90//90/0/0 produced a higher frequency than other sequences of 
stacking. They also found that for all the three materials, the eigen-frequencies decreased with increase in crack 
depth. They also observed that the carbon-epoxy shaft had a higher frequency than the other two materials for 
the same crack. 

Sinouand Lees (2007) analyzed the dynamic response of an on-line rotating shaft to predict the influence of a 
breathing transverse crack.  Also they investigated the development of the orbit of the cracked rotor at half and 
one-third of the first critical speed. They used Harmonic Balance Method to obtain shaft response parameters by 
considering the effects of different crack depths and locations. Li et al. (2008) used FE-based simulation 
(through ANSYS) to model the dynamic characteristics of a faulty multi-span rotor system. This system was 
connected together by axial membrane coupling, considering each span to be elastic and supporting a rigid rotor 
at the free end. They examined in detail coupled bending-torsion vibration of a single-span rotor and the whole 
rotor system; they analyzed four cases for the occurrence of cracks and rubbing faults (crack location was in the 
middle of the span and the crack depths were 0.0D, 0.2D, 0.4D, and 0.6D). They also examined: (i) Nonlinear 
dynamic characteristics, (ii) Responses of the rotor system, (iii) The influence of membrane coupling, and (iv) 
Effect of gearing on the rotor system. They concluded that detailed examination of both the coupling and gear 
response would help one to properly diagnose the cracks occurring in the rotor-system. 

Sudhakar and Sekhar (2010) presented a modified model-based analysis technique and used a modified least 
squares minimization algorithm to reduce the errors in the identified fault parameters. The idea of this method 
was to model the fault as an equivalent load that will be generated on the cracked rotor-bearing system; the 
equivalent loads were calculated using measured vibration responses at all degrees of freedom of the system. The 
difference between this equivalent load and the theoretical model fault load was minimized by least squares 
algorithm. Also they used finite element method to validate theoretical results. By this method, it was found easy 
to identify a crack even when the vibrations were measured with 4 DOF (8, 16, 20, or 24 DOF) systems. They 
found the method to be very sensitive to the mode shapes and location of the crack. 

Downer (2010) used this technique and design of experiments approach to extract the frequencies, mode shapes 
and damping ratio. He also determined the effect of various structural factors on a measured response and related 
the modal frequencies to these structural parameters (defect, size and location). He used two types of beam, viz., 
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a cantilever beam (clamped-free) and a real prototype beam (Electric transmission tower wooden poles). He used 
two types of non-destructive test methods to detect hidden internal defects and the strength of the poles. 
Additionally from experimental work he created regression models of multiple modal frequencies of the beam by 
using the theory of the design of experiments. The author mentioned that once the regression models were 
acquired it can be easily used to detect defects in the poles. Finite element analysis also was carried out to 
validate his experimental work. One of the best results in this research is the capability to predict the maximum 
stress of specimens by using regression models instead of commercial ultrasonic NDT equipment. 

Ganeriwala, Kanakasabai and Richardson (2011) presented experimental results obtained for a wind turbine 
under the influence of different cracks. Modal testing technique was used. Two single wind turbine blades (4 feet 
long and made from fiberglass) were used, one was an un-cracked blade and the second was a cracked blade. On 
the cracked blade there were two cracks, one located along an edge of the blade (5in, 10in, and 20 in deep edge 
crack) and the other on the surface of the blade(1.3in, 2.6in, and 3.9in deep surface crack). Thirteen 
accelerometers and an impact hammer were used to obtain modal frequencies, damping, frequency response 
functions and mode shapes, for both cases; these results were used to predict the presence of the crack. From 
modal testing they found some modes of the blade to be significantly affected by the presence of crack. The 
modal parameters were significantly affected by the longer depth of crack. In this study, the following 
conclusions were made: (i) The modal parameters of modes 3 to 8 showed significant changes due to the 
presence of edge cracks; (ii) Significant changes in the modal parameters of modes 1 and 2 were observed under 
the influence of edge or surface cracks; (iii) Lower frequency modes did not indicate the presence of localized 
blade cracks than higher frequency modes; and (iv) Mode shapes showed significant changes due to the presence 
edge crack than surface crack. 

Elshafey, Marzouk and Haddara (2011) used modal test technique and presented their damage model on the 
basis of detailed experimental investigations. They used a steel beam fixed at one end and hinged at the other to 
identify the occurrence and location of structural damage by using the change in the mode shapes. The vibration 
frequencies and mode shapes as well as FRF function were used. They reported that better results for identifying 
the structural damage were obtained when they used the results of second mode.  

Jian-bin, Hai-feng and Di (2012) investigated the presence of fatigue fracture, in diesel engine crankshafts using 
dynamic monitoring and detection procedures. They used the metal magnetic memory detection methodology 
and monitored on-line the changes in engine crankshaft characteristics. They tested a diesel engine generating an 
acceleration of 295G and a multi-function electromagnetic detector to detect the presence of stress concentration 
areas. They used two detecting points on the crack of the crankshaft and used magnetic memory tester to 
examine the effects of the following parameters: (i) various stress concentration areas were observed and 
recorded; (ii) different engine speeds were used to observe the changes in magnetic memory signals; and (iii) 
they measured the changes that occur in between the two detecting points by considering the change in the 
temperature of crankcase. The authors found no effect in the magnetic memory signal values due to the change 
of engine speed and temperature, when the temperature was below 500◦C; whereas the change of the inertial 
loads had clear affects. 

Saravanan and Sekhar (2012) used experimental and analytical procedures for monitoring the rotor-bearing 
system to examine the presence of a transverse breathing crack; they used the concept of operational deflection 
shape and used kurtosis of vibrating defect’s time history. Also the shape and amplitude of kurtosis curve was 
used to detect crack on the shaft experimentally. Two types of crack on the shaft, a single crack and two cracks 
were used. In experimental studies, the length and diameter of the shaft were 800mm and 16mm respectively. 
The shaft was supported on two ball bearings and the disc (disc mass = 0.656kg) was mounted at the center of 
this shaft. The breathing crack was located at the middle of the shaft and the shaft was divided into 20 elements 
to measure the operational deflection shape. They used rotational laser vibrometer to measure the vibration 
response at different locations on the rotating shaft. The authors found that the changes that occur in the kurtosis 
were significant when the crack was located close to the bearing locations while it was small when the crack 
location was closer to the middle. They reported that the use of kurtosis results were useful for identifying the 
crack during detection and monitoring purposes. 

3. Scope of the Study 

In an earlier paper by the present authors (2011), beam elements available is ANSYS were used in the numerical 
modeling of the cylindrical shaft; whereas in the present paper 3-D iso-parametric elements (20-noded, 
15-noded, 12-noded and 10-noded) were used for modeling the shaft, bearings, supports, propeller, torque 
loading arm and other accessories. Moreover in the earlier study only support springs were used to represent the 
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elastic effects of bearings, supports and other attachments present in the cylindrical shaft system. Hence in the 
present study a detailed modeling of the bearing connections to the shaft, as well as to the supporting frames, 
were done to properly include the total effect of the support elasticity. This detailed modeling of the 
shaft-propeller system using FM procedures has given extensive insights into the behavior of the shaft-propeller 
system including the overall shaft behavior, the support bending, the local bending of the propeller blades, and 
the presence of combined modes.

In the present paper three methods were used for the detection of  crack in a rotating shaft, viz., (i) An 
experimental investigation carried out to identify the transverse crack existence in a shaft, having a cantilever 
overhang - LMS experimental setup was used for measuring and determining the un-cracked and cracked 
(different crack depths) shaft response parameters; and (ii) Vibration responses of an un-cracked and cracked 
shaft were obtained numerically using the finite element method and related to the experimental results. 3-D 
solid elements (types 186 & 187) available in ANSYS software were used for the numerical analysis; and (iii) 
Finite element results were used to generate numerical frequency response functions that were used to detect the 
crack occurrence in the shaft propeller-bearings system and to compare the numerical results with experimental 
results.  

4. Shaft- propeller-bearing Test Rig and Experimental Setup 

The shaft-propeller system bearing test rig is shown in Figure 1. The shaft was fixed at one end to the test frame 
support 1 and was continuous over the other frame support 2 to end in a cantilevered end, supporting the 
propeller. The shaft was supported through ball bearings that were bolted to the two test frame supports. The 
main objective of this experimental study was to investigate the effect of cracks on the lateral and torsional 
vibration of the shaft system. 

 

 
 

 
 

Figure 1. The saw-cut crack: a) Line diagram of the experimental setup;  
b) The right side of bearing support 2

 

4.1 Test Rig Description 

The shaft-propeller system consisted of a shaft supported on two bearings, over two fixed steel supports, as 
shown in Figure 1(a). The length and the diameter of the shaft were, 1220mm (to the end of the propeller) and 
16mm, respectively. It was supported on two mounted bearings with greased fittings and deep-grooved 
ball-bearing inserts of type 5967k81.Twopairs of set screws were used to fix the shaft to the two bearings. 
Manually-made saw cuts (0.65mm wide) of different depths ratios (from 0% to 70% ratio) were made at a 
distance of 2cm to the right of bearing support 2, as shown in Figure 1(a) (in the propeller end). The saw-cut 
shown in Figure 1(b) had a flat notch end since it was introduced by a hack saw with hardened and serrated 
cutting blade 0.65mm thick. In actual crack situation, the edge will be v-shaped due to cyclic loading during 
fatigue; this has been simulated in our finite element modeling given later. If it is a flat ended crack, cracking 
will start from the rectangular corners of the crack, rather than from the center of the crack; this will produce 
aninclined twin-crack situation during fatigue, rather than the assumed single vertical crack due to the saw cut.  

4.2 Test Instrumentation System 

The test instrumentation system used to measure the two types of vibrations, viz., lateral and torsional modes of 
the rotating shaft system, is shown in Figure 2(a). For the experimental portion of the study, the Engineering 
Innovation (LMS Test LabTM) software package with two measurement channels was used. Modal testscould be 
done either using a fixed input (with the modal hammer impacting at one location only with many 

(b) (a) 
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accelerometers at different response locations) or a fixed single output (with the accelerometer fixed at one 
location and hummer impact point moved to different response locations) (Schwarz & Richardson, 1999). 

In this study the second type of time history output from the moving modal hammer accelerometer was used in 
the study, as shown in Figure 2(c). The number designation of the impact hammer type was 8206-002 and the 
maximum force (non-destructive) that could be deliveredwas 4448N. Plastic tip (DB-3991-002) material was 
used for impact hammer modal tests. The second channel recorded the time history output from the 
accelerometer device shown in Figure 2(c). Figure 2(d) and (e) show the experimental setup to measure torsional 
vibration of the rotating shaft. In the torsional vibration measurement system three strain gages were fixed at 
three locations, one placed near the bearing support 1, the second placed at the middle of the supported span, and 
the last one placed near propeller as shown in Figure 2(d). An aluminum arm, shown in Figure 2(e) was used to 
apply various magnitudes of impact torque at various locations of shaft. Five data acquisition channels were used 
in this study, viz., three for torsional strain measuring gages, one for accelerometer channel, and the fifth for 
impact load with a maximum mass of 22kg.  

 

 

(a) 

                 
(b)                        (c) 

    
(d)                       (e) 

Figure 2. Schematics of the instrumentation equipment: a) LMS Test LAB with rotating shaft; b) Impact 
hammer and tips; c) Accelerometer device; d) Strain gage; and e) Data acquisition system 
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5. Modeling of Shaft-bearing Support  

The shaft was supported over two roller bearings supported by two fixed steel supports; the fixed steel supports 
were fixed-welded to the large steel base plate as shown in Figure 3(a). The steel base plate was fixed to the 
table at bottom.The bearing model used for the present study wasthe Flange Mounted McMaster-Carr Ball 
bearing (5967k81) shown in Figure 3 (McMaster-Carr, 2011)shown in Figure 3(b). It contains two main parts, 
viz., the inner and outer housing bearing surfaces connected together through some balls; and two tight 
screwsthat connected the shaft to the inner bearing. 

 

(a) 

Base 
Bearing 
suppose 1 

Bearing 
suppose 2 

Shaft 
Propeller 

Arm for applying 
impact torque 

(b)

Bearing 
support 1 

Tight Screws 

Inner bearing

Shaft 

Housing bearing 
 

   
(c) 

Ball bearing 

Inner bearing 

Housing bearing 

Slots for fixing   
to the shaft 

 

 

Figure 3. a) Details of bearing support; b) Schematic diagram of shaft-propeller-bearing; c) Inner and outer 
bearing; and d) Dimensions of mounted bearing 

 

(d) 
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5.1 Elements Used in Analysis 

In this paper, the Finiteelement software program ANSYS Workbench 13 was used to create 3-D analytical 
models of the propeller-shaft system. The element types used for the 3-D model were chosen automatically 
(Huei, 2011) by default from the element library by the Workbench according to the types of the structural 
bodies used in the analysis. It usestwo types of elements (see Figure 4), viz., (i) Solid 186, which is a second 
order 3-D, 20-node element which can degenerate to a hexahedral triangle-based prism, or a quadrilateral-based 
pyramid, or a tetrahedron; and (ii) Solid 187, which is a3-D 10-node tetrahedral second order structural solid 
element. Each node for both types of element has three degrees of freedom (translations in the x, y, and z 
directions). 

 

 
Figure 4. Geometries of the elements 

 
5.2 Mesh Convergence Study and Geometry 

Commercial FE software ANSYS with Workbench was utilized to carry out the modeling and frequency analysis 
of circular shafts supported on bearings. A mesh convergence study was carried outearlier so as to ensure that the 
values of the experimental natural frequencies for lateral and torsional were convergent with numerical results. 
Several mesh sizes (with maximum element dimensions varying from 0.7cm to 2.0cm) of the model were 
utilized in this study. The shaft-propeller-bearing configuration and mesh generation are shown in Figure 5(a). 
The mesh convergent study carried out showed that the frequency responses werevery close to the experimental 
results for a mesh size of 1.0 cmfor the shaft system. The model had 39731 elements and 78580 nodes for the 
un-cracked shaft. For the cracked shaft the same mesh was used with refinement of the mesh around the crack 
front giving a much higher number of elements and nodes for the vibrating system. The mesh around the crack 
region is shown in Figure 5(b). 

5.3 Contact Behavior  

In ANSYS workbench the contact between two bodies were represented by two contact surfaces, one specified 
as a contact surface and the other as a target surface. The contact between these bodies can be represented by one 
of the following types, viz., bonded, frictional, frictionless, rough, and no separation. Bonded contact means that 
the two bodies were integral with one another and act as a single body. Frictional contact applies only to surfaces 
in contact and the value of friction varies from a low value to a high value (only positive values were permitted). 
Rough contact represents the surfaces which have a very large friction coefficient between the contacting bodies. 
In the present shaft-propeller system, all the three types of contact have been used. It can be explained as 
follows: (i) The parts which were bonded together are, viz., two tight screws to inner bearing and to shaft, 
housing bearing to inner connection (a part that is made to fill the space between the bearing surfaces and the 
steel supports, to avoid unwanted zero modes), housing bearing to balls, shaft to small nut, shaft to big nut, shaft 
to fixed aluminum, propeller to small nut, small nut to big nut, and fixed aluminum to support 1; (ii) The parts 
which had frictional contacts were, viz., aluminum arm to shaft (friction coefficient is 0.2), aluminum arm to 
propeller (friction coefficient is 0.1), inner connection to support (friction coefficient is 0.001), and shaft to 
propeller (friction coefficient is 0.1); and (iii) The parts which had frictionless contacts were, viz., housing 
bearing to inner bearing, balls to inner bearing, balls to inner connections, inner bearing to  inner connections, 
inner bearing to shaft, inner connections to shaft, fixed aluminum to support 1and  shaft to support 1. The 
frictional coefficient became important in determining the correct torsional frequency since the propeller was not 
welded tothe shaft, but joined rigidly through a slotted keyway system. The frictional coefficient that gave 
frequencies close to the experimental values was used to get the correct numerical values. The same 
consideration was used in identifying the frictional coefficient for the torque arm. 
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Figure 5. a) Finite Element mesh used for the various components of the rotating shaft system; and b) Mesh 

around the crack region 
 

5.4 Materials 

The shaft-bearing-system model contained different type of materials. As mentioned in the previous section the 
model had several interconnecting parts such as shaft, propeller, bearings, nuts, tight screws, aluminum arm, 
fixed aluminum, support, and inner connection. The material properties of these parts used in the analysis are 
summarized in Table 1. 

 

Small nut Big nut Ball 

(a) 
Inner bearing Housing bearing 

Propeller Aluminum arm 

ShaftBottom steel plate 

support 

Crack region in shaft 

(b) 
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Table 1. Material properties used for the numerical modal 

Type Material 
Density  
Kg/m3 

Modulus of 
elasticity    

Pa 

Poisson’s 
ratio 

Bulk  
ModulusPa 

Shear 
ModulusPa 

shaft Steel 7850 2e+11 0.3 1.67e+11 7.69e+10 
Propeller Bronze 8800 1.14e+11 0.34 1.19e+11 4.25e+10 
Support steel 7850 2e+11 0.3 1.67e+11 7.69e+10 
Housing 
bearing 

Gray cast iron 7200 1.1e+11 0.28 8.33e+10 4.29e+10 

Inner bearing Structural steel 7850 2e+11 0.3 1.67e+11 7.69e+09 
Fixed 

aluminum 
Aluminum Alloy 2770 7.1e+10 0.33 6.96e+10 2.67e+10 

Aluminum arm Aluminum Alloy 2770 7.1e+10 0.33 6.96e+10 2.67e+10 
Inner 

connection 
Artificial 

polyethylene 
50 1.1e+05 0.42 2.29e+05 38732 

Tight screws steel 7850 2e+11 0.3 1.67e+11 7.69e+10 
Small and big 

nut 
steel 7850 2e+11 0.3 1.67e+11 7.69e+10 

 

6. Presentation of Results and Discussion  

In this part, results obtained from the finite element software program (using ANSYS workbench 13) and from 
experimental program are presented. These results give the eight lowest bending frequencies (four vertical and 
four horizontal) and mode shapesof the un-cracked and cracked shafts. For experimental and numerical studies, 
one crack position and various crack ratios (from 0% to 70% ratio) were examined. Table 2 shows the results of 
the first eight natural bending frequencies (four vertical and four horizontal); it also gives the computed torsional 
frequency. These experiments were repeatedfor three different shaft-bearing systems, viz., shaft No. 1, shaft 
No.2 and shaft No. 3. The three shafts were of almost of the same diameter (average measured diameter values 
were 0.01588 m, 0.01586 m, 0.01589 m, respectively). For each crack depth three independent tests were carried 
out and the results processed through the LMS Test Lab system. Then the results were added and averaged to get 
the final result reported herein.The experimental and numerical results seem to be agreeing very well (in a 
non-dimensional manner) with one another as the crack depth increases in the shaft-propeller-bearing system; in 
both experimental and numerical results, the frequencies of the cracked shaft clearly decrease as the crack depth 
increases. Also the estimated numerical values of frequencies have been observed to be higher than the measured 
experimental ones for the fundamental frequency. The experimental and numerical results are extremely 
consistent as the crack depth increases in the shaft-propeller system; the frequencies of the cracked shaft 
progressively decrease as the crack depth increases, in both experimental measurements and numerical 
computations. Also the experimental measurements of frequency changes have been observed to be higher than 
the numerically estimated values for all the frequencies. One probable reason for this difference is that the 
numerical changes shown by FE procedure seems to under estimate the changes taking place at the crack 
location.  

Also the measured frequency differences between successive crack profiles used in the study are many times less 
than 0.1 to 0.2 Hz. It has also been estimated from the given digitization rate of the experiments, that the 
accuracy of frequency measurements is around 0.25 Hz. This is in correspondence with the limitations in the 
ANSYS software for FRF computations where the minimum frequency difference was 0.25 Hz. Hence the 
measured changes would reflect these limitations in the changes that occur in measuring the successive cracks 
profiles used in the study. 

Table 3 shows the measurements made to relate the experimental torsional frequency with detailed experimental 
test measurements and theoretical calculation made for computing the torsional frequency. It can be observed 
from Table 3 that the error is less than 1.57% between analytical and experimental values. These results indicate 
that the experimental measurements compare well with theoretical and numerical computations. 
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Table 2. Experimental and numerical values of natural frequencies for various crack dept ratios (V - vertical and 
H - horizontal and torsional) 

 
Frequency 

Crack depth ratios 

0.0% 10% 20% 30% 

V H V H V H V H 

First 

Exp. Shaft 1 * 34.768 41.344 34.417 41.544 34.119 41.182 34.325 41.196 
Exp. Shaft 2 * 36.395 42.980 36.315 42.959 36.262 42.904 36.212 42.91 
Exp. Shaft 3 * 33.855 40.629 33.774 40.656 33.751 40.615 33.736 40.550 
Num. Comp. 35.577 41.182 35.594 41.113 35.551 41.173 35.471 41.107 

Second 

Exp. Shaft 1 * 76.78167 78.279 76.413 78.57567 76.05867 78.31 75.205 78.02033 
Exp. Shaft 2 * 75.975 80.034 76.056 79.985 75.852 79.903 75.617 79.309 
Exp. Shaft 3 * 74.614 79.914 74.593 79.809 74.487 79.844 74.215 79.826 
Num. Comp. 75.247 78.245 75.113 78.102 75.021 78.017 74.933 78.129 

Third 

Exp. Shaft 1 * 190.634 199.089 190.757 197.944 189.998 197.769 189.865 197.829 

Exp. Shaft 2 * 196.119 199.544 195.849 199.462 195.667 199.503 195.398 199.424 

Exp. Shaft 3 * 192.190 197.813 191.962 197.817 191.742 197.771 191.298 197.652 

Num. Comp. 187.880 199.22 187.51 198.97 187.43 198.82 187.4 199.4 

Fourth 

Exp. Shaft 1 * 365.8 335.241 364.3547 335.2313 362.3233 335.7223 365.426 336.0583 

Exp. Shaft 2 * 367.423 369.148 366.861 368.992 366.391 368.896 365.457 368.605 

Exp. Shaft 3 * 352.959 355.931 353.392 355.628 352.642 355.315 349.39 353.132 

Num. Comp. 360.1 381.49 358.72 380.75 358.99 380.58 362.09 383.3 

First natural 
frequency for 

torsion 

Exp. Shaft 1 43.716 43.213 42.826 42.628 

Num. Comp. 43.453 43.422 43.111 42.92 

Frequency 

Crack depth ratios 

0.40% 50% 60% 70% 

V H V H V H V H 

First 

Exp. Shaft 1 * 33.80933 41.09267 33.79633 40.815 32.64033 40.52267 30.60033 39.84867 

Exp. Shaft 2 * 36.02723 42.77933 35.791 42.70067 35.21133 42.23533 33.98633 41.728 

Exp. Shaft 3 * 33.54967 40.47867 33.335 40.339 32.80367 40.03433 31.67467 39.535 

Num. Comp. 35.402 41.575 34.922 41.002 34.23 40.497 33.706 40.583 

Second 

Exp. Shaft 1 * 75.48633 77.35933 74.19133 76.54333 72.79567 76.23 67.299 74.95233 

Exp. Shaft 2 * 74.99833 79.09533 74.20733 79.09067 72.38067 79.03467 69.24733 77.91233 

Exp. Shaft 3 * 73.44333 79.603 72.554 79.372 70.73833 78.92633 67.54433 77.9527 

Num. Comp. 74.27 77.997 73.48 77.79 71.832 76.594 69.705 76.879 

Third 

Exp. Shaft 1 * 189.449 197.708 188.0927 197.1897 186.1117 196.4363 178.986 195.956 

Exp. Shaft 2 * 194.5687 199.3333 193.421 199.0703 190.7537 198.4617 185.5763 197.3003 

Exp. Shaft 3 * 190.0337 197.4143 188.644 197.0687 185.412 196.3743 180.0857 195.0663 

Num. Comp. 186.4 198.66 185.56 198.76 183.36 197.05 179.87 196.46 

Fourth 

Exp. Shaft 1 * 358.8217 335.4333 355.349 333.2633 345.0703 331.14 327.8163 321.8417 

Exp. Shaft 2 * 362.876 367.6683 359.1237 366.059 349.9673 362.3057 333.337 354.9043 

Exp. Shaft 3 * 344.4017 350.252 339.052 347.5507 328.8137 343.1973 315.164 336.204 

Num. Comp. 379.14 360.66 360.66 380.83 341.77 376.87 338.83 366.55 

First natural 
frequency for 

torsion 

Exp. Shaft 1 42.292        41.864        41.723        41.497        

Num. Comp. 42.739 42.599 42.353 41.877 

*Average of three independent measurements. 

Table 3. Theoretical and experimental values of mass moment of inertia and torsional natural frequencies

Mass moment of inertia for 
platform, kg.m2 

Mass moment of 
inertia for platform 

with propeller, 
kg.m2 

Mass moment of 
inertia for  

propeller, kg.m2 

Total mass moment 
of inertia ( propeller 
+ plate* + shaft** ), 

kg.m2 

Torsional natural frequency for 
un-cracked shaft wn, Hz 

Theoretical 
(a) 

Experimental 
(b) 

Experimental 
(c) 

Experimental 
(d) = (c) – (b) 

Theoretical and 
experimental 

Theoretical Experimental 

7.746x10-3 7.571x10-3 1.163x10-2 4.057x10-3 5.639x10-3 43.04 43.72 

* Jplate = 1.5232x10-3 kg. m2 (by experimental measurements); ** Jshaft = 1.5232x10-3 kg. m2 (by theory). 
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Figure 6(a) and (b) showsthe mode shapes comparison for first eight natural frequencies of (four vertical and 
four horizontal) experimental and numerical analyses. As could be observed from the plots shown in Figures 6(a) 
and (b), the experimental measurements closely correspond with the numerical computations. In the numerical 
computations the local propeller blade responses were observed to lie between the 3rd and 4rd vertical bending 
frequencies. In addition the support bending vibrations were observed to be above the 4rd horizontal bending 
frequency. 

Figure 7 shows the changes that occur in the experimental bending and torsional frequencies as the crack depth 
ratios change from 0 to 70% (cubic curve fit). It can be seen that the frequency changes become appreciable only 
when the crack depth ratio is more than 50%. This would lead to a precipitous cracking of the shaft unless it is 
noticed in a timely manner. Hence another type of measure is required to detect the presence of cracking damage 
in cylindrical shafts. When the rate of change of frequency is plotted as a function of crack depth ratio, as shown 
in Figure 8(a) – (d), the abrupt changes in plots can be observed even for a crack depth ratio of 20% or greater. 
This was observed earlier by (Hamidi, Piaud, & Massoud, 1992), who stated that the rate of change in natural 
frequencies become observable when the crack depth ratio becomes greater than 0.30. 

Also in Figure 8 (a) the plot of the depth of crack and rate of change in torsional frequency shows a significant 
difference from that of the bending frequencies. It shows that the rate of change in the torsional frequency gives 
a much better indication of the crack presence, especially during the starting point of the crack. It is seen that the 
rate of change of the expt. torsional frequency vs. crack depth ratio is much higher (at the crack depth ratios of 
10%, 20% and 30%, the rate of change of frequency with respect to crack depth ratios are correspondingly 8%, 
12% and 11%) whereas the rate of change of bending frequencies during the earlier stage of crack initiation and 
growth is much less (at the above crack depth ratios the rate of change of frequency with respect to crack depth 
ratio are varying between 2% to 5% - see Figure 8(a)). This could be easily understood since the influence of 
cracking on torsional inertia (due to its larger influence alongthe skin surface of the cylindrical shaft than its 
depth) will be much higher than the bending inertia and the consequent changes in the rate of frequency change. 
Hence the rate of change of torsional frequency (with respect to crack depth ratio) could very well be used as a 
very good indicator of the presence of any small crack. More experimental measurements are needed to confirm 
the above findings. 

Figure 9 shows the responses of the system under test (impact excitation) and the corresponding responses 
functions (acceleration FRFs, velocity FRFs, displacement FRFs) for experimental and numerical results. 
Frequency response functions for various crack depth ratios (from 0% to 70% ratio) were obtained for all cases. 
All figures illustrate the frequency shifts that occur due to the increased cracking in the shaft. It is also observed 
for all cases (experimental and numerical), reasonable agreements exist between numerical and experimental 
results. It can be seen from these figures, that the acceleration, velocity and displacement response functions 
(ARFs, VRFs and DRFs) can also be used as another tool for crack identification. Figure 10 shows individual 
comparisons for some cases (intact ARFs, VRFs and DRFs; cracked 20% ARFs, VRFs and DRFs; cracked 40% 
ARFs, VRFs and DRFs; and cracked 70% ARFs, VRFs and DRFs.) for response functions of experimental and 
numerical computations. It can be seen more clearly that the shifts of acceleration, velocity and displacement 
response peaks are dependent on the change in natural frequencies and are directly proportional to the severities 
of the crack. 

It is essential to point out two limitations in all the numerical computations reported in this study: (i) It can be 
seen from the curves given in Figures 9 and 10 in this study there is an extra frequency observable (around 35.0 
to 45.0Hz) in the experimental results, which is not observed in the numerical computations. This extra 
frequency was determined to be due to the presence of the effect of torsional rotation (especially at the fixed end 
near support 1) in the measurement of vertical displacements. In the numerical computations, the torsional and 
bending frequencies (as well as their response functions) could not be computed in a single numerical 
computation for the indeterminate shaft. It had to be computed in two separate computations where the shaft was 
permitted to either bend or rotate freely (over the support 2 near the overhang) by the provision of zero friction 
(boundary condition for torsion) at the support near the overhang; this led to two different systems. The torsional 
frequencies were obtained correctly, when zero friction was provided at bearing support 2 and the bending 
frequencies were correctly obtained when friction of bearing # 2 was greater than zero (> 10-14); and (ii) Also in 
the numerical computation for response functions the desired accuracy for computations could not be achieved 
with the provided computer memory size in the computing system. The accuracy with which the researcher 
could obtain response results was 0.25Hz (one could solve results up to 1000 steps for the frequency range of 
zero to 250Hz). These two restrictions prevented better comparison to be obtained between experimental and 
numerical results. 
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Figure 6(a). Mode shapes comparison for first four vertical frequencies: a) experimental and b) numerical  
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Figure 6 (b). Mode shapes comparison for first four horizontal natural frequencies: 
 a) experimental and b) numerical  
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Figure 7. Depth of crack vs. percent decrease in bending and torsion natural frequencies for experimental results 
a) Vertical; b) Horizontal 

 

 

Figure 8. Rate of change of frequency (with respect to crack depth ratio) vs. crack depth ratio of the first four 
frequencies: a) Mode one; b) Mode two; c) Mode three; and d) Mode four 

(a) (b)

(c) (d) 
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Figure 9. Schematic of experimental and numerical frequency response functions of: a) accelerations (ARFs);  
b) velocities (VRFs); and (c) displacements (DRFs) for shaft # 2 
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Figure 10. Schematic of frequency response functions for different depth of crack of experimental and numerical 
computations: a) Intact shaft; b) 30%; c) 50%; and d) 70% 

 
Figure 11(a), (c) and (e) show the changes that occur in the amplitude response and the slope (of amplitude 
response) for resonant frequencies (experimental results) as the crack depth ratio increases from 0.0 to 0.7. 
Figure 11(a) shows the changes that occur in acceleration amplitude response vs. crack depth ratio. It is 
observedfrom this figure that the identifier of the mode shape change due to crack is shown better by the first 
mode shape than the second mode; the crack presence can be identifiedabove a crack depth ratio of 0.2. 
Similarly, Figure 11(c) shows the changes that occur in velocity amplitude vs. crack depth ratio. In this figure the 
second mode gives a much better indication for the presence of crack than the first mode. Once again the crack 
presence can be identifiedbeyond a crack depth ratio of 0.2. Also Figure 11(e) shows the changes that occur in 
displacement amplituderesponse vs. crack depth ratio. These responses look like acceleration amplitude 
responses but may be less sensitive for crack. It can be seen from Figures 11(a) to (f) that the identification of 
crack can be observed with much better sensitivity from the velocity amplitude responses shown in Figure 11(c) 
and (d) (since the variation is much higher for velocity). In this case the crack can be identified after 0.2. Figure 
11(b), (d) and (f) show the slope of the modal amplitudes for acceleration, velocity and displacement responses, 
respectively vs. crack depth ratio. Figure 11(b) and (d) show that beyond the crack depth ratio of 0.2, presence of 
the crack can be easily identified.  

Figure 12(a), (c) and (e) show the changes that occur in the amplitude and the slope (of amplitudes) for 
anti-resonant frequencies (experimental results) as the crack depth ratio increases from 0.0 to 0.7. Figures 12(a) 
and (e) show the changes that occur in acceleration amplitudes and displacement amplitudes vs. crack depth 
ratio, respectively. It is observed from the two figures that the crack can be identified after a crack depth ratio of 
0.4; mode shape change due to crack is shown better by the third mode amplitude shape than the first mode 
amplitude shape. By comparing these anti-resonant figures and the previous ones, it is clear that the resonant 
frequency gives a much better indicator for the crack presence than the anti-resonant frequency. On the other 
hand Figure 12(c) for first mode gives a very good indicator for the crack presence than all other figures; hence 
the changes that occur in velocity amplitudes vs. crack depth ratiois much better than acceleration or 
displacement amplitudes. Figure 12(b), (d) and (f) show the slope of the anti-resonant modal amplitude for 
acceleration, velocity and displacement, respectively vs. crack depth ratio. Figure 12(b) shows that beyond a 
crack depth ratio of 0.3, presence of the crack could be identified; and the third mode seems to be better than first 
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mode. Whereas Figure 12(d) gives better results [than Figure 12 (b)] since it can sense the crack presence even 
from an earlier stage of crack (when crack depth ratio is > 0.2) for both modes. 

Figure 13 shows experimental and numerical comparisonfor first and second modes for acceleration, velocity 
and displacement amplitudes. It can be observed from the amplitude curves of Figure 13 that the amplitude ratios 
of all the modes increase for the resonant frequencies asthe crack depths ratio increases. The trend of agreement 
between experimental and numerical values is very good, especially for all the first modes; however only a small 
change occurs in amplitudes values at all the second modes. Also it can be seen from numerical acceleration 
results that it gives a much better indication of the crack presence even from the beginning stages of the crack 
but the sensitivity seems to be much higher for velocity amplitude ratios.  

Figure 14 shows the slope of the first and second experimental and numerical modal amplitudes. These figures 
show that velocity and displacement slopes give a much better indication of the crack presence than the slope of 
acceleration. It can be observed from Figures 14(b) and (c) that the crack is present even from beginning stages 
(since the sensitivity at lower crack depths is much higher) while Figure 14(a) shows a definite presence of the 
crackbeyond a crack depth ratio of 0.2. 

Figures 15(a) to (c) show the changes that occur in the resonant frequencies (experimental and numerical results) 
as the crack depth ratio increases from 0.0 to 0.7. Figure 15(a) shows the changes that occur in the 
non-dimensional frequency ratios (ωcracked/ωun-cracked) for the first four vertical bending frequencies as the crack 
depth ratio increases. It is observed that the changes in non-dimensional frequency ratios are not appreciable for 
a crack depth ratio less than 0.5 (in this range the non-dimensional frequency ratio is greater than 0.98). This 
crack depth ratio is quite large for crack detection since the structure may tend to fail catastrophically beyond 
this crack depth. Hence for these types of shafts, we need to obtain another type of measure that could indicate 
the crack presence much earlier. Figure 15(b) shows the relationships that exist between experimental 
measurements and numerical computations of non-dimensional frequency ratios for all crack depths (for 
different modes). At lower crack depth ratios (<0.4) the relationship is almost linear; as crack depth ratio 
increases beyond this, the relationship tends to become slightly nonlinear. This seems to imply that the nonlinear 
effect on the resonant frequencies is marginal at crack depth ratios are less than 0.4; even beyond this crack 
depth ratio the nonlinear effect is not significant. 

Considering the results presented for amplitude measurement in Figures 11 to 14, it appears that measurements 
and comparisons made at resonant frequencies seem to be more reliable for both amplitude measurements and its 
slope than those at anti-resonant frequencies. Moreover sensitivity of prediction seems to be better for slopes of 
normalizedamplitude vs. crack depth ratio than that for normalized amplitude ratio vs. crack depth ratio [since it 
could be observed from Figure 12 that change in normalized amplitude ratios vary from 1.0 to 1.5 (for first 
mode) between a crack depth ratio of 0.0 to 0.4; whereas the change in slopes is much higher, varying from 0.0 
to 5.0 (for first mode) between a crack depth ratio of 0.2 to 0.5]. Also the velocity amplitude comparisons seem 
to give much better results than the acceleration and displacement amplitude comparisons. In addition the use of 
results at the second resonant frequency seems to be much superior to that at first frequency. 

A better crack detection method is obtained when the slope of the frequency ratio vs. crack depth ratio curve is 
plotted against the crack depth ratio, as shown in Figure 15 (c). The whole process of determining the slope of 
the non-dimensional curve vs. crack depth ratio was cast in a mathematical format. First the curves shown in 
Figure 15(a) were curve-fitted and the algebraic equations that relate very closely the non-dimensional frequency 
ratio (y) to crack depth ratio (x = d/D) was determined for all the four modes. Then these equations were 
differentiated with respect to crack depth ratio (= x) to obtain the slope equation for the curve.These 
relationships are indicated in Table 3, given below. From the slope curves shown in Figure 15(c), it can be 
observed that when the crack depth ratio is greater than 0.2 to 0.25, one can definitely say that there is a 
well-defined crack that is present in the structure (for both experimental and numerical results). Thus this gives a 
better indicator of crack presence in the rotor shaft. Incidentally, the mathematical equations given in Table 3 can 
also be used to estimate the unknown crack depth ratio, if the different experimental frequency ratios are known 
for different modes. 

Table 4. Mathematical equations obtained for the frequency ratio curve and its slope as a function of crack depth 
ratio [y = (ωcracked/ωun-cracked); x = (d/D)] 

Mode # Non-dimensional frequency ratio curve 
Slope of non-dimensional frequency ratio 

curve 

Mode 1  y1 = -0.519x3 + 0.330x2 - 0.070x + 1.000 dy1/dx = -1.557x^2+0.66x-0.07 

Mode 2  y2 =-0.555x3 + 0.280x2 - 0.050x + 1.000  dy2/dx = -1.665x^2+0.56x-0.05 

Mode 3  y3 =-0.387x3 + 0.229x2 - 0.046x + 1.000  dy3/dx = -1.161x^2+0.458X-0.046 

Mode 4 y4 =-0.656x3 + 0.371x2 - 0.070x + 1.000  dy4/dx = -1.968x^2+0.742x-0.070 



www.ccsenet.org/mer Mechanical Engineering Research Vol. 2, No. 2; 2012 

69 
 

In a similar manner, the relationships that exist between the non-dimensional anti-resonant frequencies and crack 
depth ratio are shown in Figure 16(a), (b) and (c). Anti-resonant frequency is the frequency at which the 
mechanical impedance of the shaft has the largest magnitude (or the mobility has the lowest magnitude). The 
results are similar to that at resonant frequencies; but the sensitivities seem to be better for anti-resonant 
frequencies as indicated earlier by (Afolabi, 1987).  

Comparing the results shown in Figures 15 and 16 for the change in frequency ratios as a function of crack depth 
ratios at resonant and anti-resonant frequencies, respectively, sensitivity of measurements seem to be better for 
the first resonant and first anti-resonant frequencies than that for the higher frequencies. Also uses of slopes of 
the plots seem to be the most efficient method for detecting the crack presence in the rotating shaft much early. 
Moreover the use of the results shown in Figure 11 to 16, would give a better procedure in carrying out a first 
level robust crack measurement and prediction procedure for rotating shafts.  

 

  

  

Figure 11. Comparison of experimental results for resonant frequency amplitudes: a) acceleration amplitude 
versus crack depth ratio; b) slope of modal acceleration amplitude versus crack depth ratio; c) velocity amplitude 

versus crack depth ratio; d) slope of modal velocity amplitude versus crack depth ratio; e) displacement 
amplitude versus crack depth ratio; and f) slope of modal displacement amplitude versus crack depth ratio 
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Figure 12. Comparison of experimental results for anti-resonant frequency amplitude response:  
a) acceleration amplitude versus crack depth ratio; b) slope of modal acceleration amplitude versus crack depth 
ratio; c) velocity amplitude versus crack depth ratio; d) slope of modal velocity amplitude versus crack depth 

ratio; e) displacement amplitude versus crack depth ratio; and f) slope of modal displacement amplitude versus 
crack depth ratio 
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Figure 13. Comparison of experimental and numerical results for resonant frequency of shaft # 2 for (first and 
second modes): a) acceleration amplitude versus crack depth ratio; b) velocity amplitude versus crack depth ratio; 

and c) displacement amplitude versus crack depth ratio 
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Figure 14. Comparison of experimental and numerical results for slopes of resonant frequency amplitudes of 
shaft # 2 for (first and second modes): a) slope of the modal acceleration amplitude vs. crack depth ratio; b) slope 

of the modal velocity amplitude vs. crack depth ratio; and c) slope of the modal displacement amplitude vs. 
crack depth ratio

 

a
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Figure 15. Comparison of experimental and numerical results of shaft # 2 for (at four resonant modes): a) 
experimental and numerical frequency ratio versus crack depth ratio; b) relationship between numerical and 

experimental results of frequency ratio; and c) experimental and numerical slope of the frequency ratio vs. crack 
depth ratio curves 


 

(a) 

(b) 

(c) 



www.ccsenet.org/mer Mechanical Engineering Research Vol. 2, No. 2; 2012 

74 
 

 

 

 
 

Figure 16. Comparison of experimental and numerical results for (first and third modal frequencies): 
 a) experimental and numerical ant-resonant frequency ratio versus crack depth ratio; b) the relationship 

between numerical and experimental results of anti-resonant frequency ratio and c) experimental and numerical 
slope of the frequency ratio vs. crack depth ratio 

 
7. Conclusions 

In this study the propeller-bearing-shaft system has been holistically modeled using FE procedure with the actual 
in-situ profiles for the propeller, bearings, supports and torque loading aluminum arm. Also vibration analysis 
for experimental results has been successfullycorrelated with the finite element results. These results show that it 
is possible to detect the crack presencebeyond the crack depth ratio of 20%. 
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The following are some of the conclusions obtained from this study: 

(i) When the rates of changes of bending or torsional frequencies are plotted as a function of crack depth ratio, 
it is possible to detect the presence of crack in a rotating shaft above a crack depth ratio of 0.2. This will be a 
very good procedure for detecting the presence of a crack in the rotating shaft. 

(ii) The examination of the change of torsional frequencies of a rotating shaft is able to predict the presence of 
obtained crack even from its beginning stages. This conclusion has to be firmed up by additional experimental 
and numerical results on a number of shaft configurations. 

(iii) The changes that take place in the vibrational amplitudes of the rotating shaft, in terms of its maximum 
accelerations/velocities/displacements and its slope give a better and more sensitive predictive technique for 
crack presence when the crack depth ratio is greater than 0.20. 

(iv) It is seen that the monitoring of the rate of changes that occur in the velocity amplitudes (or its inverse 
impedance amplitudes) would prove to be a better predictive tool in the frequency range considered in this paper. 

(v) The curve-fitted equations obtained for the variations of modal frequencies and modal amplitudes, and as 
well the derivatives of the above equations will give a very good predictive method for the identification of an 
existing crack in the shaft. 

(vi) Also the linearity of results between experimental measurements and numerical predictions indicate that the 
crack-profile does not become nonlinear tillthe crack depth ratio is greater than 0.40. Even up to a crack depth 
ratio of 0.60 (from a crack 0.40 depth ratio) the nonlinearity between experimental measurements and theoretical 
prediction is not significant. 
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