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Abstract 
This paper utilizes an adaptive synchronization control principle based on OGY idea to realize the synchronous 
of two cubic chaotic systems which have different initial value and parameter. Then theory and numerical 
simulation shows that the control strategy needs to select right error Regions’ Radius δ  and feedback 
coefficientω . The paper also utilizes control principle of lag synchronization to realize the lag synchronization 
of cubic chaotic system and Logistic map. Then theory and numerical simulation shows that state variables of 
Logistic map track state variables of cubic chaotic system strictly.  
Keywords: Cubic chaotic system, Logistic map, Adaptive synchronization, Lag synchronization 
1. Introduction 
Since the pioneering work on chaotic control was introduced by Ott, Grebogi and Yorke (OGY) (E. Ott, C. 
Grebogi, & J. A. Yorke, 1990, p.1196), chaos control has gained wide and intensive research. Then, in 1990, 
Pecora and Carroll proposed drive-response synchronization proposal. Furthermore, synchronization of chaos 
and its potential applications in secure communication have caused widespread concern since drive-response 
synchronization has been realized in the electronic circuit firstly (L. M. Pecora , & T. L. Carroll, 1990, p.821) . 
Over the decades, many methods and techniques for chaos control and synchronization had been produced, such 
as OGY method (E. Ott, C. Grebogi, & J. A. Yorke, 1990, p.1196), PC method (L. M. Pecora , & T. L. Carroll, 
1990, p.821), feedback approach (Y .Wang, Z. Guan, & H. O. Wang, 2003, p.34), adaptive method (Y .Wang, Z. 
Guan, & H. O. Wang, 2003, p.34), time-delay feedback approach(G. Chen, & X. Dong, 1998), backstepping 
design technique (X. Wu, & J. Lu, 2003, p.721 ), etc. Chaos control is increasingly forming a systematic 
theoretical system. 
Generally, nonlinear dynamic systems can be divided into two major categories of continuous systems and 
discrete systems. Yet according to Poincare section method, n-dimensional continuous system can change into 
(n-1)-dimensional discrete systems, so the study of the control of discrete chaotic systems has universal 
significance. The Lyapunov design for nonlinear discrete-time systems becomes much more intractable than in 
the continuous-time. The reason lies in that the linearity property of the derivative of a Lyapunov function in 
continuous-time is not present in the difference of Lyapunov function in the discrete-time (Y. Song, & J. W. 
Grizzle, 1993, pp.1359-1364). Many controls designed for continuous-time systems may be not suitable for 
discrete-time systems due to some inherent difficulties in discrete-time models. 
This paper will study adaptive synchronization of two cubic chaotic systems with same structure and lag 
synchronization of cubic chaotic systems and Logistic map with different structure. The dynamics properties of 
cubic chaos have been discussed in literature (Li Yong, Jia Zhen, etc, 2010, 5(2)) in detail. Cubic Chaos can be 
expressed as differential equations:  

3
1n n nx x xλ+ = −           (0,3)λ ∈                          (1)  
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Initial value of chaos 0 ( 2, 2)x ∈ −  and threshold  =2.3489175λ∞ LL  While ( ,3)λ λ∞∈ , system enter 
the chaotic zone. Yet most periodic solution of Lorenz system is in accordance with one-dimensional symmetric 
periodic orbits of cubic mapping order and the iterative as follows(C. Grebogi, & J.A.Yorke, 2001, pp.135-136): 

3
1n n nx x xλ λ+ = +（1- ）  

Clearly, while 2λ = , the antisymmetric cubic map is cubic chaos. The cubic chaos system has more complex 
dynamics properties. Therefore, cubic chaotic system (1) has significance to periodic solution of Lorenz system. 
Logistic map (Hassan K. Khalil, 2005)can be expressed as differential equations: 

                  1 (1 )n n nz z zμ+ = −       (0, 4)μ ∈                              (2)  
Because of dependent sensitivity on initial values and its ergodicity of chaotic track, as well as based on OGY 
idea, this paper designs an adaptive synchronization control strategy. It fully shows the OGY method is able to 
make minor adjustments on the parameters. Theory and numerical simulation shows that the control strategy 
selects the appropriate region radius and the error feedback coefficients can achieve faster adaptive 
synchronization of two cubic chaos systems. What’s more, because of the controller of the response parameters 
is divided into three kinds, yet the pre-control is not a member of controlled substance, so this design is different 
from continuous adaptive control strategy (Wang Jie, &  Zhang Huaguang, 1999, pp.217-221, He Mingfeng, 
MuYunming, & Zhao Lizhong, 2000, pp.830-832) which has joined the controller of each iteration and 
synchronous control strategy (Dai Dong, & Ma Xikui, 2001, pp.1237-1240) which has joined the controller 
intermittently. This paper adds in controller when errors of the two tracks reach a certain neighborhood. In the 
practical application of information engineering, electronic technology and other field, the less control costs 
means that the greater the economic effects and practical value. Based on lag synchronization control principl 
(Hu Gang, Xiao Jinghua, & Zheng Zhigang, 2000, pp78-85), for different structures, we select typical 
one-dimensional mapping----Logistic map as a response system. This lag synchronization controller has a certain 
universal, and have some reference value for the other lag synchronization of different structures on studying. 
2. Synchronization with the same structure for Cubic chaotic systems 
2.1 Adaptive synchronization control principle based on OGY idea 
Consider two same structure of discrete chaotic systems in the following form: 

                       1 ( , )n n cx f x λ+ =                                          (3)  

                       1 ( , )n n ny f y λ+ =                                         (4)  

where n Z +∈ , ,n nx y are system states, , Nx y R∈ . cλ  is system parameter and nλ  is variable adjustable 

parameter, : N Nf R R→ . If we lead control law 1 ( )n nGλ λ+ =  into adjustable parameter nλ of the 

response system, and satisfies lim 0n nt
y x

→+∞
− = , we will have system (3)  and (4) achieving adaptive 

synchronization. 
Next by controlling the input data of response system and system parameters, the adaptive synchronization 
method of  two cubic chaotic systems are given as follows: 

                      3
1n c n nx x xλ+ = −                                          (5)  

                      3
1n n n ny x xλ+ = −                                          (6)  

                       1n n nuλ λ+ = +                                            (7)  

where , 2.35,3)c nλ λ ∈( , 0 0, ( 2, 2)x y ∈ − . Regarding arbitrary initial value 0 0,x y , their tracks are irrelevant.  

The adaptive synchronization error system is given as follows: 

                           1 1 1n n ne y x+ + += −  

The adaptive synchronization of two cubic chaotic systems transforms to control the error 1ne +  on 

1lim 0nn
e +→+∞

= , that is realize precise synchronization of cubic chaotic system (5)  and (6) . 

Because chaotic systems evolution sensitively depends on the initial conditions, if parameters and initial value of 
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cubic chaotic systems are not the same, their orbits are disorganized and irrelevant. But the dynamics in the 
chaotic attractor is ergodic, so the orbits of two systems maybe close to each other even intersect, coincide in the 
course of evolution. However, after a period of time, they will automatically stay away from each other for 
reasons such as disturbances. Based on OGY method, while the radius of error system less thanδ , we can add 
controller to the systems to make the two systems reach synchronization after a period of time sequence. 
Thus, we design adaptive parameter synchronization control law as Theorem 1. 

Theorem 1. Regarding system (5) and (6) , if controller as follows is added into iterative equations on the 
parameters (7) , 

If 0 cλ λ< , 
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 .                              (8)  

where 0δ > is a enough small error regions’ radius, (0,1)ω∈  is feedback coefficient, system (5) and (6)  
will achieve adaptive synchronization. 

Proof. To prove briefly, we suppose the controller 1n nu eε += , ε  is feedback coefficient. We  mark 

n n cλ λ λΔ = − . From (5)  and (6) , we can get 

                    1 ( )n n c n n ne x xλ λ λ+ = − = Δ                                   (9)  

Bring (9) into (7) , we get 

                     1n n n nxλ λ ε λ+ = + Δ  

Subtract cλ  on both sides, we get 

                     1 (1 )n n n n n nx xλ λ ε λ λ ε+Δ = Δ + Δ = Δ +  

That is 

                     1 0 1
(1 )

n

n ii
xλ λ ε+ =

Δ = Δ Π +  

If 1 1ixε+ < , it must be
1

lim (1 ) 0
n

in i
xε

→+∞ =
Π + = , then lim 0nn

λ
→+∞

Δ = . Due to (9) , we can see lim 0nn
e

→+∞
= . 

Because 0 ( 2, 2)x ∈ − , we will get ( 2,2)ix ∈ − . Two cases will be discussed below. While ( 2,0)ix ∈ − , 

(0,1)ε ∈ ; while (0, 2)ix ∈ , ( 1,0)ε ∈ − . In these cases, 1 1ixε+ < , lim 0nn
e

→+∞
= . 

Then we will study the relationship of feedback coefficient ε , error system 1ne +  and nλΔ . From (9) , we 

can see that symbol of error system 1ne +  is decided by product of nx  and nλΔ , yet symbol of nx  

determines symbol of feedback coefficient ε . From (9) , we can get 1 / ( )n n n cx e λ λ+= − . We give a proper 

radius of the error region 0δ > , then we will find that while (0, 2)ix ∈  and n cλ λ> , 1 (0, )ne δ+ ∈ ; 

while (0, 2)ix ∈  and n cλ λ< , 1 ( ,0)ne δ+ ∈ − , and now the feedback coefficient ( 1,0)ε ∈ − . While 

( 2,0)ix ∈ −  and n cλ λ< , 1 (0, )ne δ+ ∈ ; while ( 2,0)ix ∈ −  and n cλ λ> , 1 ( ,0)ne δ+ ∈ − , and now the 

feedback coefficient (0,1)ε ∈ . Yet nλ  converges cλ  uniformly, so symbol of nλΔ  is determined by 0λ  
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and cλ . Thus we get theorem 1. 

Remark 1. Essentially, as cubic chaotic systems, while the absolute value of the error trajectory less than δ , 
we add in the control law (8) . In fact, the synchronous control law made three kinds of different control 

strategies based on specific circumstances. The first which is called pre-control ( 0Ru = ) don’t add in controller 

when trajectory error is larger; the second which is called positive feedback control ( P nu eω= ) aim to 
pre-reduce the negative feedback control error in the next step; the third which is called negative feedback 
control ( N nu eω= − ) aim to reduce the error of the two systems track. 

2.2 Numerical simulation and Conclusion 
Select parameter 2.9cλ = of the drive system (5)  and initial parameter 0 2.7λ =  of response system (6) . 
We assume that initial value is 0 00.45, 0.5x y= = , error regions’ radius is 0.1δ = , feedback coefficient is 

0.5ω = , iteration steps  is 100n = . Adaptive synchronization error figure of the system (5)  and (6)  as 
shown in figure 1, we can see the two systems reach adaptive precise synchronization after about 30 iteration 
steps. In the 100's iteration process of the system, pre-control, positive feedback control and negative feedback 
control occur 5 times, 17 times and 78 times respectively. Each iteration by adding the control as shown in figure 
2. Evidently, after about 10 iteration steps, the parameter of response system only carries out positive feedback 
control and negative feedback control. This shows that after adding in controller, the track of the two systems 
will be closer and reach synchronization finally. Convergence curve of parameter nλ  of response system as 
shown in figure 3. We can see parameter nλ  of response system converge to the parameter 2.9cλ = of drive 
system gradually until reaching adaptive synchronization completely. As shown in figure 4, synchronization 
signal of two cubic chaotic systems is expressed with Lissajous figure. 
Remark 2. (1) If error regions’ radius δ  is too large, the parameter 3nλ >  maybe occur after a few iterative 
steps but the system doesn’t achieve synchronization. If δ  is too small, it will be too difficult to add in 
satisfied positive and negative feedback control. In other words, the probability of adding in effective control 
will be lower and the system needs a lot of iterations to achieve synchronization. What’s worse, the error system 
will be led to divergent gradually and impossible to achieve adaptive synchronization finally.  
(2) If feedback coefficient ω is too large, magnitude of the changes of parameter is larger and leads to 
synchronization faster. If ω is too small, the rate of the synchronization will be too slow to have practical 
significance. 
3. Synchronization of cubic chaotic system and Logistic map of different structure 
3.1 Control principles of lag synchronization 

Regarding the system (10)  that is composed of two discrete chaotic dynamical systems, 

1

1

( , )
( , )

n n

n n

x f x p
y g y q

+

+

=⎧
⎨ =⎩

                                           (10)  

where , N
n nx y R∈ , ,n N Z +∈  are system states, ,p q  are system parameters, , : N Nf g R R→ , and 

there is a constant τ  independent of time but satisfy lim ( ) ( ) 0
t

y t x t τ
→+∞

− − = , system (10) will achieve 

lag synchronization. 
We will study lag synchronization of two discrete systems of different structure as follows. We make the system 
(11)  as a drive system and the system (12)  as a controlled response system. 

                 1 ( )n n nx Ax F x+ = +                                            (11)  

                 1 ( )n n n ny By G y u+ = + +                                        (12)  

where ,n N Z +∈ , ,N Nx R y R∈ ∈ , ,N N N NA R B R× ×∈ ∈ . N
nu R∈  is lag Synchronization controller. 

( ), ( )n nF x G y  is the nonlinear function. 

Error system is 
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n n ne y x τ−= −  

Then 

1 1 1 ( ) ( )n n n n n n n ne y x By Ax G y F x uτ τ τ+ + + − − −= − = − + − +                      (13)  

Select 

( ) ( )n n nu S x T yτ−= −                                                     (14)  

where 

( ) ( ) ( )n n nS x F x A B K x= + − + , ( ) ( )n n nT y G y Ky= +  , N NK R ×∈  

From (13)  and (14) , we get 

                  1 ( ) ( ) ( )n n n n ne B K y B K x B K e Ceτ+ −= − − − = − =               (15)  

Coefficient matrix of error system (15)  is N NC R ×∈ , and its eigenvalue equation is: 0I Cλ − = . 
According to system stability theory and by pole placement technique, we select appropriate debugging matrix
K  to satisfy that the characteristic values of C B K= −  has negative real parts, thereby lim 0nn

e
→+∞

= . Then 

drive system and response system will achieve synchronization. 

From the above discussion, for the cubic system (1)  and the Logistic map (2) , we can get the following 
theorem. 

Theorem 2. For the driving response system (16)  which is constituted of the cubic chaotic system (1)  and 
the controlled response Logistic map (2) , 

3
1

1 (1 )
n n n

n n n n

x x x
z z z u

λ
μ

+

+

⎧ = −⎪
⎨

= − +⎪⎩
,                                       (16)  

if lag synchronization controller ( ) ( )n n nu S x T zτ−= − , where 

                       
3

2

( ) ( )

( )
n n n

n n n

S x x k x

T z z kz

λ μ

μ

⎧ = − + − +⎪
⎨

= − +⎪⎩
, 

and if 0k μ> > , system (16)  will achieve lag synchronization. 

3.2 Numerical simulation and Conclusion 

Firstly, we give bifurcation diagram of cubic chaotic system (1)  and Logistic map (2) . They are shown in 
figure 5(a)(b) respectively. From the diagram, we can find the two systems have different dynamic behaviors. 
Then, we use MATLAB and make numerical simulations according to the control strategy described in Theorem 
2. Select initial value 0 0.3x = , 0 0.1z = −  and system parameters 2.9λ = , 3.8μ = , we will find that 
the two systems are in a chaotic state and retardation 10τ = , debug parameter 4.2k = . Error of the two 
systems changes over time and we can see the process of evolution on figure 6. After 18 iterative steps, error of 
the two systems approach zero gradually, as well as drive and response system reach a deferred synchronous 
quickly. If the system parameters and debug parameter take other reasonable values, we can get the desired 
results similarly though there are some difference on the rate of synchronous. State variables of the two systems 
change over time and we can see the process of evolution on figure 7. State variable nz  of Logistic map tracks 
state variable nx  of cubic chaotic system strictly. This shows that the controller is feasible. 
4. Conclusion 
For chaotic systems is sensitive to the initial value, even if the parameters of the chaotic system of two identical 
initial difference is small, their trajectories will diverge exponentially with time. In the actual application, from 
the noise and interference, and system hardware perspective, it is difficult to find two systems with exactly the 
same parameters. Therefore, the application of the synchronization of two different parameters of chaotic 
systems is important in practical. This paper utilizes an adaptive synchronization control principle based on OGY 
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idea to realize the adaptive synchronization of two cubic chaotic systems which have same structure but different 
initial value and parameter. Moreover, the paper also utilizes control principle of lag synchronization to realize 
the lag synchronization of cubic chaotic system and Logistic map, and here the two are discrete system of 
different structure. Theory and numerical simulation shows the effectiveness and practicality of the two control 
strategies. 
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Figure 1. Synchronization error of system (5) and (6)   Figure 2. Actual figure of controller (8)  
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Figure 3. Convergence curve of nλ               Figure 4. Lissajous figure of system (5) and (6)  

           

(a)                                    (b) 

Figure 5. Bifurcation diagram of cubic chaotic system (1) and Logistic map (2)  

       

Figure 6. Synchronization error of system (16)     Figure 7. Synchronization process of state variable  

  


