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Abstract 

The total and viscosity cross sections of 3He-3He collisions in HeII are calculated. The basic achievement of the 
paper is the prediction of the Ramsauer-Townsend effect in this mixture. The RT minimum appears as a result of 
a balance between attractive short-range and repulsive zero-range interactions. In the low- energy limit the cross 
sections are dominated by S-wave scattering. In this limit, these cross sections are strongly modified by 
many-body effects. The influence of S-scattering decreases with increasing pressure and concentration because 
of the overall repulsion of medium effects.  The effect of the P-wave scattering appears as a resonance-like 
behavior (peak structure) in the total cross section. This peak structure increases with pressure and concentration. 
For high energies, these cross sections are independent of pressure and concentration. This indicates that the 
high-energy behavior is dominated by the self-energy contribution; and the medium effects can be neglected. 
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1. Introduction 

Superfluidity and dimerization of 3He atoms in HeII are outstanding problems in low-temperature physics within 
both experimental (Ebner and Edwards, 1970; Edwards and Pettersen, 1992) and theoretical (Krotscheck and 
Saarela, 1993; Boronat et al., 1993) frameworks. There are no doubts among theorists that superfluidity of the 
3He component must exist at very low temperatures. Until now all experimental efforts to observe it have failed 
(Bashkin and Meyerovich, 1981; Boronat et al., 1993; Tuoriniemi et al., 2002; König and Pobell, 1994; König et 
al., 1994; Shirahama, and Pobell; 1994; Ishimoto et al., 1987; Owers-Bradley et al., 1983). The dimerization of 
the 3He component leads to the effective ‘‘bosonization’’ of the impurity system. As a result of dimer formation, 
the Fermi-Bose liquid of 3He-HeII is replaced with a quantum liquid that contains two Bose components, 4He 
and 3He2 (Bashkin and Wojdylo, 2000 ). 

A renewed interest has risen in the calculation of cross sections of 3He-HeII mixtures, due to their importance in 
the cooling down to the mK-range (Chaudhry and Brisson, 2009). These cross sections provide useful 
information about the interactions experienced by the colliding atoms. In this work, the 3He-3He cross sections in 
3He-HeII mixtures will be calculated to explore the Ramsauer-Townsend (RT) effect and a phase transition in 
3He-HeII mixtures. RT is the phenomenon occurring in the collision between particles. In this case, the total 
cross section exhibits a deep minimum at a particular value of the relative energy (Joachain, 1983). This deep 
minimum usually occurs at low energy and arises because the most significant partial wave cross section 
contributing to the total cross section (S-wave cross section) becomes equal to zero. Therefore, the mobility is a 
maximum (Borghesani, 2001) or, equivalently, the mean free path of atoms in the system is correspondingly 
large. Bardeen, Baym and Pines (Bardeen et al., 1967) predicted the existence of a supermobility state – 
characterized by the 3He atoms moving in the 4He-background with an exceedingly long mean free path. 
Explanation of the RT effect in low-energy scattering was one of the first successful applications of wave 
mechanics to collision problems. RT effect appears in electronic systems and in molecular 4He-4He (Kampe et al., 
1973; Lim and Larsen, 1981; Joudeh et al., 2010) as well as 3He-3He (Grace et al., 1976; Sandouqa et al., 2010). 
The problem of the bound state of two 3He atoms in HeII has motivated us to obtain accurate results for the 
scattering of 3He atoms at very low temperatures (Bashkin and Wojdylo, 2000; Bashkin and Meyerovich, 1981).  

The starting point in computing the 3He-3He cross sections in HeII is the determination of the relative phase 
shifts. This can be done by solving the Lippmann-Schwinger (LS) integral equation using a matrix-inversion 
technique (Bishop et al., 1977). The basic input is the Campbell effective interaction potential (Campbell, 1967). 
For calculating the Campbell potential, we have used the highly-acclaimed interatomic helium potential, 
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HFDHE2 (Aziz et al., 1979; Janzen, Aziz, 1995) which is generally regarded as the most reliable He-He 
potential. These mixtures have an additional degree of freedom, which is the 3He concentration. This degree of 
freedom enables us to study the density effect on the scattering properties. The rest of the paper is organized as 
follows. The underlying theoretical framework is presented in Section 2. The results are summarized and 
discussed in Section 3. Finally, in Section 4, the paper closes with some concluding remarks.  

2. Theoretical Framework 

2.1 LS t-matrix 

In this subsection we shall treat our formalism briefly. The Lippmann-Schwinger (LS) t-matrix after angular 
momentum decomposition may be written as (Bishop et al., 1977, Joudeh et al., 2010): 
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P0 is the total energy of the pair; P2 is the energy carried by the center of mass. Throughout this work we use 

units such that ,1km2 B3  kB being Boltzmann's constant. The operator 2
3(2 / ) ( / 2)u V b V  , 

where V is the Fourier transform of a static central two-body potential and 
3  is the effective reduced mass of 

the 3He interacting pair: 3 3 3(1/ 2) ( / 2)m b m   . The conversion factor is 2
3( / 2 ) 8.0425 .m K Å2. Using our 

system of units, we have 
2
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The number density of  3He particles in 3He-HeII mixtures 3 is given by   
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where 4 is  the volume of 4He atom and x is the 3He concentration. 

The factor   is the volume differential coefficient, representing the difference between the volume occupied by 

a 3He atom and that occupied by the heavier 4He atom. Table 1 shows , 
3m  and 4  at two different values 

of  Pr  and x. 

The free two-body Green's function )s(g0 is defined as 
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The system of interacting real particles is described in terms of weakly-interacting quasiparticles; this justifies 
the use of free Green's functions. The quantity  is a positive infinitesimal in the scattering region and zero 
otherwise.                        

The Fourier-Bessel transform of the interatomic potential was calculated using a program originally constructed 
by Ghassib and coworkers for interhelium potentials (Bishop et al., 1977). We have used the effective interaction 
in configuration space between two 3He quasiparticles embedded in HeII which is the sum of three physical 
effects (Campbell, 1967). The first is the direct 3He-3He interaction,  rV33 . To this end, the so-called HFDHE2 

(Aziz et al., 1979; Janzen, Aziz, 1995) has been used. The second effect is the interaction between the 3He atoms 
and the HeII background,  rV34 . The third effect is associated with the 4He-4He interaction,  rV44 . The total 

effective interatomic potential between two 3He atoms is, therefore,  

).r(V)r(V)r(V)r(V 443433eff                                                                                                           (6) 
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The medium effects in 3He-HeII mixture can be incorporated through two central quantities: an effective mass 
m , and an effective interaction ).r(Veff  In general, 33 mm  ; thus, we have more localization, and hence, less 

zero-point energy. At the same time, however, Veff is generally less attractive than V(r) (Ghassib, 1984). 

To calculate the real and imaginary parts of the t-matrix, it is convenient to define a real K-matrix   
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s .  

The relative phase shift  p   can now be obtained from the parameterization 
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2.2 Cross sections 

Suppose a particle with wave vector k


 and orbital angular momentum 


 is incident on another particle initially 
at rest. The probability for the first particle to cross, or to pass through, a unit area surrounding the stationary 
particle is called the differential cross section and is given by  
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  ,f  being the scattering amplitude. 

If the force causing the scattering is central, the differential cross section will be independent of .  

The differential cross section for fermions with spin S is defined by (Lim and Larsen, 1981)  
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Here  f  is defined by (Landau, 1996) as 
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 cosP  being the first-kind Lengendre polynomial of  order  . 

A general expression for the integral cross sections is  
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where n = 1 corresponds to the diffusion cross section D ;   is the center-of-mass scattering angle. 

Substituting n = 1 in Eq. (12), we have 
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In arriving at Eq. (13), we have used the fact that the first integral is even; whereas the second is odd and 
therefore vanishes:   
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The viscosity cross section   is obtained by substituting n = 2 in Eq. (12):       
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For 3He, 
2
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S  , and Eqs. (14) and (15) become 
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3. Results and Discussion 

Our results are summarized in Figs. (1-10) and Tables. (1-3) for the HFDHE2 potential. The principal physical 
quantities here are the total (diffusion) and viscosity cross sections for 3He-3He scattering in HeII. It was found 
necessary to include partial waves up to 14  so as to obtain results accurate to better than ~ 0.5%. In our 
figures, the velocity (upper scale) represents the corresponding velocity v1 [m/s] of a projectile atom 

*
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*
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1 m

]Å[k86.420

m

k
v 


 on a stationary target atom (v2=0) as a function of k [Å-1].  

Fig. (1) shows the behavior of the total cross section T and the wave-  cross section   ( 2 - 0 ) for 
3He-3He scattering in HeII as functions of k at x = 5% for Pr =0 and Pr =9.85 atm. For k  0.5 Å-1, the S-wave 
cross section is dominant. With increasing k, S-wave scattering tends to decrease; whereas the contribution of 
the higher angular-momentum waves to the scattering increases. For -1Å2k  , the total cross section is nearly 
constant. Fig. (2) displays T and   cross sections as functions of k as in Fig. (1), but for Pr =9.85 atm. From 
this figure, it is noted that the P-wave contribution to the total cross section increases with increasing pressure. 
The presence of a potential centrifugal barrier that arises from the orbital angular momentum 1  of the 
collision leads to the existence of quasi-bound states which manifest themselves as a resonance-like behavior.  

Fig. (3) displays T as functions of k at x = 5% for Pr =0 and Pr =9.85 atm. It is noted that S-wave scattering, 
and hence the total cross section, decreases with increasing pressure in the zero-energy limit because the 
effective interaction becomes shallower with increasing pressure (Al-Sugheir  et al., 2006). 

Figs. (4) and (5) show T as a function of k for x = 1.3% and x = 5% at Pr =0 and Pr =9.85 atm, respectively. It 
is noted that the high-concentration total cross sections are less than the corresponding low-concentration cross 
sections as k  0 because of the overall repulsion of medium effects, thanks to the overall less attraction of the 
Veff. 

Figs. (6) and (7) show the S-wave cross section 0 and the P-wave cross section 1, respectively, as a function of 
k for x = 1.3% and x = 5% at Pr =9.85 atm. At low concentration 0(0) is greater than that of high concentration. 
On the other hand, at low concentration 1(0) is less than that of high concentration. It has been predicted that 
dilute 3He–HeII mixtures favour S-scattering at low concentration (Efremov et al., 2000). On the other hand, at 
high concentration the interaction tends to produce p-scattering, because at low (high) concentration the S- (P-) 
scattering is dominant (Østgaard and Bashkin, 1992; Sandouqa et al., 2010).        

As shown in Figs. (3-7), in the low energy limit, the 3He-3He cross section T decreases with increasing pressure 
and concentration. The mean free path 3  of the 3He impurities in HeII is inversely proportional to T 
(Kerscher et al., 2001). i.e., 3  increases as expected by Bardeen, Baym and Pines (Bardeen et al., 1967) who 
predicted the existence of a supermobility state in 3He-HeII mixtures.     
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From the previous figures, we observe an RT minimum and a peak structure (resonance-like behavior) in the 
total cross section. Our results for RT are summarized in Table 2. This table shows the velocity v [m/s], the 
relative energy E [K], and the total cross section T [Å2] at which RT occurs. The cross section depends on the 
concentration and pressure. By increasing the pressure, the atoms become more localized. It follows that the 
velocity, at which the RT minimum occurs, decreases with increasing pressure. Further, T has a peak at a 
particular velocity, as shown in Table 3. This peak clearly appears by increasing the pressure and also by 
increasing the concentration. Judging from previous experience, this peak may be interpreted as an indicator of 
superfluidity or a quasi-bound state (Alm et al., 1994; Bohm, 1994). For high k, these cross sections are 
independent of pressure and concentration. This is because the kinetic energy part is much larger than the 
interaction part; therefore the medium effects become negligible, i.e., one can define a free-atom cross section 
appropriate for the energy range where the cross section is a constant. 

Fig. (8) exhibits the viscosity cross section   as a function of k at x = 5% for Pr =0 and Pr =9.85 atm.  has 
the same behavior as the total cross section, i.e., they have an RT minimum and a resonance-like behavior. It is 
found the high-pressure viscosity cross sections, for k  2 Å-1, approach the corresponding low-pressure cross 
sections. Therefore, for k  2 Å-1, there are no strong quantum effects manifesting themselves because of the 
relatively small scattering length for the 3He-3He scattering in 3He-HeII mixtures (Bishop et al., 1977).  

Figs. (9) and (10) show  as a function of k at Pr =0 and Pr =9.85 atm for 1.3% and x = 5% respectively. By 
comparing these figures to Fig. 8, it is noted that the effect of concentration is similar to that of pressure. 

4. Conclusion 

In this paper, the cross sections of 3He-3He collisions in HeII are calculated, namely, the total and viscosity, 
using the HFDHE2 potential. The basic achievement of the paper is the prediction of the Ramsauer-Townsend 
effect in this mixture. The RT minimum appears as a result of a balance between attractive short-range and 
repulsive zero-range interactions. The physical observation is that, at a particular value of energy, the total 
scattering cross section is anomalously small. At this energy, therefore, 3He atoms propagate through the HeII 
background as essentially unscattered particles. Other achievements are: (1) the prediction of a phase transition 
due to resonance-like behavior in the total cross section; and (2) studying the effect of the pressure and 
concentration on these cross sections. 

In the low-energy limit, the cross sections are dominated by S-wave scattering. In this limit, these cross sections 
are strongly modified by many-body effects. The influence of S-scattering decreases with increasing pressure 
and concentration because of the overall repulsion of medium effects. When the relative momentum is in the 0.5 
Å-1 range and higher, the contributions from the higher angular momentum (P-wave and above) scattering may 
become significant. The effect of the P-wave scattering appears as a resonance-like behavior on the total cross 
section. This peak structure increases with pressure and concentration. For high energies, these cross sections are 
independent of pressure and concentration. This indicates that the high-energy behavior is dominated by the 
self-energy contribution, and the medium effects can be neglected.  

In conclusion, our calculations for cross sections show that these quantities are useful indicators of phase 
transitions in 3He-HeII mixtures. The most prominent effects found are resonance-like behavior and the 
Ramsauer-Townsend effect in the cross sections at low temperatures in these mixtures. 

References 

Alm, T., Röpke, G., and Schmidt, M. (1994). Critical enhancement of the in-medium nucleon-nucleon 
cross-section at low temperatures. Physical Review C, 50, pp. 31-37.  

Al-Sugheir, M.K., Ghassib, H.B. and Joudeh, B.R. (2006). Fermi pairing in dilute 3He-HeII Mixtures. 
International Journal of Modern Physics B, 20, pp. 2491-2504.  

Aziz, R.A., Nain, V.P.S., Carley, J.S., Taylor, W.L., McConville, G.T. (1979). An accurate interatomic potential 
for helium J. Chem. Phys.70, pp. 4330-4341. 

Bardeen, J., Baym, G., and Pines, D. (1967). Effective Interaction of 3He in 4He at Low Temperature. Phys. Rev. 
196 pp. 207-220.  

Bashkin, E.P., and Wojdylo, J. (2000). Dimerization of 3He in 3He-4He dilute mixtures filling narrow channels. 
Phys. Rev. B, 62, pp. 6614- 6628.  

Bashkin, E.P., and Meyerovich, A.E. (1981). 3He-3He quantum solutions. Advances in Physics, 30, pp. 1-92.  

Bishop, R.F., Ghassib, H.B., and Strayer, M.R. (1977). Low-energy He-He interactions with phenomenological 
potentials. Journal of Low Temperature Physics, 26, pp. 669-690.  



www.ccsenet.org/mas                      Modern Applied Science                     Vol. 5, No. 2; April 2011 

                                                          ISSN 1913-1844   E-ISSN 1913-1852 30

Borghesani, A.F. (2001). Electron mobility maximum in dense argon gas at low temperature. Journal of 
Electrostatics, 53, pp. 89-106.  

Boronat, J., Polls, A., and Fabrocini, A. (1993). Structure properties of the 3He-4He mixture at T=0K. Journal of 
Low Temperature Physics, 91, pp. 275-297.  

Bohm, A. (1979). Quantum Mechanics: Foundations and Applications (Springer, N.Y., first edition 1979; third 
edition 1994). 

Campbell, L. J. (1967). Effective Coordinate-Space Potential Between 3He atoms in Superfluid 4He. Phys. Rev. 
Lett., 19, pp. 156-159.  

Chaudhry, G., and Brisson, J.G. (2009). Thermodynamic Properties of Liquid 3He-4He Mixtures Between 0.15 K 
and 1.8 K. Journal of Low Temperature Physics 155, pp. 235–289. 

Ebner, C., and Edwards, D.O. (1970). The Low-Temperature Thermodynamic Properties of Superfuid Solutions 
of 3He in 4He. Physics Reports C2, pp. 77-154.  

Edwards, D.O., and Pettersen, M. S. (1992). Lectures on the Properties of Liquid and Solid 3He-4He Mixtures at 
Low Temperatures. Journal of Low Temperature Physics, 87, pp. 473-523.  

Efremov, D.V., Mar’enko, M.S., Baranov, M.A., and Kangan, M.Yu. (2000). Superfluid Transition Temperature 
in a Fermi Gas with Repulsion. Higher Orders Perturbation Theory Corrections. JETP, 90, pp. 861.  

Ghassib, H. B. (1984). On Dimers and Trimers in Some Helium Fluids. Z. Phys. B- Condensed Matter, 56, pp. 
91-98.  

Grace, R.S., Pope, W.M., Johson, D.L., and Skofronick, J.G. (1976). Ramsauer-Townsend effect in the total cross 
section of 4He-4He and 3He-3He. Phys. Rev. A, 14, pp. 1006-1008.  

Hsu, W., and Pines, D. (1985). Effective Interactions in Dilute Mixtures of 3He in 4He. J Statistical Phys., 38, pp. 
273-312.  

Ishimoto, H., Fukuyama, H., Nishida, N., Miura, Y., Takano, Y., Fukuda, T., Tazaki, T., and Ogawa, S. (1987). 
New spin-wave modes in 3He-4He solution. Phys. Rev. Lett, 59, pp. 904-907.  

Janzen, A.R., Aziz, R.A. (1995). Modern He–He potentials: Another look at binding energy, effective range 
theory, retardation, and Efimov states. J. Chem. Phys., 103, pp. 9626- 9830.  

Joachain, C. J. (1983). Quantum Collision Theory. (North-Holland Publishing Company, 1983). 

Joudeh, B.R., Sandouqa, A.S., Ghassib, H.B., and Al-Sugheir, M.K. (2010). 3He-3He and 4He-4He Cross 
Sections in Matter at Low Temperature. Journal of Low Temperature Physics, 161, pp. 348-366.  

Kampe, W.A., Oates, D.E., Schrader, W., and Bennewitz, H.G. (1973). Observation of the Atomic 
Ramsauer-Townsend Effect in 4He-4He Scattering. Chem. Phys.Lett., 18, pp. 323-324.  

Kerscher, H., Niemetz, M., and Schoepe, W. (2001). Viscosity and Mean Free Path of Very Diluted Solutions of 
3He in 4He. Journal of Low Temperature Physics, 124, 163-168.  

König, R., and Pobell, F. (1994). Fermi Liquid Behaviour of the Viscosity of 3He-4He Mixtures. Journal of Low 
Temperature Physics, 79, pp. 287-310. 

König, R., Betat, A. and Pobell, F. (1994). Refrigeration and Thermometry of Liquid 3He-4He Mixtures in the 
Ballistic Regime. Journal of Low Temperature Physics, 97, pp. 311-333.  

Krotscheck, E., and Saarela, M. (1993). Theory of 3He-4He mixtures: energetics, structure, and stability. Phys. 
Rep., 232, pp. 1-86.  

Landau, R. Quantum Mechanics II 2nd edn (Wiley, New York, 1996). 

Lim, T.K., and Larsen, S.Y. (1981). The Ramsauer-Townsend effect in molecular systems of 
electron-spin-polarized hydrogen and helium and their isotopes. J. Chem. Phys. 74, pp. 4997-4999.  

Owers-Bradley, J.R., Chocholacs, H., Mueller, R.M., Buchal, Ch., Kubota, M., and Pobell, F. (1983). Spin 
Waves in Liquid 3He-4He Mixtures. Phys. Rev. Lett., 51, pp. 2120-2123.  

Østgaard, E., and Bashkin, E. (1992). Superfluidity of 3He in dilute 3He-4He mixtures. Physica. B, 178, pp. 
134-140.  

Polturak, E., and Rosenbaum, R. (1981). Specific Heat of 5% and 3% 3He-4He Solutions Under Pressure. J low 
Temp. Phys., 43, pp. 477-498.  



www.ccsenet.org/mas                      Modern Applied Science                     Vol. 5, No. 2; April 2011 

Published by Canadian Center of Science and Education 31

Sandouqa, A.S., Ghassib, H.B., and Joudeh, B.R. (2010). A Ramsauer–Townsend effect in liquid 3He. Chem. 
Phys. Lett., 490, pp. 172-175.  

Sandouqa, A. S., Joudeh, B. R., Al-Sugheir, M.K., and Ghassib, H. B. Weak 3He Pairing in 3He–HeII Mixtures. 
Submitted for publication. 

Shirahama, K., and Pobell, F. (1994). Search for 3He superfluidity and measurement of 3He inertial effective 
mass in 3He -4He mixture films. Phys. B, 194, pp. 863-864.  

Tuoriniemi, J., Martikainen, J., Pentti, E., Sebedash, A., Boldarev, S., and Pickett, G. (2002). Towards 
Superfluidity of 3He Diluted by 4He. J. Low Temp. Phys., 129, pp. 531-545. 

Watson, G. E., Reppy, J. D., and Richrdson, R. C. (1969). Low-Temperature Density and Solubility of 3He in 
4He under Pressure. Phys. Rev. 188, pp. 384-396.  

 

Table 1. , 
3m  and ω4 at two different values of x and Pr 

 Pr = 0  Pr = 9.85 atm 

x  
33 mm  ω4

  33 mm (a) ω4 

5% 0.284(a)   2.45(a) 45.79(b) 0.203(a) 2.74(a) 41.66(b) 

1.3% 0.284(a) 2.38(a, c) 45.79(b) 0.202(a) 2.64(a) 41.66(b) 

 

(a) (Polturak and Rosenbaum, 1981), (b) (Watson et al., 1969), (c) (Hsu and Pines, 1985) 

 

Table 2. The Ramsauer-Townsend velocity v [m/s], the relative energy E [K] and total cross section T [Å2], for 

two values of concentration and pressure 

 

 Pr = 0  Pr = 9.85 atm 

x v [m/s] E [K] T [Å2] v [m/s] E [K]  T [Å2] 

5% 25.85 0.074 328.5 13.63 0.043 335.5 

1.3% 29.4 0.093 309.3 24.0 0.069 312.4 

 

Table 3. The peak velocity v [m/s], the relative energy E [K] and total cross section T [Å2], for two values of 

concentration and pressure 

 Pr = 0  Pr = 9.85 atm 

x v [m/s] E [K] T [Å2] v [m/s] E [K]  T [Å2] 

5% 47.5 0.25 598.3 39.4 0.19 765.3 

1.3% 48.9 0.26 500.8 44.1 0.23 590.5 
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Figure 1. The total and  -wave cross sections (T and  [Å2]) as functions of  k [Å-1] for concentration x = 5%, 

.0Pr   The upper scale [m/s] represents the corresponding velocity v of a projectile atom on a stationary target 

atom 

 

Figure 2. The same as in Fig. 1, but only for  .atm85.9Pr   
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Figure 3. The total cross section T [Å2] as a function of  k [Å-1] at x = 5% and for two different values of 
pressure 

 

Figure 4. The total cross section T [Å2] as a function of  k [Å-1] for ,0Pr  and two different values of 

concentration 
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Figure 5. The same as in Fig. 4, but only for .atm85.9Pr   

 

Figure 6. The S-wave cross section 0 [Å2] as a function of  k [Å-1] for ,atm85.9Pr  and two different values 

of concentration 
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Figure 7. The same as in Fig. 6, but only for the P-wave cross section 1 [Å2] 

 

Figure 8. The viscosity cross section  [Å2] as a function of k [Å-1], for x = 5% and for two different values of 

pressure 
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Figure 9. The viscosity cross section  [Å2] for ,0Pr  and two different values of concentration 

 

Figure 10. The same as in Fig. 9, but only for  .atm85.9Pr   

  


