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Abstract 

Solidworks is selected for modeling the 3D-solid structure of the deep-hole drilling machine. Based on 
parametric modeling and structural optimization theory, the parametric model of column is established. The 
equivalent stress and maximum principal stress on the column are solved by FEA. The two parameters (column 
thickness and inner rib thickness) are included. According to the design variables, the main target method is 
applied for the purpose of optimizing the weight of the column (Chen, Ding, & Guo, 2010). Topology 
optimization is used to determine the location of the sand holes by ansys software with density method. 

Keywords: Deep Hole Drilling Machine column, topology optimization, finite element method, multi-objective 

1. Introduction 

CNC three-axis drilling machine is a multi-axis deep hole drilling equipment which processes steam generator 
tube sheet. In the nuclear steam generator tube sheet processing, 1.5 tons of high pressure hydraulic tights jig. 
The column bears the reaction force of 1.5 tons of high-pressure oil and about 0.5 tons of the axial drilling force. 
The drilling assembly weight is 11 tons and the center-balance counterpart is 11 tons.Intensity and stiffness affect 
the accuracy of drilling directly (Li & Shen, 2011). In order to ensure the accuracy of parallel in the processing 
deep hole, the importance of the column structure is obvious.  

2. Mathematical Modeling 

The basic structure of the column includes the column wall, roof, floor, rail and internal ribs.It owns rectangular 
hollow and nearly symmetrical structure, and internal cross stiffener board. The column material is gray cast iron 
HT250. The parameters are as follows: Total height of: 5700mm, Length: 1920mm, Width: 2100mm, Wall 
thickness: 40mm, Roof thickness: 60mm, Rottom plate thickness: 154mm. The geometrical model is shown in 
Figure 1. 

 

 

Figure 1. Geometrical model of the column 
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3. Finite Element Analysis 

This is Static analysis. We choose the SOLID95 units, the material properties of gray cast iron HT250: E = 
1.2X1011N/m2, Poisson’s ratio is 0.25. The bottom of column constraints and the forces is shown as following. 
Mesh cell size is 150mm. 

 

 
 

Figure 2. Constraints, forces and mesh 

 
Solidworks simulation software provides the result of FEA, shown in Figure 2. The first principal stress is 
12.3Mpa and the most of the column on the first principal stress are lower than 9.8Mpa. Tensile strength of the 
iron HT250 is 250Mpa. The ultimate stress of the column is much lower than the ultimate stress of casting 
material HT250 structural strength. On the condition of not affecting the stiffness of the case, the quality of the 
column can be reduced (Ni, Yi, & Tong, 2005). Summary of the initial design of the column statics, modal 
analysis is shown in Table 1. 

 

 

Figure 3. The FEA of the column 

 
Table 1. Statics and the modal analysis for the initial design of the column 

stress/Mpa displacement/mm 
fundamental 
frequency/Hz 

quality/T 

Mises P1 Co-displacement 
X-direction 

displacement 31.84 21.522 
21.8 12.3 0.25 0.20 

 

4. Optimization 

4.1 Size Optimization 

4.1.1 Design Variables 

Wall thickness (X1), the internal board (X2), the guide support ribs (X3, X4, X5), the tendons (X6, X10), the 
longitudinal reinforcement (X7, X8, X9), the layer of reinforcement (the X11, X12, X13, X14, X15, X16, X17). 
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4.1.2 Optimization Results 

The main target method is introduced，In order to save material costs ，the optimization model is expressed as: 

Min M (x)                                       (1) 

S.t.δ ≤ [δ] 

Where 

M: the quality of the column structure; 

δ: the maximum displacement on the column; 

[δ]: structure allows displacement. 

The optimization results are shown in Table 3. 

 

Table 3. The size of column 

Serial 

number 
Part 

Initial 

value/mm 

Optimal 

value/mm 

Initial 

mass/T 

Optimized 

quality/T 

X1 Wall thickness 40 37.9 

32.585 31.575 

X2 Internal board 25 18.4 

X3 guide support ribs 1 25 18.2 

X4 guide support ribs 2 25 21.9 

X5 guide support ribs 3 25 25.6 

X6 longitudinal reinforcement 1 25 18.0 

31.575 31.248 
X7 Left longitudinal reinforcement 250 442.2 

X8 right longitudinal reinforcement 250 239.4 

X9 top longitudinal reinforcement 400 637.6 

X10 longitudinal reinforcement 2 25 18.0 

31.248 30.698 

X11 Layer of reinforcement 1 690 2070 

X12 Layer of reinforcement 2 1380 2070 

X13 Layer of reinforcement 3 2070 2070 

X14 Layer of reinforcement 4 2760 3450 

X15 Layer of reinforcement 5 3450 3450 

X16 Layer of reinforcement 6 4140 4830 

X17 Layer of reinforcement 7 4830 4830 

 

4.2 Topology Optimization 

Sand holes are set in an appropriate location.They facilitate the casting process and they can reduce the column 
quality. Location of sand holes ensure that the stiffness of the structure and the fundamental frequency meet the 
requirement. 

Topology optimization of the mathematical model (Sui, Yang, & Sun, 2000) can be expressed as: 

 ሺܺሻ                                      (2)ܨ ݊݅ܯ

ܵ. ሻݔ௝ሺ݃  .ݐ െ ݃௝
ሻݔሺכ ൑ 0，݆ ൌ 1，2，3 … ݉                             (3) 

௠௜௡ݔ ൑ ௜ݔ ൑ 1，݅ ൌ 1，2，3 … ݊ 

 : ሻݔ௠௜௡: lower limit, take a very small amount of non-zero, F(x): the objective function, ݃௝ሺݔ ,௜: the cell densityݔ
constraint (also known as state variables), ݃௝

 .ሻ: the constraint the upper limit of the conditionݔሺכ

By virtue of experience and intuitive judgment, the column structure is difficult to draw the location of the sand 
hole. The column structure topology optimization determine the sand holes on the position of the column 
performance (Cui, Sang, & Wen, 2004). This paper uses Ansys for structural topology optimization; Ansys uses 
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(c) Guide opposition panel topology cloud images 

Figure 5. Topological structure of column 

 

There are eight sand holes in the cross position of the layer ribs and longitudinal reinforcement. The optimized 
structure is shown in Figure 5. Comparison of structure and properties before and after the topology optimization 
is listed as Table 3. 

 

 
 

Figure 6. Optimized structure of the column 

 
Table 4. Comparison of structure and properties before and after the topology optimization 

 
Casting 
process 

Maximum 
displacement 
/mm 

Fundamental 
frequency/Hz 

Quality/T 
 

Reduction 
rate of quality 

initial design ordinary 0.25 31.84 21.522 
7.36% 

optimization better 0.25 31.79 19.938 
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5. Discussion 

According to parametric model of FEA, we get that strength margin of the column structure is big. So we can 
propose the column size optimization and topology optimization. The size optimization adjust the location of 
strengthen the ribs and the location of the layer of ribs.The topology optimization determine the location of the 
sand holes, reducing the column weight while improving the process of the column (Ding & Lin, 2008). After 
optimization, the fundamental frequency did not change greatly. Column 7.36% mass reduction, improve 
material utilization. 
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