A Fuzzy Based Solution for Improving Power Quality in Electric Railway Networks

Mohammad Ali Sandidzadeh, Saleh Akbari

Abstract


There are many fundamental differences between electric traction networks and other industrial supply networks in terms of dynamic behavior and static characteristics. For example, the time variation of a load causes voltage variations in a supply network, which results in variations of power flow in the supply network. Today, reactive power compensators are the most practical solutions for keeping voltage levels in normal boundaries. In this paper, with the aim of fuzzy logic, a method for compensating reactive power losses in electrical traction networks is proposed. The proposed method has many advantages such as decreasing the reactive power compensation costs, determining the optimum switching step of capacitor banks and deducing the losses in electric traction networks.


Full Text: PDF DOI: 10.5539/mas.v6n2p22

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Modern Applied Science   ISSN 1913-1844 (Print)   ISSN 1913-1852 (Online)

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.