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Abstract 
Homotopy perturbation method (HPM) is one of the newest analytical methods to solve linear and nonlinear 
differential equations. In this paper, HPM is used to formulate a new analytic solution of free-particle radial 
dependent Schrödinger equation. In contrast to the traditional perturbation methods, the homotopy method does 
not require a small parameter in the equation. In this method, according to the homotopy technique, a homotopy 
with an embedding parameter [0,1]δ ∈  is constructed, and the embedding parameter is considered as a small 
parameter. The obtained result shows the evidence of simplicity, usefulness, and effectiveness of the homotopy 
perturbation method for obtaining approximate analytical solutions for the radial dependent Schrödinger 
equation. 
Keywords: Homotopy perturbation method, Centrifugal barrier, Free radial schrödinger operator, Embedding 
parameter 
1. Introduction 
In order to solve radial dependant Schrödinger equation for a free-particle; V(r) = 0, we will examine the 
application of the Homotopy Perturbation Method (HPM), which was proposed first by He (1999). The HPM is 
designed for solving differential and integral equations, linear and nonlinear, and has been the subject of 
extensive analytical and numerical studies. The method, which is a coupling of a homotopy technique and a 
perturbation technique, deforms continuously to a simple problem which is easily solved. This method, which 
does not require a small parameter in an equation, In contrast to the traditional perturbation methods, has a 
significant advantage in that it provides an analytical approximate solution to a wide range of nonlinear problems 
in applied sciences. This method doesn’t need linearization, perturbation or un-justified assumptions. The HPM 
yields the solution in terms of a rapid convergent series with easily computable components (He, 2003). 
In the last two decades with the rapid development of differential equations science, there has appeared 
ever-increasing interest of scientists and engineers in the analytical techniques for linear and nonlinear problems. 
The widely applied techniques are perturbation methods.  
Latif (2005) applied the HPM to search for exact analytical solutions of linear differential equations with constant 
coefficients. In addition, based on the precise integration method, a coupling technique of the variational iteration 
method (VIM) and HPM is proposed to solve nonlinear matrix differential equations.  Rezania et al (2009) used 
HPM and VIM to solve the heat equations which are functions on time and space. This type of equation governs on 
numerous scientific and engineering experimentations. Zhang et al (2006) obtained an explicit analytical solution 
for nonlinear Poisson-Boltzmann equation by the HPM. Wang et al (2007) applied HPM to solve 
reaction-diffusion equations which is governed by the nonlinear ordinary differential equation. Furthermore, HPM 
is also applied to solve the Helmholtz equation, and the results reveal that this method is very effective and simple 
(Bizzar et al, 2008).

 In this work, HPM, in a realistic and efficient way, is proposed to provide approximate solutions for Free-particle 
radial dependent Schrödinger equation (spherical Bessel equation). 
2. Basic Idea of HPM: 
To illustrate the basic ideas of the new HPM, we consider the following nonlinear differential equation 
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A(u) - F(r) = 0,    r Ω∈                                                                   (1) 
with boundary conditions  

duB(u, ) = 0,   r Γ
dn

∈                                                                       (2) 

where A is a general differential operator , F(r) is a known analytic function , Г is the boundary of the domain 
Ω  . The operator A can , generally speaking, be divided into two parts L and N , where L is linear, while N is 
nonlinear. Eq. (1), therefore, can be written as follows (He, 2003):   
L(u) + N(u) - F(r) = 0                                                                      (3) 
By the homotopy technique (Liao, 1997), we construct a homotopy v (r, δ): Ω x [0,1]→R which satisfies  

oH(v,δ) = (1 - δ)[L(v) - L(u )] +δ [A(v) - F(r)] = 0, δ [0,1] , r Ω∈ ∈                               (4) 
or  
H(v,δ) = L(v) - L(u ) +δ L(u ) +δ [N(v) - F(r)] = 0, δ [0,1], r Ωo o ∈ ∈                             (5) 
Where δ  ∈  [0, 1] is an embedding parameter, uo is an initial approximation of Eq. (1), which satisfies the 
boundary conditions. Obviously, from Eq. (4) and Eq. (5), we have  

0H(v,0) = L(v) - L(u ) = 0                                                                   (6) 
H(v,1) = A(v) - F(r) = 0                                                                    (7) 
The changing process of δ from zero to unity is just that of v(r, δ) from uo(r) to u(r). In topology, this is called 
deformation, and L(v) - L(uo), A(v) – F(r) are called homotopic. We use the imbedding parameter δ as a “small 
parameter", and assume that the solution of Eq. (5) can be written as a power series in δ: 

2 3 4
0 1 2 3 4v = v + δ v + δ v + δ v + δ v + ...........                                                    (8) 

Setting δ = 1 result in approximate solution of Eq. (1):  
0 1 2 3 4δ 1

u = limv = v +v +v +v +v +............
→

                                                     (9) 

The coupling of the perturbation method is called the homotopy perturbation method, which has eliminated 
limitations of traditional methods. In the other hand, the proposed technique can take full advantage of the 
traditional perturbation techniques (He, 2004). The series (9) is convergent for most cases, however, the 
convergent rate depends upon the nonlinear operator A(v):  
1) The second derivative of N (v) with respect to v must be small, because the parameter δ may be relatively 
large, i.e. δ → 1.  

2) The norm of -1 NL
v

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

must be smaller than one, in order that the series converges. 

3. Free-Particle Radial Schrödinger Equation  
In spherical coordinates, the Laplacian takes the form 

2
2 2

2 2 2 2 2

1 1 1ˆ sin
sin sin

r
r rr r r

θ
θ θθ θ ϕ

⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞∇ = + + ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
                               (10)   

The time-independent Schrödinger equation reads 

                                           (11)  
Where ˆ

oH is the Hamiltonian, V(r) is the potential energy, and E is the energy of the particle. In spherical 

coordinates, the Hamiltonian ˆ
oH  takes the form  

2 2 2
2

2 2 2 2

1 1 1 1ˆ sin ( )
2 2 sin sinoH r V r

m r r mr r
θ

θ θ θ θ ϕ

⎡ ⎤⎛ ⎞⎡ ⎤∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= − − + +⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

h h

                  (12)            
For a free particle, V(r) = 0, then ˆ

oH becomes 
2 2 2

2
2 2 2 2

1 2

1 1 1 1ˆ sin
2 2 sin sinoH r

m r r mr r
θ

θ θ θ θ ϕ

⎡ ⎤⎛ ⎞⎡ ⎤∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= − − +⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

h h

144424443 144444444424444444443

                         (13)            

The first pat which involves only derivative with respect to r, describes the kinetic energy of the radial motion. 
The second part, describes the kinetic energy of the angular motion. The quantum angular momentum of the 
particle is given by the operator (Schiff, 1968)  
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                                                                      (14)                 
where ∇̂  is the expression for gradient  in spherical coordinate and has the form   

                                                  (15)                  
Meanwhile, ˆr r r=

r
, so 

                         (16)                 

But  and hence 

1ˆˆ ˆ
sin

i ϕ θ
θ θ ϕ

⎡ ⎤∂ ∂
−⎢ ⎥∂ ∂⎣ ⎦

h= −L                                                              (17)                  

the unit vectors θ̂  and ϕ̂  are resolved into their Cartesian components (Tannoudji, 1977) 

sin cos cot

cos sin cot

x

x

x

L i

L i

L i

ϕ ϕ θ
θ ϕ

ϕ ϕ θ
θ ϕ

ϕ

⎧ ⎛ ⎞∂ ∂
=− − −⎪ ⎜ ⎟∂ ∂⎝ ⎠⎪

⎪ ⎛ ⎞∂ ∂⎪ =− + −⎨ ⎜ ⎟∂ ∂⎝ ⎠⎪
⎪ ⎛ ⎞∂⎪ =− ⎜ ⎟∂⎪ ⎝ ⎠⎩

h

h

h

                                                      (18)                  

Therefore, the partial differential operator  takes the form 
2

2 2
2 2

1 1ˆ sin
sin sin

L θ
θ θ θ θ ϕ

⎡ ⎤∂ ∂ ∂⎛ ⎞=− +⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦
h                                                   (19)                  

and this operator involves only derivatives with respect to θ  and ϕ . Hence, it is easy to rewrite the free 
particle Hamiltonian of Eq. (13), which becomes 

                                      (20)                  
Hence 2L̂  commutes with the radial kinetic energy and hence with ˆ

oH . The kinetic energy operator also 

commutes with ˆ
zL , because ˆ

zL  commutes with 2L̂  and with the expression depending on r. This proves that 
the operator of the kinetic energy is invariant under rotations (Eisberg and Rinsik, 1985):         

                                                                         (21) 
The same commutation relation holds for the operators in Cartesian coordinates, which are related to the operator 
in spherical coordinate. Any eigenspace of 2L̂  is left invariant by ˆ

oH . If ψ l  is an eigenvector of 2L̂ , then 
ˆ

oH ψ l  is an eigenvector of 2L̂  belonging to same eigenvalue (Dirac, 1999). In order to solve the Schrödinger 
equation in spherical coordinates, the trial function 

0

1( , , ) ( ) ( , )m
m

m

r R r Y
r

θ ϕ θ ϕ
∞

= =−

Ψ =∑∑
l

l l

l l

 (22)                 

could be used . ( , )mY θ ϕl  are the eigen-functions of 2L̂ with eigen-values 2 ( 1)+h l l . We see immediately that 

the partial differential operator of ˆ
oH  becomes an ordinary differential operator          

2 2 2
2

2 2

2 ( 1)ˆ
2 2o

d d
m m r drdr r

⎛ ⎞+
=− ∇ = − − +⎜ ⎟

⎝ ⎠
l

h h l lh                                                  (23)                  
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which is called the free radial Schrödinger operator. The angular kinetic energy appears in the form of a 
potential energy 2( 1) / r+l l . This term is called centrifugal potential energy or centrifugal barrier, because it 
has the effect of a repulsive force in the radial direction (Flugge, 1971). Immediately it can be shown that 

ˆ
oH EΨ = Ψ  holds if ( )mR rl is a solution of the radial Schrödinger equation   
2 2

2 2

2 ( 1) ( ) ( )
2

d d R r E R r
m r drdr r
⎛ ⎞+
− − + =⎜ ⎟
⎝ ⎠

h l l                                             (24) 

After multiplying by r2 and rearranging the terms, we get 
2

2 2
2 2

( ) ( ) 22 ( 1) ( ) 0d R r d R r mEr r r R r
drdr

⎛ ⎞+ + − + =⎜ ⎟
⎝ ⎠

l l
h

                                      (25) 

where 2 22 /k mE= h , therefore Eq. (25) becomes 

( )
2

2 2 2
2

( ) ( )2 ( 1) ( ) 0d R r d R rr r k r R r
drdr

+ + − + =l l                                                         (26)               

This is the spherical Bessel differential equation. It can be transformed by letting krξ = , where  then 
( ) ( ) ( )d R r d R r d R rr kr

dr k dr d
ξ

ξ
= =                                                                           (27)           

2 2
2 2

2 2

( ) ( )d R r d R rr
dr d

ξ
ξ

=                                                                                     (28)       

Substitution of Eq. (27) and Eq. (28) into Eq. (26) gives  

( )
2

2 2
2

( ) ( )2 ( 1) ( ) 0d R r d R r R r
dd

ξ ξ ξ
ξξ

+ + − + =l l                                                            (29) 

Now, we look for a solution of the form 1/ 2( ) ( )R r Y ξ ξ −= , therefore 

1/ 2 3/ 2( ) ( ) 1 ( )
2

dR r dY Y
d d

ξ ξ ξ ξ
ξ ξ

− −= −                                                                        (30) 

2 2
1/ 2 3 / 2 3 / 2 5 / 2

2 2

( ) ( ) 1 ( ) 1 ( ) 1 3( ) ( )
2 2 2 2

d R r d Y dY dY Y
d dd d

ξ ξ ξξ ξ ξ ξ ξ
ξ ξξ ξ

− − − −= − − − −                      (31) 

2 2
1/ 2 3 / 2 5 / 2

2 2

( ) ( ) ( ) 3 ( )
4

d R r d Y dY Y
dd d

ξ ξξ ξ ξ ξ
ξξ ξ

− − −= − +                                           (32)  

Substitution of Eq. (30) and Eq. (32) into Eq. (26) leads to  

( )

2
2 1/ 2 3/ 2 5 / 2

2

1/ 2 3/ 2 2 1/ 2

( ) ( ) 3 ( )
4

( ) 12 ( ) ( 1) ( ) 0
2

d Y dY Y
dd

dY Y Y
d

ξ ξξ ξ ξ ξ ξ
ξξ

ξξ ξ ξ ξ ξ ξ ξ
ξ

− − −

− − −

⎛ ⎞
− + +⎜ ⎟

⎝ ⎠
⎛ ⎞

− + − + =⎜ ⎟
⎝ ⎠

l l

                                          (33) 

If we multiply Eq. (33) by 1/ 2ξ − , we will get  

( )
2

2 1 2 1 2
2

( ) ( ) 3 ( ) 1( ) 2 ( ) ( 1) ( ) 0
4 2

d Y dY dYY Y Y
d dd

ξ ξ ξξ ξ ξ ξ ξ ξ ξ ξ ξ
ξ ξξ

− − −⎛ ⎞ ⎛ ⎞
− + + − + − + =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
l l          (34) 

Summing up similar terms yields  

( )
2

2 2 21
22

( ) ( ) ( ) ( ) 0d Y dY Y
dd

ξ ξξ ξ ξ ξ
ξξ

+ + − + =l                                         (35)             

But the solutions to this equation are the ordinary Bessel functions of half integral order; 1/ 2J +l  and 1/ 2N +l  
(Griffiths, 1995) therefore 

1/ 2 1/ 2( ) ( ) ( )Y A J B Nξ ξ ξ+ += +l l l l                                                            (36) 

1/ 2J +l  and 1/ 2N +l  are related to the spherical Bessel  and Neumann functions, j l  and nl , respectively by: 

1/ 2 ( )
( )

2
J

j
ξπξ

ξ
+= l

l                                                                      (37) 
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1/ 2 ( )
( )

2
N

n
ξπξ

ξ
+= l

l                                                                     (38) 

Substitution for 1/ 2J +l  and 1/ 2N +l  in Eq. (36) leads to  

 2 2( ) ( ) ( )Y A j B nξ ξ ξ ξ ξ
π π

= +l l l l                                                    (39) 

The Bessel functions j l  are finite at the origin, but the Neumann functions blows up at the origin. Accordingly, 
we must have 0B =l , and hence the normalized solutions of Eq. (26) are  

1/ 2 '( ) ( ) ( )R r Y kr A j krξ −= = l l                                                              (40) 
The function ( )j krl  is most commonly given in series form by 

2
' 2

0

( 1) 2 ( )!( )
!(2 2 1)!

p p
p

p

k pj kr A r
p p

∞
+

=

− +
=

+ +∑
l

l
l l

l

l
                                                    (41)                  

4. Solution of Radial Dependent Schrödinger Equation for a Free-Particle Using HPM 
In this section, we implement the HPM, in a realistic and efficient way, to provide approximate solutions for the 
radial dependence Schrödinger equation (spherical Bessel equation) subject to the condition that R(r) is bounded 
at r = 0. For the sake of continuity, this equation is rewritten here 

( )
2

2 2 2
2

( ) ( )2 ( 1) ( ) 0d R r d R rr r k r R r
drdr

+ + − + =l l
                                             (42)                  

In view of Eq. (4) or (5), the homotopy for Eq. (42) can be constructed as 
2

2 2 2
2

( ) ( )( , ) 2 ( 1) ( ) 0 , [0,1]d R r d R rH R r r k r l l R r
drdr

δ δ δ⎡ ⎤= + + − + = ∈⎣ ⎦
                           (43)

 

The basic assumption of HPM is that the solution R(r) can be expressed as a power of series in δ. 
2 3

0 1 2 3
0

( ) ( ) ( ) ( ) ( ) ( )..........n
n

n

R r R r R r R r R r R rδ δ δ δ
=

= = + + +∑                                           (44) 

The terms up to δ3 are considered, where 
2 3

1 2 3( ) ( ) ( ) ( ) ( )oR r R r R r R r R rδ δ δ≈ + + +                                                    (45) 

2 3 31 2( ) ( )( ) ( )( ) odR r dR rdR r dR rdR r
dr dr dr dr dr

δ δ δ≈ + + +                                                       (46)  

2 22 22
2 3 31 2

2 2 2 2 2

( ) ( )( ) ( )( ) od R r d R rd R r d R rd R r
dr dr dr dr dr

δ δ δ≈ + + +                                               (47)             

Substitution of Eqs. (45-47) into Eq. (42) yields 

( )

2 22 2
2 2 3 31 2

2 2 2 2

2 3 31 2

2 2 2 3
0 1 2 3

( ) ( )( ) ( )

( ) ( )( ) ( )
2

( 1) ( ) ( ) ( ) ( ) 0

o

o

d R r d R rd R r d R r
r

dr dr dr dr

dR r dR rdR r dR r
r

dr dr dr dr

k r R r R r R r R r

δ δ δ

δ δ δ

δ δ δ δ

⎛ ⎞
+ + + +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞+ + + +⎜ ⎟
⎝ ⎠

⎡ ⎤− + + + + =⎣ ⎦l l

                                              (48) 

Summing up the coefficient of like power of δ gives 
2

2
2

2
1 2 2 21 1

12

2
2 2 2 22 2

1 22

2
3 2 2 23 3

2 32

( ) ( )
2 ( 1) ( )

( ) ( )
2 ( ) ( 1) ( )

( ) ( )
2 ( ) ( 1) ( )

( ) ( )
2 ( ) ( 1) (

o o o
o

o

d R r dR r
r r R r

drdr

d R r dR r
r r k r R r R r

drdr

d R r dR r
r r k r R r R r

drdr

d R r dR r
r r k r R r R r

drdr

δ

δ

δ

δ

⎛ ⎞
+ − + +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

+ + − + +⎜ ⎟
⎝ ⎠
⎛ ⎞

+ + − + +⎜ ⎟
⎝ ⎠

+ + − +

l l

l l

l l

l l ) 0
⎛ ⎞

=⎜ ⎟⎜ ⎟
⎝ ⎠

                                                (49)                      

where,  
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2
2

2

2
1 2 2 21 1

1 12

2
2 2 2 22 2

2 1 22

2
3 2 2 23 3

3 22

( ) ( )
: 2 ( 1) ( ) 0 ( )

( ) ( )
: 2 ( 1) ( ) ( ) ( )

( ) ( )
: 2 ( 1) ( ) ( ) ( )

( ) ( )
: 2 ( 1) ( ) ( ) (

o o o
o o

o

d R r dR r
r r R r a

drdr
d R r dR r

r r R r k r R r a
drdr

d R r dR r
r r R r k r R r a

drdr
d R r dR r

r r R r k r R r
drdr

δ

δ

δ

δ

+ − + =

+ − + = −

+ − + = −

+ − + = −

l l

l l

l l

l l 3

2
2 2 2

( 1)2

)

:
:

( ) ( )
: 2 ( 1) ( ) ( ) ( )p pp

p p p

a

d R r dR r
r r R r k r R r a

drdr
δ −

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪

+ − + = −⎪
⎪
⎪⎩

l l

                              (50) 

where Rp(0) = R′p(0) = 0 for  p = 1, 2, 3, …..,  Consequently, the solution of Eq. (50-ao) is 
2

0 1 1( )
C

R r C r
r += +l
l

             

(51)   
Where 1C  and 2C  are arbitrary constants. Subsisting the initial condition R(r = 0) = 0 and taking into account 
the condition that R(r) is bounded at r = 0, we get 

0 1( )R r C r= l                                                                                               (52) 

After setting 0 1( )R r C r= l  in Eq. (50-a1) we get   
2

2 2 21 1
1 12

( ) ( )
2 ( 1) ( )

d R r dR r
r r R r C k r

drdr
++ − + = − ll l                                                       (53) 

The general solution of Eq. (53) is given by: 
2

2
1 1 1( )

4 6
kR r A C r += −
+

l

l
                                                                                 (54) 

Where the arbitrary constant A1 = 0, because R1(r) = 0  at (r = 0). Therefore, the solution takes the form 
2

21
1( )

4 6
k C

R r r +−
=

+
l

l
                                                                                       (55) 

The normalized radial dependent solution R1(r) is illustrated in Fig. (1) at different values of l . Similarly, after 
setting 2 2

1 1( ) ( / 4 6)R r k C r +=− + ll  into Eq. (50-a2) we get   
2 4

2 42 2
2 12

( ) ( )
2 ( 1) ( )

4 6
d R r dR r kr r R r C r

drdr
++ − + = +

+
ll l

l
                                                  (56) 

which has the solution 
4

4
2 2 1( )

(4 6)(8 20)
kR r A C r += +

+ +
l

l l
                                                                    (57) 

and the arbitrary constant A2 = 0, because R2 = 0  at (r = 0). Therefore, 
4

4
2 1( )

(4 6)(8 20)
kR r C r +=+

+ +
l

l l
                                                                          (58) 

The normalized radial dependent solution R2(r) is shown in Fig. (2) at different values of l .  
Equivalently, the solution of Eq. (50-a3) is given by 

 
6

6
3 1( )

(4 6) (8 20) (12 42)
kR r C r +=−

+ + +
l

l l l
                                                               (59) 

In general, the pth term is given by 
2

2
1

( 1) (2 1)!( )!( )
! !(2 2 1)!

p p
p

p
k pR r C r
p p

+− + +
=

+ +
ll l

l l
                                                                 (60) 

It is worth to mention that the solutions ( )pR r  for p = 0, 1, 2, 3, …., satisfy Eq. (42).   
As a result, according to Eq. (44), the solution of Eq. (42) can be constructed as 
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2
2

1
0

( 1) (2 1)!( )!( )
! !(2 2 1)!

p p
p

p

k pR r C r
p p

∞
+

=

− + +
=

+ +∑ ll l

l l
                                                              (61) 

For computing purposes, the solution provided by Eq. (61) as R(r) can be approximated by the pth term Rp(r)   
2

2
1

0

( 1) (2 1)!( )!( )
! !(2 2 1)!

p p
p

p
p

k pR r C r
p p

∞
+

=

− + +
≈

+ +∑ ll l

l l
                                                           (62) 

The general solution R(r) up to the third term is illustrated in Fig. (3). 
4. Conclusion 
As a result, we conclude that the HPM can provides the expected solution and works successfully in handling 
differential equations directly which produces the solutions in terms of convergent series with easily computable 
components, and requires less computational work when compared with other methods. A convergent series 
solution for the radial dependent Schrödinger equation has been obtained, which is realistic and effective. 
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Figure 1. The radial solution R1(r) of Radial dependent Schrödinger equation (spherical Bessel equation) at 
different values of l .  

 

Figure 2. The radial solution R2(r) of the radial dependent Schrödinger equation (spherical Bessel equation) at 
different values of l .  
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Figure 3. The general solution R(r) of the radial dependent Schrödinger equation (spherical Bessel equation) up to 
the third term of Eq. (61), at different values of l .  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  


