Optimal Design of Capacitive Micro Cantilever Beam Accelerometer

Othman Sidek, Muhamad Azman Miskam, H.M.T Khaleed, Mohd Fauzi Alias, Shukri Korakkottil Kunhi Mohd

Abstract


This study presents the behavior of a micro cantilever beam accelerometer under electrostatic actuation by using the analytical and numerical method. The objective of this study is to determine optimal design of capacitive micro cantilever beam accelerometer in term of reducing the beam deflection with respect to applied acceleration but keeping the distance between electrodes. The structure contains proof mass which is suspended between fixed rigid electrodes to provide differential capacitance measurements. ANSYSÒ is used for finite element analysis (FEA) modeling and simulation. The analytical modeling is done by using C programming. Three dimensional modeling is done for six different loading conditions in order to come out with the optimal design. The results obtained from both the analytical and finite element models are found to be in excellent agreement.


Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Modern Applied Science   ISSN 1913-1844 (Print)   ISSN 1913-1852 (Online)

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.