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Abstract 

In this study, a new approach is proposed as a modification to a standard fuzzy modeling method based on the 
table look-up scheme. 70 soil samples were collected from different horizons of 15 soil profiles located in the 
Ziaran region, Qazvin province, Iran. Then, neural network model (feed-forward back propagation network) and 
fuzzy table look-up scheme were employed to develop a pedotransfer function for predicting soil CEC using 
easily measurable characteristics of clay and organic carbon. In order to evaluate the models, root mean square 
error (RMSE) and R2 were used. The value of RMSE and R2 derived by ANN model for CEC were 0.47 and 0.94 
respectively, while these parameters for fuzzy table look-up scheme were 0.33 and 0.98 respectively. Results 
showed that fuzzy table look-up scheme had better performance in predicting and modeling of soil cation 
exchange capacity than artificial neural network.  

Keywords: Fuzzy table look-up scheme, Artificial neural network, Cation exchange capacity, Pedotransfer 
function, Ziaran 

1. Introduction 

Cation exchange capacity (CEC) is among the most important soil properties that is required in soil databases 
(Manrique et al., 1991), and is used as an input in soil and environmental models (Keller et al., 2001). CEC is the 
amount of negative charge in soil that is available to bind positively charged ions (cations). CEC is used as a 
measure of fertility, nutrient retention capacity and the capacity to protect groundwater from cation 
contamination (Akbarzadeh et al., 2009). CEC buffers fluctuations in nutrient availability and soil pH. Soil 
components known to contribute to CEC are clay and organic matter and to a lesser extent, silt (Seybold et al., 
2005). Although CEC can be measured directly, its measurement is especially difficult and expensive in the 
Aridisols of Iran because of the large amounts of calcium carbonate (Carpena et al., 1972) and gypsum 
(Fernando et al., 1977). 

1.1 Pedotransfer function 

The term of pedotransfer function (PTF) was coined by Bouma (1989) as translating data we have into what we 
need. The most readily available data come from soil survey, such as field morphology, texture, structure and pH. 
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Pedotransfer functions add value to this basic information by translating them into estimates of other more 
laborious and expensively determined soil properties. These functions fill the gap between the available soil data 
and the properties which are more useful or required for a particular model or quality assessment. Various PTFs 
have been developed to estimate CEC from basic physical and chemical soil properties (Breeuwsma et al., 1986; 
Manrique et al., 1991; Bell & Van Keulen, 1995; McBratney et al., 2002). In most of these models, CEC is 
assumed to be a linear function of soil organic matter and clay content (Breeuwsma et al., 1986; McBratney et al., 
2002). Results show that greater than 50% of the variation in CEC could be explained by the variation in clay 
and organic carbon content for several New Jersey soils (Drake and Motto, 1982), for some Philippine soils 
(Sahrawat, 1983), and for four soils in Mexico (Bell and Van Keulen, 1995). Only a small improvement was 
obtained by adding pH to the model for four Mexican soils (Bell and Van Keulen, 1995). In B horizons of a 
toposequence, the amount of fine clay was shown to explain a larger percent of the variation in CEC than the 
total clay content (Wilding and Rutledge, 1996). Vos et al. (2005) used 12 PTFs and Brazilian's database for 
prediction of bulk density. Their results showed that the separation of subsoil data from topsoil data did not 
increase the accuracy of prediction. Similarly, Heusher et al. (2005) and Kaur et al. (2002) reported that the soil 
texture and organic matter content were the main parameters for estimating of bulk density. Najafi and Givi 
(2006) used the ANNs and PTFs methods for prediction of soil bulk density. They pointed out that the ANNs are 
able to predict the soil bulk density better than the PTFs. Amini et al. (2005) estimated the cation exchange 
capacity in the central of Iran using soil organic matter and clay contents. They used the ANN and five 
experimental models that were on the basis of regression methods for their predictions. They showed that a 
neural network PTF with eight hidden neurons was able to predict CEC better than the regression PTFs. Also the 
ANN model significantly improved the accuracy of the prediction by up to 25%. They concluded that network 
models are in general more suitable for capturing the non-linearity of the relationship between variables. Jain and 
Kumar (2006) indicated that the ANN technique can be successfully employed for the purpose of calibration of 
infiltration equations. They had also found that the ANNs are capable of performing very well in situations of 
limited data availability. 

1.2 Fuzzy inference systems 

Fuzzy inference is the process of formulating the mapping from a given input to an output using fuzzy logic. The 
mapping then provides a basis from which decisions can be made, or patterns discerned. Fuzzy inference 
systems have been successfully applied in fields such as automatic control, data classification, decision analysis, 
expert systems and computer vision (Sun, 2009). Because of its multidisciplinary nature, fuzzy inference systems 
are associated with a number of names, such as fuzzy rule-based systems, fuzzy expert systems, fuzzy modeling, 
fuzzy associative memory, fuzzy logic controllers and simply (and ambiguously) fuzzy systems. It is well known 
that many elements of land properties have uncertainties. Uncertainty is inherent in decision-making processes, 
which involve data and model uncertainty. These range from measurement errors, to inherent variability, to 
instability, to conceptual ambiguity or to simple ignorance of important factors (Keshavarzi et al., 2010). Fuzzy 
set theory has been widely used in soil science for soil classification and mapping, land evaluation, fuzzy soil 
geostatistics, soil quality indices (Chang and Burrough, 1987; Burrough, 1989; Zhu et al., 1996; McBratney and 
Odeh, 1997; McBratney et al., 2003; Zhang et al., 2004; Lagacherie, 2005). McBratney and Odeh (1997) showed 
the potential of fuzzy set theory in soil science, such as mapping and numeric classification, land use evaluation, 
modeling and simulation of physical processes. Enea and Salemi (2001) and Klingseisen et al. (2007) used fuzzy 
logic for evaluating environmental impacts. Metternicht and Gonzalez (2004) presented a fuzzy exploratory 
model for the prediction of soil erosion hazards. Sadiq and Rodriguez (2004) evaluated and predicted the 
performance of slow sand filters using fuzzy rule-based modeling. Tran et al. (2002) developed a fuzzy 
rule-based model to improve the performance of the revised universal soil loss equation (RUSLE). Their 
approach consisted of two approaches: (1) Multi-objective fuzzy regression (MOFR); and (2) Fuzzy rule-based 
modeling (FRBM). Tayfur et al. (2003) studied a fuzzy logic algorithm to estimate sediment loads from bare soil 
surfaces. Predicting the mean sediment loads from experimental runs, the performance of the fuzzy model was 
compared with that of the artificial neural networks (ANNs) and the physics-based models. The results showed 
that the fuzzy model performed better under very high rainfall intensities over different slopes and over very 
steep slopes under different rainfall intensities. Zhu et al. (2010) presented a method to construct fuzzy 
membership functions using descriptive knowledge. Construction of fuzzy membership functions is 
accomplished based on two types of knowledge: 1) knowledge on typical environmental conditions of each soil 
type and 2) knowledge on how each soil type corresponds to changes in environmental conditions. In this study, 
a new approach is proposed as a modification to a standard fuzzy modeling method. This new method takes 
randomness into account by considering the statistical properties of training dataset. The method discussed here 
is called table look-up scheme. The idea is based on all available input-output data pairs (Jang et al., 1997; Liu et 
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al., 2003), a rule-base will be build. Then the unknown system between the input-output can be approximated 
using this rule-base.  

Hence, the present study was carried out with objective to compare of ANNs model and fuzzy table look-up 
scheme for estimating and modeling of soil cation exchange capacity using some easily measurable soil 
parameters in Ziaran region. 

2. Materials and methods 

2.1 Site description 

The study was carried out in Ziaran region, Qazvin province in Iran. The research commenced in 2008 and ended 
in 2009. The land investigated in the research is located between latitudes of 35°58´ and 36°4´ N and between 
longitudes of 50°24´ and 50°27´ E which has the area about 5121 hectares. The average, minimum and 
maximum heights points of Ziaran district are 1204, 1139 and 1269 meters above sea level, respectively (Fig1). 
The soil moisture and temperature regimes of the region by means of Newhall software are Weak Aridic and 
Thermic, respectively. Based on soil taxonomy (USDA, 2010), this region has soils in Entisols and Aridisols 
orders.  

2.2 Data collection and soil sample analysis 

After preliminary studies of topographic maps (1:25000), using GPS, studying location was appointed. 70 soil 
samples were collected from different horizons of 15 soil profiles located in Ziaran region in Qazvin Province. 
Measured soil parameters included texture (determined using Bouyoucos hydrometer method), Organic Carbon 
(O.C) was determined using Walkley-Black method (Nelson and Sommers, 1982) and CEC (cation exchange 
capacity in Cmolc kg-1 soil) determined by the method of Bower (Sparks et al., 1996).  

2.3 Methods to fit PTFs 

2.3.1 Artificial neural network 

Neural classifiers can deal with numerous multivariable nonlinear problems, for which an accurate analytical 
solution is difficult to obtain (Park et al., 2010). An artificial neural network is a highly interconnected network 
of many simple processing units called neurons, which are analogous to the biological neurons in the human 
brain. Neurons having similar characteristics in an ANN are arranged in groups called layers. The neurons in one 
layer are connected to those in the adjacent layers, but not to those in the same layer. The strength of connection 
between the two neurons in adjacent layers is represented by what is known as a ‘connection strength’ or 
‘weight’. An ANN normally consists of three layers, an input layer, a hidden layer, and an output layer. In a feed 
forward network, the weighted connections feed activations only in the forward direction from an input layer to 
the output layer. On the other hand, in a recurrent network additional weighted connections are used to feed 
previous activations back into the network. The structure of a feed-forward ANN is shown in Figure 2. This 
ANN is a popular neural network which known as the back propagation algorithm introduced by Karaca and 
Ozkaya (2006). This ANN had k input and one output parameters. They used this ANN for accurate modeling of 
the leachate flow-rate. They also reported that the input parameters, number of neurons at the hidden and output 
layer should be determined according to currently gathered data. Moreover, an important step in developing an 
ANN model is the training of its weight matrix. The weights are initialized randomly between suitable ranges, 
and then updated using certain training mechanism (Pachepsky et al., 1996: Schaap et al., 1998; Minasny et al., 
1999).  

In the feed-forward networks, error minimization can be obtained by a number of procedures including Gradient 
Descent (GD), Levenberg–Marquardt (LM) and Conjugate Gradient (CG). BP uses a gradient descent (GD) 
technique which is very stable when a small learning rate is used, but has slow convergence properties (Omid et 
al., 2009). Several methods for speeding up BP have been used including adding a momentum term or using a 
variable learning rate. In this study, LM algorithm in the sense that a momentum term is used to speeding up 
learning and stabilizing convergence is used. 

2.3.2 Membership functions and fuzzy table look-up scheme 

A general fuzzy system has the components of fuzzification, fuzzy rule-base, fuzzy output engine and 
defuzzification. Fuzzification converts each piece of input data to degrees of membership by a look-up in one or 
more several membership functions. The key idea in fuzzy logic is the allowance of partial belongings of any 
object to different subsets of a universal set, instead of completely belonging to a single set. Partial belonging to 
a set can be described numerically by a membership function, which assumes values between 0 and 1 inclusive. 
Intuitions, inference, rank ordering, angular fuzzy sets, neural networks, genetic algorithms and inductive 
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reasoning can be among many ways to assign membership values or functions to fuzzy variables. Especially, the 
intuitive approach is used rather commonly because it is simply derived from the innate intelligence and 
understanding of human beings. Fuzzy membership functions may take on many forms, but in practical 
applications simple linear functions such as triangular ones are preferable (Tayfur et al., 2003). MFs for the 
corresponding inputs are recommended by MATLAB (7.8) as triangular membership function. There are five 
steps in generating fuzzy rules with fixed membership functions. Consider the design of a fuzzy system with two 
inputs (x1, x2) and one output (y) system. Further, there are n data points in the training set. 

Step1: Define the fuzzy partition of the input and output variables: 

Six and three fuzzy sets are selected to form the partition of this range, respectively. This means the degree of 
membership can be evaluated for any input values. The fuzzy partition for the output is assumed to have the five 
fuzzy sets. 

Step2: Generate one fuzzy rule for each of the n input-output pairs: 

These results are in the initial fuzzy rule base (Eq.1) (Mendel, 2001; Liu et al., 2003): 

npRuleFuzzyyxx ppp ,...,2,1),,( 21                                                  (1) 

From this input-output pair, one fuzzy rule can be generated. One may be reminded of the facts that the fuzzy 
sets may overlap. Now the question is how to assign the appropriate membership functions to the variables in 
each data pair. The common practice is that the fuzzy variable is assigned the membership function that produces 
the maximum membership value. 

Step 3: Calculate the degree for each fuzzy rule resulted from rules: 

The number of fuzzy rules generated by the input-output pairs is usually large. Inconsistent and redundant rules 
are inevitable. One is then confronted with the task of eliminating the inconsistency and redundancy.  

Step 4: Create the final fuzzy rule base by removing inconsistent and redundant rules: 

In the standard approach, the rule having the largest degree is adopted. As an improvement, a new selection 
approach is proposed here to remove inconsistency and redundancy. The notion of reliability factor is introduced. 
Specifically, for each given set of k rules with the same antecedent parts, the reliability factor is defined as (Liu 
et al., 2003): 

K

K
RF 1)(Factory Reliabilit                                                       (2) 

Where: 

k1=Number of redundant rules, 

k =Total number of the redundant and inconsistent rules having the same antecedent part. 

The reliability factor is then used as a weighting factor for computing the effective degree for each rule degree as 
follows (Liu et al., 2003): 

RFD *)(D Degree Effective eff                                                          (3) 

Table 1 shows the example of reliability factors for the inconsistent and redundant rules itemized. The final fuzzy 
rule-base can now be compiled by choosing the rules with the largest effective degrees. For the redundant and 
inconsistent rules in table 1, the effective degree is given by (Liu et al., 2003): 

niDD ieffeff ,...,2,1,)max((max) )(                                                     (4) 

Where: Deff = effective degree, and n is the number of membership function. 

Step 5: Determine the overall fuzzy system: 

Up to this point, the membership functions are defined in step1 and the fuzzy rule-base is compiled in step 4. In 
this paper, Mamdani’s inference scheme is adopted for its simplicity (Fig 3). In carrying out fuzzy inference 
(reasoning), mathematical operations on the membership functions are invariably required. Any T-norm or 
S-norm can be used to define the operations involving membership function. In addition, any defuzzification 
scheme such as the centroid method can be selected. This essentially completes the design procedure in 
modeling a fuzzy system. In summary, the modified table-look-up scheme offers an effective method for 
removing inconsistency and redundancy in the process of assembling fuzzy rules. In this study, MATLAB 7.8 
software was used for the design and testing of ANN models and fuzzy table look-up scheme. 
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2.3.3 Performance criteria 

The performance of the models was evaluated by a set of test data using the root mean square error (RMSE) and 
the coefficient of determination (R2) between predicted and measured values. The RMSE is a measure of 
accuracy and reliability for calibration and test data sets (Wösten et al., 1999) and is defined as: 





n

k
po zz

n
RMSE

1

2)(
1

                                                                              (5)               

Where: Zo is observed value, Zp is predicted value, and n is number of samples. 

3. Results and discussion 

3.1 Data summary statistics 

Data summary of train and test are presented in Tables 2 and 3, respectively. Data subdivided into two sets: 20% 
of the data for testing and the remaining 80% of the data were used for training or calibrating. Some soil 
parameters including clay and organic carbon were input data for prediction of CEC. However, clay and organic 
carbon were considered as inputs for prediction of CEC. Amini et al. (2005) stated that CEC has high correlation 
with these inputs. They found that inputs like sand and silt can not improve accuracy of prediction of CEC. 
Simple linear correlation coefficients (r) between CEC and independent variables were also calculated (Table 4). 
As Table 4 illustrates correlations between O.C and CEC and between clay and CEC were positive and highly 
significant. For example the correlation coefficients between CEC and clay content (r = 0.92**) is more than 
between CEC and O.C content (r = 0.56*). Positive correlation between CEC, O.C and clay content is related to 
existence of negative charges on these properties (Manrique et al., 1991; Bell and Van Keulen., 1995; 
Noorbakhsh et al., 2005). However with regarding to these correlation coefficients, both of them are suitable for 
developing PTFs for prediction of CEC in soils of Ziaran region. 

3.2 Developing PTFs using Artificial Neural Network 

After determining of linear correlation coefficients, performance of artificial neural networks was developed for 
test data set. In the present study for predicting soil CEC we did not increase the input date for constructing 
artificial neural network. Because according to findings of Lake et al. (2009) and Amini et al. (2005) increasing 
the number of inputs will decrease the accuracy of the estimations. For example for predicting a soil 
characteristics if just one types of the input data have low correlation coefficients with output data, the accuracy 
of the model will automatically decrease. The input data in this model were consisted of the percentages of clay 
and organic carbon. After determination the complexes of training and testing data, in the next step the various 
models of neural network having one hidden layer and 1-10 neurons in this layer were made. Then, the optimum 
structures of network by means of coefficient of determination and RMSE criteria were determined. The RMSE 
values for various numbers of neurons related to studied soil parameter are presented in the Figure 4. As shown 
in this Figure, the minimum level of RMSE for CEC is related to the network having seven neurons in the hidden 
layer. Also, with regarding to this figure can be realize that with increasing the number of neurons, the efficiency 
of models will decrease and hence, the best efficiency is related to the networks having optimum numbers of 
neurons. The levels of RMSE and R2 for CEC were 0.47 and 0.94 respectively. Schaap et al. (1998) confirmed 
applicability of ANNs and concluded that accuracy of these models depend on number of inputs. One of the 
advantages of neural networks compared to traditional regression PTFs is that they do not require a priori 
regression model, which relates input and output data and in general is difficult because these models are not 
known (Schaap and Leij, 1998). The scatter plot of the measured against predicted CEC for the test data set is 
given in Figure 5. So that according to this diagram, the best fitted line has the angle of near to 45° that shows 
the high accuracy of estimation by the neural network model. 

3.3 Developing PTFs using Fuzzy Table Look-up Scheme 

Fuzzy rule-base contains fuzzy rules that include all possible fuzzy relations between inputs and outputs. These 
rules are expressed in the IF-THEN format. In the fuzzy approach there are no mathematical equations and 
model parameters, however, all the uncertainties and model complications are included in the descriptive fuzzy 
inference procedure in the form of IF-THEN statements (Tayfur et al., 2003). In this study, fuzzy rules relating 
the clay and organic carbon contents to soil CEC were inferred from the training data. The antecedent part of the 
rule (the part starting with IF, up to THEN) included a statement on the clay and organic carbon contents while 
the consequent part (the part starting with THEN, up to the end) included a statement on soil CEC. For example 
‘IF the (Clay is Low) and the (O.C is Medium), THEN the (CEC is High)’. Table 5 summarizes the fuzzy rules 
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constructed in this study. Fuzzy inference engine takes into account all the possible fuzzy rules in the fuzzy 
rule-base and learns how to transform a set of inputs to corresponding outputs. A general structure of fuzzy 
system is demonstrated in fig 6. In the main, each fuzzy system consists of three main sections, fuzzifier, fuzzy 
data base and defuzzifier. At first, input information is made as fuzzy data after bypassing the fuzzifier sections, 
in which the precise amount value becomes as fuzzy value by membership functions (Fig 7). Defuzzification 
converts the resulting fuzzy outputs from the fuzzy inference engine to a number. There are several 
defuzzification methods, such as the weighted average, maximum membership, average maximum membership, 
and center of gravity, etc. In this study, the centroid method is employed. Later, fuzzy parameters are entered to 
the fuzzy data base. Fuzzy data base includes two main sections, fuzzy rule-base and inference engine. In fuzzy 
rule-base, rules related to fuzzy propositions are described. Thereafter, analysis operation is applied by fuzzy 
inference engine. There are two main fuzzy inference engine-Sugeno and Mamdani- for this purpose. In this 
paper, Mamdani’s inference scheme is adopted for its simplicity (Fig 3) and used for predicting mentioned 
parameter. Then, the optimum structures of fuzzy table look-up scheme by means of coefficient of determination 
and RMSE criteria were determined.  The levels of RMSE and R2 for CEC were 0.33 and 0.98 respectively. In 
addition, the levels of coefficient of determination and RMSE derived by fuzzy inference system for studied soil 
parameter had higher values than those derived by artificial neural network (Table 6) which is in line with the 
work done by Akbarzadeh et al. (2009). The fuzzy inference system for CEC was more suitable for capturing the 
non-linearity of the relationship between variables. The scatter plot of the measured against predicted CEC for 
the test data set in fuzzy table look-up scheme is given in figure 8. So that according to this diagram, the best 
fitted line has the angle of near to 45° that shows higher accuracy of estimation by fuzzy table look-up scheme 
than neural network model. Liu et al. (2003) found that the modified table look-up scheme can predict the time 
series more accurately when noise was added to the time series. Akbarzadeh et al. (2009) in their study showed 
that a hybrid method (ANN and Fuzzy model) predicted soil CEC with very high accuracy. Burrough et al. (1992) 
demonstrated that fuzzy classification produced a superior number of available areas for agriculture compared to 
conventional Boolean classification. Zorluer et al. (2010) investigated the application of a fuzzy rule-based 
method for determination of clay dispersibility. In this study, a fuzzy logic approximation method was developed 
to combine the different results of the double hydrometer, pinhole, Na (%)-TDS and ESP-CEC methods into a 
single value. This new method was applied to the dispersibility test results of 29 samples, and it gave more 
reliable and objective results for identifying the dispersibility of the clay soil. Fernández et al. (2009) worked 
with fuzzy rules-based on classification systems using a preprocessing step to deal with class imbalance. Their 
aim was to analyze the behavior of fuzzy rule-based classification systems in the framework of imbalanced 
datasets through the application of an adaptive inference system with parametric conjunction operators. The 
empirical results showed that the use of these parametric conjunction operators resulted in a higher performance 
for all datasets with different imbalanced ratios. 

4. Conclusion 

In this study, artificial neural network model (feed-forward back-propagation network) and fuzzy table look-up 
scheme were employed to develop a pedotransfer function for predicting soil cation exchange capacity by using 
available soil properties. This network was consisted of one hidden layer, a sigmoid activation function in hidden 
layer, and a linear activation function in output layer and Levenberg-Marquardt training algorithm used due to 
efficiency, simplicity and high speed. Fuzzy inference system is a rule-based system consists of three conceptual 
components. There are: a rule-base, contains fuzzy IF-THEN rules, a database, defines the membership function 
and an inference system, combines the fuzzy rules and produces the system results. First phase of fuzzy logic 
modeling is the determination of membership functions of input-output variables, second is the construction of 
fuzzy rules and the last is the determination of output characteristics, output membership function and system 
results. For predicting the soil property by means of PTFs, the input data were consisted of the percentages of 
clay and organic carbon for CEC. The performance of the neural network model and fuzzy table look-up was 
evaluated using a test data set. Results showed that fuzzy table look-up scheme had better performance in 
predicting soil CEC than neural network model. The fuzzy table look-up scheme for this parameter was more 
suitable for capturing the non-linearity of the relationship between variables. With regarding to the evaluation 
criteria, the results of this study revealed that the fuzzy table look-up scheme had superiority to the artificial 
neural networks for prediction of mentioned soil parameter. This is a crucial result because, since ANN- PTFs 
formed from local data produce more accurate predictions than those built from data spread from a wider area, 
the concept of data conservation becomes a critical factor in ANN-PTF construction. However, due to difficulties 
of direct measurement of soil parameters, we recommend using of neuro-fuzzy models in the future studies for 
obtaining the logical equations of other soil parameters, especially soil hydraulic properties, in each area and also 
we recommended testing mentioned formula for CEC in other regions. 
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Table 1. Example of reliability factors and effective degrees for redundant and inconsistent rules 

x1 x2 y Degree RF Deff 

A B C1 D1 3/6 D1*3/6 

A B C1 D2 3/6 D2*3/6 

A B C1 D3 3/6 D3*3/6 

A B C2 D4 2/6 D4*2/6 

A B C2 D5 2/6 D5*2/6 

A B C3 D6 1/6 D6*1/6 

Table 2. Statistics of training data set for cation exchange capacity 

T
ra

in
in

g 
se

t Soil parameter Min Max Mean Std 

CEC (CmolcKg-1) 7.42 20.45 15.87 2.64 

Clay (%) 3.20 56.80 23.85 12.05 

O.C (%) 0.04 1.10 0.36 0.23 

Table 3. Statistics of testing data set for cation exchange capacity 

Te
st

in
g 

se
t 

Soil parameter Min Max Mean Std 

CEC (CmolcKg-1) 11.10 19.69 16.02 2.21 

Clay (%) 7.20 48.00 23.79 11.79 

O.C (%) 0.09 0.76 0.32 0.20 

Table 4. Simple linear correlation coefficients (r) between CEC and independent variables 

 

 

 

 

 

* Correlation is significant at the 0.05 level 

** Correlation is significant at the 0.01 level 

 

 CEC (CmolcKg-1) Clay (%) O.C (%) 

CEC (CmolcKg-1) 1 0.92** 0.56* 

Clay (%) 0.92** 1 0.22* 

O.C (%) 0.56* 0.22* 1 
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Table 5. Fuzzy rules relating the clay and organic carbon contents to soil CEC (L= Low; M= Medium; H= High; 

V=Very) 

 

Rule No. IF Clay (%) and O.C (%) THEN CEC (CmolcKg-1) 

1 IF VVL and L THEN L 

2 IF VL and L THEN M 

3 IF VL and M THEN M 

4 IF VL and H THEN M 

5 IF L and L THEN H 

6 IF L and M THEN H 

7 IF L and H THEN H 

8 IF H and L THEN VH 

9 IF H and M THEN VH 

10 IF H and H THEN H 

11 IF VH and L THEN VH 

12 IF VH and M THEN VH 

13 IF VH and H THEN VH 

14 IF VVH and M THEN VH 

 

Table 6. Statistical parameters in test stage for different methods based on pedotransfer functions 

Statistical parameters Artificial Neural Network Fuzzy Table Look-up Scheme

RMSE 0.47  0.33  

R2 0.94  0.98 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Location of the study area 
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Figure 2. Structure of feed-forward ANN 

 

 
 

Figure 3. Structure of FIS Recommended model 

 

 

Figure 4. RMSE values for 1-10 neurons in hidden layer (cation exchange capacity) 

 

 
Figure 5. The scatter plot of the measured versus predicted CEC (ANN) 
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Figure 6. The general structure of the fuzzy inference system 

 

 
Figure 7. Fuzzy membership functions for input-output 

 

 

Figure 8. The scatter plot of the measured versus predicted CEC (Fuzzy Table Look-up Scheme) 
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