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Abstract

Normalization is important for Electrical Capacitance Tomography (ECT) data due to the very small capacitance values
obtained either from the physical or simulated ECT system. Thus far, there are two commonly used normalization
methods for ECT, but their suitability has not been investigated. This paper presents the work on comparing the
performances of two Multilayer Perceptron (MLP) neural networks; one trained based on ECT data normalized using
the conventional equation and the other normalized using the improved equation, to recognize gas-oil flow patterns.
The correct pattern recognition percentages for both MLPs were calculated and compared. The results showed that the
MLP trained with the conventional ECT normalization equation out-performed the ones trained with the improved
normalization data for the task of gas-oil pattern recognition.

Keywords: Electrical Capacitance Tomography, Artificial Neural Networks, Quasi-Newton (QN),
Levenberg-Marquardt (LM), Resilient-Back-propagation (RP), Pattern Recognition

1. Introduction

Recognition of flow regimes of gas-liquid flow is important in industrial process such as gas-oil industry. However, this
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information cannot be easily determined since gas-oil flows are normally concealed within a pipe. One way to obtain
such information is by employing the Electrical Capacitance Tomography (ECT) technique. ECT is a technique used to
visualize the distribution of two dielectric components (Yang and Byars, 1999). It has been employed for industrial
process containing different dielectric materials, such as gas/oil flows in oil pipeline. In an ECT sensor, several
electrodes are mounted around the pipe vessel. It is said to be non-invasive and non-intrusive since the sensing
electrodes are not physically in contact with the medium inside the pipe vessel. With N electrodes, the total number of
M independence capacitance measurements is given by (Xie et al, 1992)

o NV-D ()
2

The measured capacitances are usually normalized before being used for any application. There two versions of
equations for normalizing the capacitance values, referred to in this paper as the conventional normalization and
improved normalization methods. The conventional normalization approach assumes that the distribution of the two
materials is in parallel and hence, the normalized capacitance is a linear function of the measured capacitance (Yang
and Byars, 1999). The normalization equation is given by (Xie et al, 1992)
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where N/ is the conventional normalized capacitance between a pair of electrodes i and j, C; is the measured
capacitance, Cj, is the capacitance when the pipe is full of gas and C;{}, is the capacitance when the pipe is full of the
higher permittivity material than the permittivity of the gas, such as oil. An improved normalization approach is
derived from a series sensor model by modeling the sensor capacitances as two capacitances in series and is given by
the following equation (Yang and Byars, 1999)
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where N;™ is the improved normalized capacitance between a pair of electrodes i and j, C; is the measured

capacitance, Cj is the capacitance when the pipe is full of gas and Cj;}) is the capacitance when the pipe is full of the
higher permittivity material than the permittivity of the gas.

For both equations, the normalized capacitance values for empty and full pipe are 0 and 1, respectively. This can be
proven by substituting Cjp) = Cije) for empty and Cjjp,) = Cjjpy for full pipe. Therefore, ideally, the maximum and
minimum values for normalized capacitances are 1 and 0, respectively. If the normalized capacitance value is higher
than 1, the value is said to overshoot and if it is less than 0, the value is said to undershoot.

Until now, there has been no proper research to investigate which normalization method is the best for flow regime
recognition using neural network. Thus, this paper presents the work on such investigation using the Multilayer
Perceptron (MLP) neural network, the most commonly used neural network.

1.1 Multilayer Perceptron (MLP)

An Artificial Neural Network (ANN) or simply referred to as a ‘neural network’ is an intelligent system composed of
simple processing elements which operate in parallel (Haykin, 1999). An MLP is a type of an ANN model. MLPs have
been used in various different applications due to their ability to solve complex functions including pattern
classification (Yan et al, 2004), function approximation (Lee et al, 2004), process control (Ren et al, 2000) and filtering
tasks (Parlos, 2001).

Figure 1 shows the basic MLP supervised learning structure where pairs of input and target output are used to train the
networks. The term ‘supervised’ refers to the involvement of target output that act as a ‘teacher’ during a neural
network learning process. Typically, an MLP consists of neurons or nodes or processing elements arranged within an
input layer, one or more hidden layers and an output layer. The input signal propagates through the network in a
forward direction, on layer-by-layer basis. Figure 2 shows the architecture of an MLP (Haykin, 1999).

2. Methodology

Figure 3 shows schematic diagrams of flow regimes investigated in this work which are the empty flow, full flow,
stratified, bubble, annular and core flows. The first stage of the work involved collection of ECT raw dataset using an
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ECT simulator based on the finite element method (Spink, 1996). The simulated data were used because of two reasons.
Firstly, the actual data of flow regimes are very difficult to obtain since some flow patterns are non-repeatable.
Secondly, the actual plant data are constantly interrupted by noise and external interference and hence the data collected
are not accurate. The dataset were obtained based on various geometrical flow patterns to give a variety of patterns for
each flow regime. Since the number of electrodes used for the ECT sensor was 12, each ECT dataset consists of 66
capacitance values corresponding to the difference in capacitances between all possible pairs of electrodes (refer to
equation 1). Table 1 shows the number of readings corresponding to their pairs of electrodes.

For each flow regime, all of the capacitances values were computed into normalized value before being randomly
divided into three sets in the ratio of 8:1:1 for training, validation and test, respectively. For this investigation, the
number of training set, validation set and testing set were 1140, 142 and 142, respectively. The training set was used
for computing the gradient and updating the network weights and biases during ANN learning. The validation set was
used to stop the training process. The testing set was used to verify the network’s generalization performance.

The second stage is data analysis. As already mentioned, the ideal normalized capacitance values are within 0 and 1.
This stage is performed to determine the differences in normalized capacitance values between the conventional and
improved normalization in terms of how much their overshoot and undershoot values differ. Normalized capacitance
values for one pattern from each flow regime, for both normalization methods were plotted on the same graph and their
differences were calculated and discussed.

The third stage is an ANN learning or training process. In this stage, MLP were trained with three different kinds of
back-propagation training algorithms; the Resilient Back-propagation (RP), Quasi-Newton (QN) and the Levenberg
Marquardt (LM). These training algorithms are the most commonly used training algorithms for classification using
MLP neural networks. The number of inputs used in an MLP was 66 (corresponding to 66 normalized values) and
outputs was 6 (corresponding to 6 flow regimes to classify). The output class representations are as listed in Table 2.
The number of hidden neurons was determined using the network growing approach by adding one neuron at a time to
the hidden layer.

Suitable activation functions must be applied to the MLP hidden and output neurons. The logistic sigmoid activation
function is the most commonly used activation function for back-propagation algorithm because it is differentiable
(Demuth and Beale, 1998). Due to this fact, the activation function had been applied to hidden neurons during training.
Since the output neurons could result in either 0 or 1, the activation function applied to these neurons was the logistic
sigmoid.

To ensure that the MLP was not stuck at a local minimum, 30 runs were made for each number of hidden neurons.
Each training process stopped when there was no improvement in the validation error after 5 consecutive training
iterations. At completion, the MLP weights and biases at the minimum of the validation error were saved.

The last step was MLP performance assessment. This stage was carried out to investigate the performance of the MLPs
based on the percentage of correct classification (CCP) of test data to determine the best normalization method. The
CCP is calculated using,

No. of correct classification
CCP = ‘ x100% 4
Total no.of data

3. Results and Discussion

The results on data analysis of the normalized ECT data and the performances of the MLPs trained with the
conventional and improved normalized data are discussed in the following subsections.

3.1 Data Analysis

Figures 4(a) to 4(d) show plots of capacitance values for a variety of flow pattern examples normalized based on the
improved and conventional normalization equations. The number of reading (i.e. x-axis) corresponds to the electrode
pairs as listed in Table 1. Table 3 shows the results of total shooting for the capacitance values based on the improved
and conventional normalization equations. The table shows that the total undershooting for stratified flow normalized
using the improved equation is higher than that normalized using the conventional normalization equation. On the
other hand, its capacitance overshoot is higher when normalized using the conventional equation compared to the
improved normalization. For bubble pattern, the overshoot value for both improved and conventional normalization
methods is 0. However, the conventional normalization gives a slightly higher overshoot capacitance value of about
0.4%. The core example pattern gives 0 overshoot for both normalization methods, whilst the undershoot is higher
when the improved normalization equation is used. The annular flow pattern for both, the improved and conventional
normalization equations give 0 undershoot, whilst the conventional equation produces an undershoot value of about 0.2%
higher than the improved equation. From the table, it shows that the improved normalization equation results in 38%
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lower total overshoot value than the conventional normalization. However, the improved normalization equation
results in 74% higher total undershoot value than the conventional normalization equation. Overall, the data analysis
results have shown that the conventional normalization method has led to less total shooting compared to the improved
normalization method.

3.2 Flow Regime Recognition

Figures 5, 6 and 7 shows the CCP plots of MLPs trained with the RP, QN and LM algorithms based on the improved
and conventional normalization methods, respectively. From Figure 5, it is obvious that the MLP trained with the
conventional normalized data produces higher CCP than the MLP trained with the improved normalized data. Also, it
can be seen that the MLP trained with the improved normalized data give rather unstable CCP at different numbers of
hidden neurons. Comparing the plots in Figure 6, it can be seen that the MLP trained with the conventional normalized
data outperformed the MLP trained with the improved normalized data at 3 and more hidden neurons. The
performances of the MLPs trained using the LM algorithm (see Figure 7) for both improved and conventional
normalized data seems less competitive. However, it can be seen that the MLP trained with the improved normalized
data is rather unstable in its CCP values for different numbers of hidden neurons. Although both MLPs produce the
same maximum CCP, the MLP trained with the conventional normalized data reaches the maximum CCP earlier (at 6
hidden neurons) that the MLP trained with the improved normalized data.

Table 4 shows the comparison in the maximum performance of the MLPs trained with the improved and the
conventional normalized data using various training algorithms as investigated. In the table, HN is the abbreviation
for the number of hidden neurons. For the RP algorithm, the conventional normalization is better than the improved
normalization in terms of the maximum CCP value. Also, its number of hidden neurons is less than the MLP trained
with the improved normalized data. For the QN algorithm, the conventional normalization obtains its highest CCP at
98.6% with 11 hidden neurons whilst the improved normalization obtains its highest CCP at 96.5% with less number of
hidden neurons. However, since the main concern for an MLP performance is the CCP value, it can be concluded that
the conventional normalization is better than improved normalization. For the LM algorithm, even though both
normalization methods obtain the same value of highest CCP with 99.3%, the conventional normalization has achieved
its highest CCP with less number of hidden neurons compared to the improved normalization. Consequently, the
conventional normalization method is better in terms of the number of hidden neurons, which results in smaller
structure of the MLP. Thus, the network execution becomes faster.

The overall results demonstrate that it is better to use the conventional normalization for ECT data compared to the
improved normalization method. However, it does not mean that the improved normalization method is of no value for
other application. It has to be born in mind that this work focuses on flow regime recognition application. Perhaps,
the improved ECT data normalization method might be of better used for other applications, such as image
reconstruction.

4. Conclusion

An investigation had been carried out to determine the best normalization equation for ECT data for the task of flow
regime recognition. For all the three training algorithms investigated, the results proved that the conventional equation
was a better normalization equation for ECT data in the quest to train MLP neural networks.
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Table 1.Number of readings corresponding to electrode pairs

No. of reading Cs No. of reading — = No. of reading — S .
i B | i ]

1 11 2 23 3 | 5 45 5 | 12
5 11 3 24 3|6 46 6 | 7
3 1 4 25 3 7 47 6 8
4 1| s 26 3 | 8 48 6 | 9
5 1| 6 27 3|9 49 6 | 10
6 1|7 28 3 |10 50 6 | 11
- 1| 8 29 3 | 1 51 6 | 12
8 1| 9 30 3 | 12 52 7 | 8
) 1 10 31 4 5 53 7 9
10 1| 11 32 416 54 7 | 10
11 1 12 33 4 7 55 7 11
12 2 | 3 34 4 | 8 56 T 12
13 2 | 4 35 4 | 9 57 8 1 9
14 2 |5 36 4 |10 58 8 | 10
15 2 | 6 37 4 |11 59 8 | 11
16 2 | 7 38 4 |12 60 8 | 12
17 2. | 8 39 5|6 61 9 | 10
18 219 40 5| 7 2 = i
19 2 |10 41 5| 8 63 9 | 12
20 2 42 5|09 64 10 | 11
21 3 | 43 5|10 65 10 | 12
22 3] 4 44 5 | 11 6 11 | 12

Table 2. Output class representation for each flow regime

Flow regime | Target output
Full 100000
Stratified 010000
Bubble 001000
Core 000100
Annular 000010
Empty 000001
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Table 3. Undershoot and overshoot values based on the improved and conventional normalization equations for
examples of flow patterns

. Improved Normalization Conventional normalization

Flow regime
Total undershoots | Total overshoots | Total undershoots | Total overshoots

Stratified 4.937 1.334 1.561 3.932
Bubble 0.000 3.760 0.000 4.179
Core 4.051 0.000 1.717 0.000
Annular 0.000 0.150 0.000 0.349
Total shooting 14.233 11.738

Table 4. A comparison of the MLP flow regime recognition performances based on different training algorithms for
improved and conventional normalization methods

Improved Conventional

Normalization | Normalization
RP | CCP (%) 97.9 99.3
HN 38 3
QN | CCP (%) 96.5 98.6
HN 6 11
LM | CCP (%) 99.3 99.3
HN 7 6

Target

Neural network ANN
Input including weight output

Compare

connections between

ncurons

Adjust
weights

Figure 1. MLP supervised learning structure
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Input Layer

Middle Layer

Cutput Layer

Figure 2. Schematic diagram of MLP architectural structure

(a) Empty (b) Full (c) Stratified

(d) Bubble (e) Annular (f) Core

Q0000

Figure 3. Schematic diagrams of (a) empty, (b) full, (c) stratified, (d) bubble, (e) annular and (f) core, flow regimes. The
shaded area indicates oil and the white area indicates gas
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Figure 4. Plots for capacitance values based on improved and conventional normalization method for examples
of (a) stratified, (b) bubble, (c) annular and (d) core, flows
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Figure 5. CCP of MLP trained with RP algorithm based on (a) improved and (b) conventional normalization methods
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Figure 6. CCP of MLP trained with QN algorithm based on (a) improved and (b) conventional normalization methods
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Figure 7. CCP of MLP trained with LM algorithm based on (a) improved and (b) conventional normalization methods
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