
www.ccsenet.org/mas Modern Applied Science Vol. 5, No. 1; February 2011

 ISSN 1913-1844 E-ISSN 1913-1852 230

A Programming of Genetic Algorithm in Matlab7.0

Cheng Guo (Corresponding author)

Department of Mathematics and Physics, XiaMen University of Technology

LiGong Road 600, JiMei Area, XiaMen, FuJian Province 361024, China

E-mail: guocheng@xmut.edu.cn

Xiaoyong Yang

School of Mathematics and Physics, HuaiHai Institute of Technology

Lian yungang, Jiangsu 222005, China

E-mail:163yangxiaoyong@163.com

Abstract

The genetic algorithm is briefly introduced and its complete programming is provided in detail by MATLAB7.0.
In addition, the application in optimization of functions and solution of equation is shown through three
examples and the method of avoiding local optimization by increasing the value of pm is also discussed.

Keywords: Population, Encoding, Decoding, Cross over, Mutation, Selection

1. Introduction of genetic algorithm

Genetic Algorithm (GA) is a global optimization algorithm derived from evolution and natural selection.
Although genetic algorithm cannot always provide optimal solution, it has its own advantages (Liu yong, Kang
lishan & Chen yuping. 1997) and is a powerful tool for solving complex problems (Xi yugeng, Chai tianyou &
Yun weimin. 1996).

The basic thought of Genetic algorithm:

1) Randomly producing a original population whose number of individuals is a constant N.

2) Producing next generation by crossing over and mutation among individuals.

3) Forming the new population of N individuals from the generation of 2)

4) Producing the next population by repeating the step2) and 3) until obtaining the individual which satisfies
conditions.

2. MATLAB programming for genetic algorithm

In order to understand the sense of the MATLAB programming for genetic algorithm, giving the following
instances.

Instance one: seeking the maximum of the function 2
3

2
2

2
1321 6),,(xxxxxxfy .

2.1 individual and population

For instance one,),,(321 xxxX is called individual, and the function),,(321 xxxfy is written as

)(Xfy , and)(Xf is called fitting value of individual X .For example, the fitting value 3)1,1,1(f for

the individual)1,1,1(and lots of individuals form a population, such as,

)7.1,5.0,0(),4.2,0,1(),0,0,0(),3,2,1(is a population of four individuals.

In genetic algorithm, the individuals of next population are chosen by the fitting values of individuals, by
maintaining the individuals whose fitting values are greater than others. In addition, the fitting values are also as
the extermination end condition of genetic algorithm (Liang jiye. 1999). And when the fitting values don’t
continue to increase, exterminating the programming and the individual with the greatest value is seen as the
optimal solution. The number of the generation of populations is another termination condition for genetic
algorithm. For example, when after 100 generation of population, terminate the programming and the individual
with the greatest fitting value in the last generation is as the optimal solution.

2.2 encoding

In genetic algorithm, coding is expressing the individual by the binary strings of 0s and 1s. In the instance one,
every individual has there dimensions, and every dimension is expressed by a 8- bit string of 0s and 1s, so every

www.ccsenet.org/mas Modern Applied Science Vol. 5, No. 1; February 2011

Published by Canadian Center of Science and Education 231

individual is expressed as a 24-bit string of 0s and 1s, showing as

31 2

011011110001010100110110

xx x

Programming 1
function pop=encoding(popsize,stringlength,dimension)

pop=round(rand(popsize,dimension*stringlength+1));

Programming 1 is an encoding function by MATLAB and it randomly produces an encoded original population.
Pop in the function encoding is a matrix whose every row indicates an encoded individual and the total number
of rows is denoted as popsize. And dimension is the number of dimension of an individual, stringlength is the
number of the bits of binary string of encode individual. In the instance one, dimension=3,stringlength=8.In the
programming1 ,the last bit of every row record the fitting value of an individual encoded by this row.

2.3 cross-over

Randomly choosing two individuals from pop, and changing the bits of the same section of the two

individuals.

Programming 2 for cross-over
function new_pop=cross_over(pop,popsize,stringlength,dimension)

match=round(rand(1,popsize)*(popsize-1))+1;

for i=1:popsize

 [child1,child2]=cross_running(pop(i,:),pop(match(i),:),stringlength,dimension);

 new_pop(2*i-1:2*i,:)=[child1;child2];

end

function [child1,child2]=cross_running(parent1,parent2,stringlength,dimension)

cpoint=round((stringlength-1)*rand(1,dimension))+1;

for j=1:dimension
child1((j-1)*stringlength+1:j*stringlength)=[parent1((j-1)*stringlength+1:(j-1)*stringlength+cpoint(j))
parent2((j-1)*stringlength+cpoint(j)+1:j*stringlength)];
child2((j-1)*stringlength+1:j*stringlength)=[parent2((j-1)*stringlength+1:(j-1)*stringlength+cpoint(j))
parent1((j-1)*stringlength+cpoint(j)+1:j*stringlength)];

end

Programming 2 includes two functions written by MATLAB which complete the course of mutation by change
the part of the binary strings of the chosen individuals.

2.4 mutation

Mutation also simulates biologic evolution mechanism. For the individual to mutate, randomly choose the point
to mutate which means the bit of the individual encoded binary string, then change 0 to 1 and change 1 to 0. Pm
is the probability of mutation and it is not great in nature and in programming 2, pm=0.05. For every individual,
a number of probabilities of mutation are randomly given by the computer. If the giver number is not greater
than pm, the individual mutates, otherwise don’t mutate.

Programming 3 for mutation

function new_pop=mutation(new_pop,stringlength,dimension,pm)

new_popsize=size(new_pop,1);

for i=1:new_popsize

 if rand<pm mpoint=round(rand(1,dimension)*(stringlength-1))+1;

 for j=1:dimension
new_pop(i,(j-1)*stringlength+mpoint(j))=1-new_pop(i,(j-1)*stringlength+mpoint(j));

 end

 end

end

www.ccsenet.org/mas Modern Applied Science Vol. 5, No. 1; February 2011

 ISSN 1913-1844 E-ISSN 1913-1852 232

2.5 decoding

Decoding change the encoding binary strings into decimal number, and then computes fitting values for
individuals. Decoding is shown as following through instance one above.

In instance one, each dimension of an individual),,(321 xxxX has a boundary, denoting as

],,,,,[_ 332211 babababoundx , 111 bxa , 222 bxa , 333 bxa , an encoded individual :

 321

001101100001010101101111

xxx

 .

Encoded binary string for 01101111:1x .

Decoded decimal number:

1118

01234567

)(
12

2121212120212120
aab

Encoded binary string for 00010101:2x

Decoded decimal number:

2228

01234567

)(
12

2120212021202020
aab

Encoded binary string for 00110110:3x

Decoded decimal number:

3338

01234567

)(
12

2021212021212020
aab

Programming 4 for decoding
function pop=decoding(pop,stringlength,dimension,x_bound)

popsize=size(pop,1);

temp=2.^(stringlength-1:-1:0)/(2^stringlength-1);

for i=1:dimension

 bound(i)=x_bound(i,2)-x_bound(i,1);

end

for i=1:popsize

 for j=1:dimension

 m(:,j)=pop(i,stringlength*(j-1)+1:stringlength*j);

 end

 x=temp*m;

 x=x.*bound+x_bound(:,1)';

 pop(i,dimension*stringlength+1)=funname(x);

end

2.6 selection

Selection is the proceeding through which a new population is formed by choosing the individuals with greater
fitting values and eliminating the individuals with smaller fitting values. There are two strategies: the first
strategy is that maintaining the individuals with greatest fitting values into the next population; the second
strategy is that choosing the individuals to next population by bet ring arithmetic(Zhou ming & Sun shudong.
1999) which guarantee direct ratio between chosen probability and fitting value of the individual. Through
selection the fitting values of population is increased constantly and isn’t decreased.

Programming 5 for selection

function selected=selection(pop,popsize,stringlength,dimension)

popsize_new=size(pop,1);

www.ccsenet.org/mas Modern Applied Science Vol. 5, No. 1; February 2011

Published by Canadian Center of Science and Education 233

r=rand(1,popsize);

fitness=pop(:,dimension*stringlength+1);

fitness=fitness/sum(fitness);

fitness=cumsum(fitness);

for i=1:popsize

 for j=1:popsize_new

 if r(i)<=fitness(j)

 selected(i,:)=pop(j,:);

 break;

 end

 end

end

3. Instances

Main programming 6 for solving instances

clear;clc;

popsize=10;dimension=3;stringlength=8;x_bound=[-2,3;-2,4;-1,1];pm=0.05;

pop=encoding_guo(popsize,stringlength,dimension);

pop=decoding_guo(pop,stringlength,dimension,x_bound);

[choice_number,choice_k]=max(pop(:,stringlength*dimension+1));

choice=pop(choice_k,:);

for i=1:1000 new_pop=cross_over(pop,popsize,stringlength,dimension);
pop=mutation_guo(new_pop,stringlength,dimension,pm);
pop=decoding_guo(pop,stringlength,dimension,x_bound);
[number,k]=max(pop(:,stringlength*dimension+1));

 if choice_number<number

 choice_number=number;

 choice_k=k;

 choice=pop(choice_k,:);

 end pop=selection_guo(pop,popsize,stringlength,dimension);

 [number,m]=min(pop(:,stringlength*dimension+1));

 pop(m,:)=choice;

end [value,x]=result_guo(pop,stringlength,dimension,x_bound);

Programming 7

function [value,x]=result_guo(pop,stringlength,dimension,x_bound)

[value,k]=max(pop(:,stringlength*dimension+1));

temp=2.^(stringlength-1:-1:0)/(2^stringlength-1);

for i=1:dimension

 bound(i)=x_bound(i,2)-x_bound(i,1);

end

for j=1:dimension

 m(:,j)=pop(k,stringlength*(j-1)+1:stringlength*j);

end

x=temp*m;

www.ccsenet.org/mas Modern Applied Science Vol. 5, No. 1; February 2011

 ISSN 1913-1844 E-ISSN 1913-1852 234

x=x.*bound+x_bound(:,1)'

programming 8

function y=funname(x)

y=6-x(1)^2-x(2)^2-x(3)^2;

For different instances, programmings need to be rewritten. And here is only for instance one.

Instance two: finding the maximum of function 321321 6),,(xxxxxxfy ,

Running result:
value = 5.9995 x = -0.0159 0 0.0159

This shows that the maximum is 5.9995, and 0159.0,0,0159.0 321 xxx after one hundred

generations and it closely approaches the real maximum 6 of the function.
Instance three: finding the maximum of function]10,0[,10)3cos(2)5sin()(xxxxfy , the
figure of the function is as the following Figure 1:

Programming for this instance in MATLAB

function y=funname(x)

y=sin(5*x)-2*cos(3*x)+10;

in programming 6, changing the following

popsize=10;dimension=3;stringlength=8;x_bound=[-2,3;-2,4;-1,1];pm=0.05;

as: popsize=10;dimension=1;stringlength=8;x_bound=[0,10];pm=0.5;

running result: value =12.9427 x =5.2941

Through this instance we can validate the power of global optimal seeking and if let pm=0.05, run the
programming 6, local optimal solution is found. But increasing pm, let pm=0.5, global optimal solution is
obtained. This instance shows that in order to avoid the local optimal solution, pm can be increased. This is the
same as biological evolution mechanism: when mutation is fastened, the evolution speed of biological group is
increased.

Instance four: Finding]10,0[, xx for function 10)3cos(2)5sin()(xxxf , satisfying 11)(xf .

The function in instance 4 is the same as that in instance 3. And by the figure of this function, the value is not
only one.

Programming for instance four in MATLAB

function y=funname2(x)

y=-abs(sin(5*x)-2*cos(3*x)+10-11);

in programming 6, changing the following

popsize=10;dimension=3;stringlength=8;x_bound=[-2,3;-2,4;-1,1];pm=0.05;

as: popsize=10;dimension=1;stringlength=8;x_bound=[0,10];pm=0.5;

running result: value =-0.0130 x =1.5686

when x_bound=[0,1], value =-0.0035 x =0.9922; 0036.11)9922.0(f

when x_bound=[1,2], value =-0.0106 x =1.5725; 9897.10)5725.1(f

when x_bound=[2,3], value =-0.0150 x =2.6667; 9853.10)6667.2(f

Through changing x_bound, the nine values satisfying 11)(,100 xfx are:

0.9922,1.5725,2.6667,3.3098,4.9569,5.6196,7.2745,8.9529,9.5922.

This instance shows that genetic algorithm can also be used to solve equations if the boundaries of the variables
are given.

4. Conclusion
MATLAB codes given in literature(Liu guohua, Bao hong & Li wenchao. 2001)(Yin ming, Zhang xinghua &
Dai xianzhong. 2000) are incomplete, and somewhere have errors. This article provides the complete original
codes in MATLAB which can be directly run through MATLAB7.0. The given instances in this article show that

www.ccsenet.org/mas Modern Applied Science Vol. 5, No. 1; February 2011

Published by Canadian Center of Science and Education 235

the genetic algorithm can be applied to find optimal solution and to solve equations and indicate that the genetic
algorithm is a powerful global searching tool. In order to avoid local optimal solution, we can increase individual
rate of mutation and increase the hereditary generations of population.

References

Liang jiye. (1999). The research of common problems in genetic algorithm application. Research of Computer
Application, 1999 (7): 20-21.

Liu guohua, Bao hong & Li wenchao. (2001). The genetic algorithm programming in MATLAB. Research of
Computer Aapplication,2001(8):80-82.

Liu yong, Kang lishan & Chen yuping. (1997). Nonnumerical parallel algorithm(second volumn)—genetic
algorithm. Beijing:science press,1997.

Xi yugeng, Chai tianyou & Yun weimin. (1996). Summarization of genetic algorithm. Control Theory and
Application, 1996(6):697-708

Yin ming, Zhang xinghua & Dai xianzhong. (2000). The programming of genetic algorithm in MATLAB.
Application of Electronic Technology, 2000(1):9-11.

Zhou ming & Sun shudong. (1999). Theory and Application of Genetic Algorithm. BeiJing: national
independence industry press, 1999.

Figure 1. curve for]10,0[,10)3cos(2)5sin(xxx

