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Abstract 

This paper presents a new memory gradient method for unconstrained optimization problems. This method 
makes use of the current and previous multi-step iteration information to generate a new iteration and add the 
freedom of some parameters. Therefore it is suitable to solve large scale unconstrained optimization problems. 
The global convergence is proved under some mild conditions. Numerical experiments show the algorithm is 
efficient in many situations. 

Keywords: Unconstrained optimization, Memory gradient method, Global convergence 

1. Introduction 
Consider the unconstrained optimization problem 

   min ( ), ,nf x x R                                    (1) 

where nR is an n-dimensional Euclidean space and 1: nf R R is a continuously differentiable function. Most 

of the well-known iterative algorithms for solving (1) take the form 

   1 , 0,1, 2, ,k k k kx x d k                                 (2) 

where kd  is a search direction of ( )f x  at kx  and k  is a positive step-size. Let kx  be the current 

iterative point, we denote ( )kf x  by kg , ( )kf x  by kf  and *( )f x  by *f , respectively. Let 

0
0

( )
( | ( )) max

y L x
P x L x y x


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x B
P B L x P x L x


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Where  0 0( ) | ( ) ( )nL x x R f x f x   , B is the border of B . 

Many traditional methods for solving (1) are line search methods such as steepest descent method, Newton-type 
methods, conjugate gradient methods, etc. Generally, the conjugate gradient method is a useful technique for 
solving large scale problems because it avoids the computation and storage of some matrices. Memory gradient 
methods have these good qualities too (e.g., (Cantrell, J.W., 1969)(Miele, A. and Cantrell, J.w., 1969)(Yuan 
Yaxiang, Sun Wenyu, 1997) etc.). 

In order to make full use of the current and previous multi-step iterative information to improve the capability of 
methods and guarantee them be convergent, some scholars studied memory gradient methods and super-memory 
gradient methods. These two methods, like conjugate gradient methods, are suitable to solve large scale 
optimization problems. They are more stable than conjugate gradient methods (e.g., (Cragg, E.E., and Levy, A.V., 
1969)(Shi Zhenjun, and Shen J., 2005)(Shi Zhenjun, 2003), etc.), because they use more previous iterative 
information and add the freedom of selecting parameters. Taking advantage of the line search rule that was 
presented in (Shi Zhenjun, and Shen J., 2005), this paper presents a new memory gradient method and proves its 
global convergence under some mild conditions. 

The paper is organized as follows. Section 2 describes the new memory gradient algorithm. Section 3 analyzes 
the global convergence under some mild conditions. 

2. New Memory Gradient Method 

We assume that  

(H1) The objective function ( )f x  has a lower bound on the level set  

 0 0( ) | ( ) ( )nL x x R f x f x    , where 0x  is given.  

(H2) The gradient ( ) ( )g x f x   is Lipschitz continuous in an open convex set B  that contains the level set 

0( )L x , i.e. there exists 0L   such that  

( ) ( ) , ,g x g y L x y x y B     ,                            (3) 

where B is satisfied with 0( | ( )) 0P B L x  . 
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Using the line search rule that was presented in (Shi Zhenjun, and Shen J., 2005), we present a new memory 
gradient algorithm. 

New Algorithm: 
2

0
3

  ; 0 1  ; 0 0L  ; 0
nx R ; : 0k    

Step 1  If 0kg   then stop! Else go to step 2; 

Step 2 1 ( )k
k k k k

k

x x d
L

    ,where k  is the maximum of 2{ , , , }k k ks s s     that is satisfied 
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Step 3  1
1

1

max , k k
k k
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x x
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; 

Step 4  Let : 1k k   and go to step 1. 
Obviously, the algorithm has an important feature that the search direction and step-size are defined at each 

iteration. It does good to find more suitable search direction and step-size. For simplicity, we denote ( )k kd   

by kd  throughout the paper. 

Lemma 1  If (H2) holds, then there exists 0 00 m M   such tha 0 0km L M  . 

Lemma 2  For all 0k  , if there exists (0, ]ks  ,then 
2

( ) (1 )T
k k kg d g    . 

Lemma 3  For all 0k   and (0, ]ks  , we have 
0

( ) max{ }k i
i k

d g
 

 . 

The above three lemmas are easily proved. 
3. Global Convergence 

Lemma 4  If (H1) and (H2)hold, the new algorithm generates an infinite sequence{ }kx , then { }kg  and 

{ }kd  have a bound. 

Proof  By Lemma 3, we only need prove that { }kg  has a bound. Let  
0
maxk j

j k
g

 
 . Suppose 

{ }kg has not a bound, then lim k
k




  .  

Therefore there exists an infinite subset {0,1, 2, }N    such that 

,k kg k N    ,                                        (7) 

and 

( , ).k kg k N k                                 (8) 

By lemma1, lemma 2 and (4), we can obtain 
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By (H1), we have 
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Thus 
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By lemma 3 and (7), when (0, ]ks  , we have  
2 2 22

0
( ) max{ } , .k i k k

i k
d g g k N 

 
                       (11) 

From (10) and (11), we obtain 

2
( ) ,k k

k N

d 


                                          (12) 

therefore 
2

( ) 0( , )k kd k N k      .                              (13) 

By lemma 2 and Cauchy-schwarz inequality, when (0, ]ks  , we have 
2

( ) ( ) (1 ) ,T
k k k k kg d g d g        

therefore 

( ) (1 ) .k kd g                                            (14) 

From (8) and (14), we can obtain 

( ) ( , )kd k N k     , 

by (13), we have   

     ( ) 0( , ).k kd k N k                                    (15) 

Thus                
,

lim 0kk N k
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It follows, when / (0, ]k ks    , we have 
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thus                  ( ( )) ( )T
k k k k k
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       . 

By mean value theorem, there exists [0,1]k   such that 
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By lemma 1, (H2) and (11), we obtain 
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By (H2) and (15), we can obtain 0( , )kg k N k   , which contradicts with (8). The above proof 

shows that { }kg  has a bound, therefore { }kd  has a bound. The proof is completed. 

Theorem  If (H1) and (H2) hold, the new algorithm generates an infinite sequence{ }kx , then 

                      lim 0kk
g


 .                                        (16) 

Proof   Suppose (16) does not hold, then there exists an infinite subsequence 1N  and 0  , such that 

1, .kg k N    

From the proof process of lemma 4, we have 
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Therefore 10( , )k k N k    . By lemma 4, we obtain that there exists 0M   such that 

, .kd M k N                                       (17) 

By lemma 2, lemma 4, Cauchy-schwarz inequality and (17), we can obtain that when k   , then 
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Because 10( ,  )k k N k     , by lemma 4 ,we obtain 

1( ) 0( ,  )kd k N k     .                                (19) 

By (H2), (18)and (19), we obtain 10( ,  )kg k N k    , which contradicts with previous supposition. 

Therefore (16) holds. The proof is completed. 
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