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Abstract 

We examine two-dimensional laminar flow of a liquid with circular hydraulic jump using boundary layer 
approach, but with the inclusion of a velocity profile approximated by a quadratic function. Our motivation is 
due to an earlier work of Watson (1964) on radial spread of a liquid over a horizontal plate. We obtain a new 
relation for the displacement thickness, momentum thickness and position of the jump. Our approximate values 
based on Pohlhausen (1921) are compared with the exact values due to Blasius (1908). The comparison shows 
the error of about 9% in the shear rate relation on the plate and the error of about 3.5% in the thickness ratio. Our 
values agree to a large extent with the exact values and also show improvement of our work upon that of Watson 
(1964) with respect to the thickness ratio. 
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1. Introduction 

It is commonly observed, for example, in a kitchen sink, that a stream of liquid falling vertically on to a 
horizontal plate spreads out radially in a particular manner. Around the point of impingement there is a circular 
zone in which a thin layer of liquid moves radially with a high velocity. At the edge of this region the liquid 
layer abruptly becomes much thicker and consequently flows radially at a much lower velocity. This 
transformation is called the “hydraulic jump” (Olsson and Turkdogan, 1966 ). 

Bush et al. (2006) presented the results of an experimental investigation of the striking flow structures that may 
arise when a vertical jet of liquid impinges on a thin fluid layer overlying a horizontal boundary. Their 
experiments revealed a new class of steady asymmetric jump forms that included structures resembling cat’s 
eyes, three – and four – leaf clovers, bowties and butterflies. An extensive parameter study revealed the 
dependence of the jump on the governing dimensionless groups. The asymmetry-breaking responsible for the 
asymmetric jumps was interpreted as resulting from a capillary instability of the circular jump. 

Kate et al. (2007) used an obliquely inclined circular water jet to impinge on a flat horizontal surface which 
conferred a series of hydraulic jump profiles, pertaining to different jet inclinations and jet velocities. These 
jump profiles were non-circular, and could be broadly grouped into two categories based on the angle of jet 
inclinations made with horizontal. In their work they attemted to find a geometric and hydrodynamic 
characterization of the spatial patterns formed as a consequence of such non-circular hydraulic jump profiles. 
Flow-visualization experiments were conducted to depict the shape of demarcating boundaries between 
supercritical and subcritical flow, and the corresponding radial jump locations were obtained.  

Again, Kate et al. (2008) used oblique impingement of a circular liquid jet with a horizontal target to obtain 
hydraulic jumps of unique non-circular shapes. They investigated experimentally the hydrodynamics of this 
phenomenon and consequently they observed hydraulic jumps of two broad categories. At higher angles of jet 
inclination, they noticed that the jumps were bounded by a smooth curve, whereas, at lower angles of inclination, 
typical jump profiles with corners had been observed. Effect of jet inclination angle on jump profile and jump 
area had also been investigated. 
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Bohr et al. (1993) extended the work on circular hydraulic jump using the shallow water approach. They showed 
that the circular hydraulic jump could be qualitatively understood using simplified equations of the 
shallow-water type which included viscosity. They also concluded that it was not possible to determine the 
position of the jump from ideal theory. Craik et al. (1981) also contributed to the study of circular hydraulic 
jump using experimental approach. They described new observations of this phenomenon. In addition, they 
examined a previously unreported instability of the jump and showed this to arise when the local Reynolds 
number Rj just ahead of the jump exceeded a critical value of 147. 

Watson (1964) studied the motion in the thin layer by means of boundary layer theory but with inclusion of a 
constant velocity profile. He applied the boundary layer theory to the analysis of flow inside the jump and 
observed that the depth of the flow was much greater on the outside of the jump than on the inside, and hence the 
condition at the jump might be simplified. The formation of the thin layer and the circular jump was first noticed 
by Rayheigh (1914) who derived the properties of bores and jumps.  

Other contributors include, notably, Belanger(1938), Bouhadef(1978), Felice(2005), Felice and Francesco(2005), 
Glauert(1958), Groves(2004), Huguera(1994), Kundu and Cohen(2004), Rajput(2006), Rainville and 
Pinkel(2006), etc.  

In this paper our objective is also to discuss circular hydraulic jump by means of boundary layer theory, but with 
the inclusion of a velocity profile approximated by a quadratic function. Using approximate method certain 
parameters have been determined and compared with the exact values. Our results agree reasonably with the 
exact values and also show improvement upon that of Watson with respect to the thickness ratio.  

In this analysis , we shall, for convenience, consider the following regions of flow. 

(i) The region 00 xx  . Here the speed at the edge of the boundary layer is taken as the constant 

U0. When 0xx   we find h and 0)( UxU  . Here also an approximation to the Blasius 

type of solution will be derived. 

(ii) The region 0xx  . Here, there is a similarity solution with h  and 0)( UxU  . 

(iii) The region 0xx  . Here h  and the whole flow is of the boundary layer type. 

Note that x0 is given by the condition h , so that the whole flow passes through the boundary layer. 

2. Ideal Theory 

The treatment of the problem of two-dimensional flow here applies only to laminar flow in which viscosity is 
completely neglected. The flow here might be realized by a two-dimensional jet striking a horizontal plane, or by 
the flow of water under a sluice gate (Glauert,1958). If the flow were realized physically by one of the methods 
above, U0 would be the speed of the impinging jet, or the speed attained by the flow under the sluice gate a short 
distance downstream of the gate. The ideal or inviscid flow has the uniform depth, a, given by  

 
0U

Q
a            (1) 

The characteristic Reynolds number is  

 

QaU

R  0         (2) 

Here Q is the volume flux and  the kinematic viscosity. The condition to be applied at the jump (Belanger, 1938) 
is that the thrust of the pressure is equal to the rate at which momentum is destroyed. If d is the depth outside the 
jump and h is the depth inside it then the thrust of the pressure per unit length of wave (jump) is  

  22

2

1
hdg    

where  is the density and g is the gravitational acceleration. The speed of flow inside the jump is U0 and outside 
it is U1 where 

 
d

Q
U 1           (3) 

The rate of destruction of momentum per unit length of wave is therefore  

  dUhU 2
1

2
0   
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Thus   

    dUhUhdg 2
1

2
0

22

2

1
        (4) 

Using (1) and (3) in (4) leads to  

   



 

da

h
Qhdg

1

2

1
2

222       (5) 

When h << d, (5) reduces to (by neglecting h2 and 1/d) 

2

2
2

2

1

a

hQ
gd             (6) 

which becomes, when ah   

 
a

Qgd 22

2
            (7) 

A better approximation is to neglect only 
d

h
 in (5), so that the pressure thrust inside the wave is ignored but the 

momentum outside it is included. Thus, from (5) we get 

 





 










dd

h

a

Q

d

h
g

1
1

2

1
22

2

2

2

       (8) 

Neglecting 
2

2

d

h
 and setting h = a in (8) and then using (7) yields after multiplying the resulting equation by 

2

2

Q

ad
 

 11
2 2

2







 

d

a

Q

gad
         (9) 

Since h << d, (5) becomes (by neglecting h2) 

 
3

2

22

2

2 d

Q

da

hQg
           (10) 

Putting ah   in (10) and multiplying the result by 
2

2

Q

ad
 leads to  

 1
2 2

2


d

a

Q

gad
          (11) 

Thus, when the depth h is regarded as constant and equal to a, the ideal or inviscid theory, identical with the 
theory of Rayleigh (1914), leaves the position of the jump indeterminate as in Bohr et al.(1993) but gives the 
results (9), or if the pressure thrust ahead of the wave is neglected it leads to (11).  

3. Blasius Solution of Two Dimensional Laminar Boundary Layer Equations 

Let x, y be the rectangular coordinates with y vertically upwards and u, v the corresponding velocity components, 
then the equations for laminar flow are  

 0







y

v

x

u
           (12) 

     
y

u

y

u
v

x

u
u










 2

         (13) 

 0 vu   at   0y         (14) 
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  )(0 xhyat
y

u





      (15) 

 

  
)(

0

xh

Qudy            (16) 

where Q is the volume flux in the positive x-direction. The total flow from the two-dimensional jet would be 2Q, 
and the flow under the sluice gate is Q. 

A solution of these equations can be found based on Blasius type of velocity profile given by  

   y
vx

U
fUu

2

1

0
10 , 






       (17) 

and 

  0,02 111 fff       (18) 

is the Blasius equation with boundary conditions 
 

0011  atff  

                      (19) 

 atf 11  

 
[Here  denotes differentiation with respect to ] 

Thus the velocity distribution has the Blasius flat-plate profile, and the boundary layer thickness is .
0








U

x
 

Before considering the approximate solution we shall first find the exact solution of the boundary layer equations 
(12) – (16).  
Thus following Blasius (1908), it follows that  

 (i)  332.0)0(
1

1

000

2
1























f
y

u

UU

x

y


   (20) 

 (ii) The displacement thickness 1 is  

   
2
1

0
1 7208.1 










U

x         (21) 

(iii) The momentum thickness 2 is  

         
2
1

0
2 664.0 










U

x        (22) 

From (21) and (22) we find  

     21 5915.2          (23) 

so that the thickness ratio H* becomes  

     5915.2*
2

1 



H       (24) 

Thus the value of )0(1f   in (20) and the value of H* in (24) constitute the exact solution.  

4. Similarity Solution of the Boundary Layer Equations (12) – (13)  

In this section a similarity solution will be derived by direct assumption of the velocity profile approximated by a 
quadratic function in the form 
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)(

),()(
xh

y
fxUu               (25) 

where  

       22)(  f               (26) 

is the similarity profile function. 

When the boundary layer finally absorbs the whole flow the velocity profile changes as x increases from the 
Blasius profile (17) to the similarity profile (25) – (26). Here U(x) is the speed at the free surface y = h(x) and 
h(x) is the depth of the fluid on the plane. Using the boundary conditions (14) and (15) we find  

  f(0) = 0,  y = 0 
  f(1) = 1,  y = h(x)                 (27) 

  f (1) = 0,  y = h(x)  
and from (16)  

    
1

0

22  dUhQ       (28) 

Thus Uh is a constant, and (12) then leads to 
     )( fhU                 (29)  

or  

    22   hU       (30) 

Using (25) and (29) equation of motion (13) reduces to  
 

   )()( 22  fUhf       (31) 

i.e.          

        222 2)2(   Uhv       (32) 

from which it follows that Uh 2  is a constant. 

Also, 0)(  f , since the shearing stress 
y

u




   is greatest at the plate, and it is convenient to write  

22

2

3
kUh          (33) 

where k is a number.  
Using (33) in (32) we find  
   

 222 )2(
2

3
)2(   k  

or  

     222 )2(3)2(2.   k      (34) 

Multiplying (34) by 22 f , we find  

)22.()2(3)22).(2(2. 222   k  

or  

     3222 222 













k      (35) 

Integrating (35) we find. 

      )(222
3222 constAAk      (36) 

Using the last two conditions of (27) in (36) we find  

 2kA             (37) 
so that (36) becomes  
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     32222 212   k
      (38) 

Since  ,022 2    we have from (38)   

 

  2132221

22








k        (39) 

Let .2 2 t  Then 


22


d

td
. Substituting these in (39), we find 

   2

1
31




 t
d

td
k


       (40) 

Separating variables and integrating we obtain 

   tdtk 




 2

1
3

2

0

1

2

       (41) 

Applying the condition f(1) = 1 of (27) in (41), we have  

  1

0

3 2
1

)1( tdtk        (42) 

Using change of variables ,3 st  (42) becomes  

  dsssk 2
1

3
2

1
3

1 1

0

         (43) 

Equation (43) is a well known integral whose solution is written in the form  


























6

5
3

1

2

1

3

1
k        (44) 

where (n) is the gamma function.  
Now, (39) can be written as  

 

 

  2132

2

21

2









 d

d

k  

i.e. 

     22

1
32 221 


 



d

d
k             (45) 

Multiplying both sides of (45) by  22    we find 

          22

1
3222 22122 


 



d

d
k        (46) 

Separating variables and integrating from 0  to 1, (46) becomes 

         22

1
3221

0

121

0
22122  


  dkd       (47) 

Using change of variables    
322  in the rhs of (47), we find 

     







   3

1

2

1
3

1
1

0

121

0
12  dkd  
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i.e. 

      dkd 2

1
3

1
1

0

121

0
1

3

1
2        (48) 

Simplifying the rhs of (48) we find  

  
2

21

0 33

2

6

7
2

1

3

2

3

1
2

kk
d

 























     (49) 

But 

  
3

2
2 21

0
  d          (50) 

Therefore, from (49) and (50) we have  

 
3

2

33

2
2


k


 

whence 
 k = 1.34677             (51) 
Substituting (49) into (28) we find  

 
2

.33 2 Qk
Uh            (52)  

We now solve for U(x) and h(x) for the similarity solution using (33) and (52). Now, from (33) we have  

 
2

2 1
.

2

3

h
kU            (53)  

Using (52) in (53) we find 

 
24

22
2

27

4

2

3

Qk

U
k

dx

dU
U

        (54) 

which on separating variables and integrating gives 

 .
9

41
22

2

const
Qk

x

U



         (55) 

Putting the const = 
22

2

9

4

Qk


 in (55) leads to  

 
22

2 )(

9

21

Q

x

kU





 

or 

)(2

9
)(

2

2

2




x

Qk
xU


          (56) 

Here   is an arbitrary constant whose presence merely indicates that a shift of origin is possible. Accordingly, 
substituting (56) into (52) and simplifying we find 

Q

xv
xh

)(

3
)(





          (57) 

Equation (56) shows that U(x) varies inversely as x while (57) shows that h(x) grows in direct proportion to x. 
This is possible within the vicinity of the jump.  

5. Approximate Solution Using Karman– Pohlhausen Method with a Quadratic Function Profile 

Karman-Pohlhausen momentum integral equation for two dimensional laminar flow (see Pohlhausen,1921) is 
given by  
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   
0

2
0

0















 yy

u
dyuuU

x




     (58) 

while the velocity profile approximated by a quadratic function (25 – 26) becomes 

 
)(

,2 2
0 x

y
Uu


        (59) 

Here   is the boundary-layer thickness.    
From (59) we find 

      
)(

2
.0

0
x

U
y

u

y















       (60) 

Now 

 
2

2
0

2
1

0

2
00

0 33

2
).(2)(

k
xUdxUudyU




   (61) 

using (49), and    

       
15

8
).(2)( 2

0

22
1

0

2
0

2

0

xUdxUdyu 


   (62) 

Substituting (60), (61) and (62) into the momentum integral equation (58) we obtain 

)(

2
.)(

315

)3810(
0

2
02

2

x
Ux

dx

d
U

k

k







    (63) 

Integrating (63) and simplifying we find 

          C
U

x

k

k
x 




0
2

2
2 .

3810

360
)(




     (64) 

where C is a constant. If (64) were to remain valid as x 0, then C=0; or, when ax  (where a is the 
uniform depth of the ideal or inviscicid flow) then C could be neglected. Consequently, when a << x < x0,  

          
0

2

2
2 .

)3810(

360
)(

U

x

k

k
x







      (65) 

or 

          
Q

xa

k

k
x




 .
)3810(

360
)(

2

2
2


 , (using (1))  (66) 

From (65) 

    
2

1

2

22

1

0 3810

360
)( 




















k

k

U

x
x
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Hence  
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Comparing (68) with (63) we have 
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which on simplification yields 



www.ccsenet.org/mas                      Modern Applied Science                     Vol. 5, No. 3; June 2011 

                                                          ISSN 1913-1844   E-ISSN 1913-1852 64

)0("
360

3810
2

1 2

1

2

2

00

2

1

0

f
k

k

y

u

UU

x

y








 
























   (69) 

 
(by virtue of (20)) 

Substituting (51) into (69) we find 
  
 
   (70) 
 
 

Substituting the quadratic function profile (25), (26) into the displacement thickness 
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U

u
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we find 
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Similarly, substituting (25), (26) into the momentum thickness 
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we have 
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Consequently, the thickness ratio H  is 
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      (75) 

using (51) 
Comparison of the approximate values (70) and (75) with the accurate values (20) and (24) shows that the error 

in the shear rate relation f(0) is about 9% while the error in the thickness ratio H  is about 3.5%. The 
boundary layer just absorbs the whole flow when x = x0. When x < x0 the total depth h is given by the volume 
flux condition 
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0
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Substituting (50) and (1) into (76) and using the condition h  we have after simplification  
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where a is the jet radius. Since h  when 0xx  , then using  this condition together with (77) and (2) in 
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
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      (78) 

where R given by (2) is the characteristic Reynolds number. Now the value of l  in (56) and (57) can be 

estimated as follows. Using hxx  ,0  and 0)( UxU  in (4.31) we find 
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which gives, on solving for  , 
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Substituting (78) into (80) and using (1) and (2) we get, after simplification 
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6. Jump Conditions  
The position x = x1 of the hydraulic jump is determined by equating the rate of loss of momentum to the thrust of 
the pressure. The condition of the momentum is thus 

       dUdyugd
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or, using (3) 
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Equation (83) is the jump condition. We note that for the case x1 < x0, 
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Substituting (84) into (83) the jump condition for the case x1 < x0 takes the form 
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i.e. 
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Using (77) in (86) gives 
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Substituting (67) into (87) we find 
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Applying (1) to (88) gives 
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Substituting (2) into the rhs of (89) and changing x to x1 we have 
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Solving for x1, we obtain 
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for x1 < x0. 
For the case x1 > x0 we hav 
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Substituting (92) into the jump condition (83) we have for the case  
x1  x0, 
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Using (56) and (57) in (93) we find 
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Using (2) in (94) gives 
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Finally, substituting (81) in (95) and changing x to x1, we obtain  
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7. Discussion and Conclusion 

From our analysis, the result (11) shows that the position of the jump based on inviscid theory (Bohr te al.,1993) 
is indeterminate, whereas incorporation of viscous effects (2) in (11) coupled with the use of the principles of 
momentum and continuity at the jump leads to the modified result (91) for 01 xx   or (96) for 01 xx  . Thus, 
the position 1xx   of the jump is given by (91) for 01 xx  or (96) for 01 xx  . The difference between the 
inviscid result (11) and the result (91) or (96) due to viscous effects is that (91) or (96) shows that if the left hand 
side of (11) is less than 1, the flow loses total head by friction over the length 1x  until the jump can occur. 

In the present work we observe that comparison of the approximate value (70) with the exact value (20) shows 
that our percentage error in the shear rate relation f(0) on the plate is only about 9%. Similarly, the percentage 
error in the thickness ratio H* obtained by comparing the approximate value (75) with the accurate value (24) is 
about 3.5%. These results are adequate for the present purpose since they closely tend to the accurate values. 
Also, the result 3.5% shows improvement of our work upon that of Watson. However the position of the jump 
(91) or (96) based on viscous effects shows a good correspondence to that of Watson (1964) , provided the liquid 
flow remains laminar. The relation (56) shows that h(x) depends linearly on x while (57) shows that U(x) 
depends inversely on x. Also, (56) means that x starts from the leading edge of the boundary layer, whereas the 
parameter   in this relation is the distance from the centre of the impinging jet to the leading edge of the 
boundary layer. Finally, the analysis shows that the total thickness of the layer h (77) is directly proportional to a, 
the radius of the impinging jet, implying that h depends chiefly on the model (velocity profile) used.  
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List of Symbols 

a = Radius of the impinging (incident) jet 

k = Parameter in this work = constant 

d = Depth of flow outside the wave (jump) 

h  = Depth of the fluid on the plane = total thickness of the layer 

H* = Thickness ratio = 
2

1




 

1  = Displacement thickness 

2  = Momentum thickness 

)0(f   = Shear rate relation on the plate 

g = Gravitational acceleration  

  = Arbitrary constant length 
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Q = Volume rate of flow 

R = Reynolds number 

t,s, = Dummy variables 

u, v  = Velocity components 

U(x) = Speed of flow at the free surface 

U0 = Speed of flow inside the jump = speed with which the jet strikes the plate. 

U1 = Speed of flow outside the jump 

(x, y) = Rectangular coordinates  

  = Kinematic viscosity 

 x = Distance from the axis of the jet 

x0 = This is given by the condition  = h, so that the whole flow passes through the boundary layer 

x1 =  Position of the jump. 

  = Blasius’ dimensionless flow variable. 

f() = Similarity profile function = Blasius function 

  = Fluid density  

 = Boundary layer thickness 

 

 


