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Abstract 
The dynamics control of a dual-arm space robot installed on a free-flying spacecraft without base position and 
orientation control holding a single object is discussed in this paper. The movement of two arms and the object 
seriously affects position and orientation of the base and the robot grasp programming later due to heavy 
coupling between the arms and the base. The closed kinematic chain constrains and the Generalized Jacobian 
Matrix (GJM) of the dual-arm space robot are built. In order to save energy consumption, a coordinated 
dynamics control scheme with zero internal forces control based on the well-known computed torque method is 
used to control the trajectory of a grasped object, in which the disturbance to the base can be effectively 
decreased. The validity of this method is proved by computer simulations for a grasp system with a planar 
dual-arm space robot of three freedoms. 
Keywords: Dual-arm space robot, Generalized Jacobian Matrix (GJM), Coordinated control  
1. Introduction 
In recent years, coordinated control of multiple-arm space robot systems has received considerable attention, 
because the utilization of the coordinated multiple-arm system provides greater lifting and manipulation 
capability as well as higher flexibility in space tasks. The cooperation manipulation increases the possibility for 
space robots to carry out more complicated and dexterous tasks, which may not be accomplished by a single 
space robot. There are several approaches to the multiple-arm space robot. Kazuya Yoshida et al. (1991, 
p.2516-2521) presented the control problem of multiple manipulators installed on a free-flying space robot, in 
which a method to control two arms simultaneously: one arm traces a given path, while the other arm works both 
to keep the satellite attitude .Yan-Ru Hu and George Vukovich (1998, p. 217-230) presented the position / force 
control of coordinated robots mounted on spacecraft manipulating an object with closed kinematic chain 
constraints. The Generalized Jacobian Matrix (GJM) is formulated for the motion control of the multi-arm 
system. S.A.Moosavian and E. Papadopoulos (1997, p.853-858) and S. Ali A et al (1997, p.10-12.) suggested a 
multiple impedance control (MIC) algorithm for space robotic systems in which manipulators are mounted on a 
free-flying base. It was shown that under the MIC algorithm, all participating manipulators, the free-flyer base, 
and the manipulated object exhibited the same designated impedance behavior. S.H.Murphy et al. (1991, p. 
468-478) presented the dynamic equations of motion for two or more cooperating manipulators on a freely 
moving mobile platform. The equations of motion were shown to be identical in structure to the fixed-platform 
cooperative manipulator dynamics. A.K.Swain and A.S.Morris (2004, p.271-283) described the control of 
multi-arm cooperating manipulator systems handing a common object. Inverse dynamics controllers with motive 
force compensation were developed for the cooperating fixed-base, free-floating, and free-flying space 
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manipulator system. In this paper, kinematics of a dual-arm space robot and the relationship with closed 
constrains between the end-effects of the space robot and the object are obtained. In space operations it is 
expected that internal force will be minimal to save energy consumption, hence a coordinated control scheme 
with zero internal force control is presented. Simulation results for a planar dual-arm space robot show that 
errors of the position and force asymptotically converge to zero. 
2. The closed chained constrains and generalized Jacobian matrix 
A grasp system consisting of a free-floating space dual –arm robot, spacecraft and the object is shown in Fig.1. 
In order to describe the motion of the grasp system, coordinate systems are defined as: 

∑0
: The coordinate system fixed at the mass center of the spacecraft ; 

∑ I
: The inertial coordinate system fixed at the mass center of the coordinate system;  

∑ ji
: The link coordinate system fixed at the i-th joint of the arm;   

00 ,Im  : mass and inertial of spacecraft; 

i
j

i
jm I,  :mass and inertial of the i-th link of the j-th arm;                                      

ccm I,  : mass and inertial of the grasped object;           

c
i
jc rrr ,,0 position vectors of all links from the           

Origin of the coordinate system to the origin of the link system, mass center of all links and the load; 

j
ip : position vector of i-th link from the origin of i-th link to the mass center at the j-th arm;  

j
i

il
1− :position vector from the origin of the link system of the (i-1) th link to the origin of the link system of the 

i-th link  expressed in the link system of the (i-1) th link of the j-th arm;  
i
jq& : joint velocity vector of the j-th arm; 

j
iω : angular velocities of the i-th link of the j-th arm expressed in ∑ ji

system; 

j
iv : linear velocity of the i-th link of the j-th expressed in ∑ ji

system;  

jc
iω : angular velocity of the mass center of the ith link of the j-th arm expressed in ∑ ji

system, 

where RLj ,=  are defined as left arm and right arm which have same the numbers of the freedom; nni ,1L=  
is the numbers of freedom for the j-th arm.  
The recursive relationships for all links are as follows 
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Where i
i z  is an identity vector of z axis in ∑ ji

coordinate. An operator ‘×’for 
T

zyx rrr ],,[=r  
The velocity of the i-th link of the j-th arm can be expressed recursively based on Kazuya Yoshida et al. 
(991,p.2516-2521) as follows: 
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The velocity of end-effectors for j-th arm expressed in the j-th link frame is represented as  
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The velocity of j-th arm expressed in the j-th link frame is described as  

jjbjej qJVJX && += 0                                                                  (4) 

Where
jjjejjjejbj nnn NGΦRJΦRJ ),1(),0,1( +=+= , ),( 0

1
0
1 jnjnej RRR ++= diag . jn R0

1+ is a rotation matrix from 
the end-effectors frame to the spacecraft frame. The linear and angular velocities of the mass center of the ith 
link of the j-th arm are expressed as  
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Where jc
i v , jc

iω  , j
i v  and j

iω  are the linear and angular velocities of the mass center of the i-th link 

expressed in the i-th link frame for the j-th arm. 33×∈ RE is an identity matrix, and j
i P  is the vector from the 

origin of the ith link frame to the mass center of the ith link and expressed in the ith link frame for the j-th arm. 
From Eq. (5), the linear and angular velocities of the mass center of the ith link of the j-th arm expressed in the 
spacecraft frame can be described as  
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the ith link frame to the spacecraft frame. 
The velocities of all links and their mass centers of the j-th arm can be described as  

0VDqNV jjjjj +Φ= &                                                                (7) 
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We assume that the coordinated space robotic system is operated in free-floating mode without external forces 
and moments exerted on the grasp system, so the total linear and angular momenta are conserved respectively. 
Furthermore, we assume the total linear and angular momenta are zero. The relationship between the joint and 
spacecraft velocities is obtained as 

qJV s &=0                                                                          (9) 
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),( RLq JJJ diag= .Φ  is a transformation matrix, and DS , , and N are relevant matrices, q& is the 
velocity vector of all robot joints. 
In terms of the Eq. (4), the relationship between the object, spacecraft, and joint velocities is described as 
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qJVJX qbe && += 0                                                                    (10) 
Substituting Eq. (9) into Eq. (10). The closed chain constrains relationship between end-effectors and joint 
velocities is expressed as follows   

qJqJqJJX &&&&
eqsbe =+=                                                             (11) 

Where qsbe JJJJ +=  is defined as the generalized Jacobian matrix (GJM) of the free-floating space dual-arm 

robot, in which sJ  is related to dynamics parameters of all arms, spacecraft and 
payload, ),( RLq JJJ diag=  is a conventional Jacobian matrix of fixed-base. 

3. Dynamics coordinated control 
3.1 Dynamics equation 
Dynamics equation for free-floating space dual-arms is described based on Yan-Ru Hu et al. (1998, p. 217-230), 
S.A.Moosavian et al (1997, p.853-858) and S. Ali A et al (1997, p.10-12.) as follows 
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q  is the vector of joint coordinate , TT
R

T
L FF ],[=F is the force vector exerted on the object by end-effectors 

of the dual- arms, and TT
j

T
jj ],[ ηfF = , T

jzjyjxj ],,[ ffff = , T
jzjyjxj ],,[ ηηηη =  ),( RLj = . 

J  is the force Jacobian matrix for the end force, j
iω is the angular velocity of i-th link frame to the spacecraft 

frame, and ×
j

iω  is j
iω  inverse symmetry matrix, T

j nn )],1([ += φ  00B L . 
According to Newton-Euler equation, dynamics equation of the object can be described as follows 

0F==+ FJXXCXXM T
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cccc ])([ ωIω 0C ×= . cω is velocity for the object, F  is 

the force of end-effect exerted on the object. 6],[ RNfF TT
o

T
oo ∈= , 33

3
×∈ RE is an identity matrix. 

oo Nf , are the resultant force and moment applied to the object by dual arms. 
3.2 Dynamics coordinated control  
The end effectors force can be obtained by using a pseudo inverse technique. The result of computation is 
written as 

Im
T
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T

ce
T

ce FFEF +=−+= ++ λ)))(()( 60 (JJJF                                              (14) 
Where 1)()( −+ = ce

T
cece

T
ce JJJJ , λ))()(( 6

T
ce

T
ceI EF JJ +−=  is defined as an internal force which does not contribute 

any driving force to the object, 112],[ ×∈= RTT
IR

T
ILI FFF ,and 6R∈λ is any vector in the null-space of T

ceJ , 

that is 0FJ =I
T

ce , mF  is a manipulating force, o
T

cem FF += )(J , 66
6

×∈RE  is an identity matrix, 

and TT
Ij

T
IjIj ],[ ηfF = , T

IjzIjyIjxIj ],,[ ffff = , T
IjzIjyIjxIj ],,[ ηηηη = . However in space operations it is expected that 

a targeted object will be grabbed with a special tool or gripper. In such cases, it is expected that internal forces 
and moments will be minimal and hence, IF can be chosen equal to zero. 
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Assume that all the end-effectors are firmly holding the object at the contact point so that there is no relative 
motion between the object and any end-effectors. We have the relationship: 

ccee XJqJ && =                                                                        (15) 

Assume that all robot manipulators work in nonsingular work space and eJ is a nonsingular matrix, we also 
have  

)(1 qJXJXJJq &&&&&&&&
ecceccee −+= −                                                         (16) 

With the above relations, substituting Eq. (14) and Eq. (16) into Eq. (12), the combined dynamics equation of the 
entire grasp system for the free-floating space robot is obtained as  

I
T

ccc FJτBXA −=+&&                                                               (17) 
Where ),)( 11 qJXJ(MJB  MJJJMJA &&&&

ecceecc
T

ce
T

ceec −=+= −+−
c

T
ce

T CJJC +++ )( . 
Let 

cc BA , can be exactly estimated, the following coordinated control law is proposed  

ip τττ +=                                                                          (18) 

Where ip ττ ,  are position control for the object and internal force control for the dual-arms respectively, and 
they can be chosen as  

cc
d
c

p
pc

d
c

p
v

d
cc BXXKXXKXA +−+−+= ))()(( &&&&

pτ                                              (19) 

))(( dtI
d

I
i
i

d
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T ∫ −+= FFKFJiτ                                                   (20) 

Where d
c

d
c

d
c XXX &&& ,, are the desired position, velocity and acceleration vectors of the object 

Respectively; cc XX &,  are actual position and velocity vectors for the object; I
d

I FF ,  are the desired force and 

actual internal force vectors respectively. p
p

p
v KK , are feedback control gain matrices, i

iK  is an integral gain 

matrix. 1212×∈ RJ e  is a nonsingular matrix. 

Substituting the coordinated control law given by Eq. (18) into the combined dynamics equation of the entire 
grasp system for the free-floating space robot, we can obtain 

)()( ∫+=++ dtf
i
if

T
p

p
pp

p
vpc eKeJeKeKA &&&e                                               (21) 

Where c
d
cp xx −=e , c

d
cp xx &&& −=e , c

d
cp xx &&&&&& −=e , I

d
II FF −=e . 

Pr-multiplying (21) by TT
ce J−J , and using the facts that 0) =−= I

d
I

T
ceI

T
ce FF(JeJ ,we can obtain 

0eKeKe =++ p
p
pp

p
vp &&&                                                              (22) 

Because of the choice of p
p

p
v KK , , it can be concluded that pe  and pe& converge to zero as ∞→t  . 

Substituting (22) into (21), and using J  and eJ  are non-singular, error equation of internal forces can be 
written as 

0=+ ∫ dtf
i
if eKe                                                                 (23) 

For any positive definite and symmetric matrix i
iK , error for internal force converges to zero as ∞→t . Hence 

the coordinated control law guarantees the asymptotic stability and convergence for both position and internal 
force control.  

4. Simulation 

A simulation for a planar dual-arm space robot mounted on a spacecraft performing a cooperative manipulation 
task is done to show effectiveness of the proposed coordinated control scheme in case of where the dynamics 
parameters of the object and robot arms are exactly known. In the simulation, the planar dual-arms carry one 
object as shown in Fig 5. The parameters for the grasp system are as follows: 

,5,10,15,100 3210 kgkgkgkg ==== mmmm , ,10kg=cm  ,2001 0321
2kgm==== Illl  m,  
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,3.01
2kgm=I 222 kgmkgmkgm 15,1.0,2.0 32 === cIII . The distances from the object mass center to two 

end-effectors are 0.5m respectively. The distances from the mass center of the spacecraft to the first joints of two 
arms are 1.5m respectively. The desired trajectories for the object are given as  
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Where the initial position of the object is )0,0.1,5.1( (m), the initial position of the spacecraft is )0,0,5.1( (m). 
Control gain matrices are chosen as 333 2.1,100,7.6 EKEKEK === i

i
p
p

p
v . The initial internal force is chosen as 

)(]0,0,5,0,0,5[ NF T
I −= , the desired zero internal force is chosen as )(]0,0,0,0,0,0[ NF Td

I = .The sampling period is 10 
ms. The tracking trajectories of the object are shown in Fig.2, and the movement of the spacecraft is shown in 
Fig.3. The internal force responses are shown in Fig.4. Motion responses of dual-arms, object and spacecraft are 
shown in Fig.5. From Fig.3, it is seen that the coordinated control scheme can effectively reduce the disturbance 
to the spacecraft. 

5. Conclusion 

A coordinated control scheme for a free floating space dual-arm robot has been developed. The position/ force 
hybrid control with zero internal force was proposed for the first time. Unlike previous coordinated control 
schemes, zero internal force control for the space robots can save energy consumption throughout the operation. 
The computation simulation results have shown the control objective was achieved successfully. 
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Figure 1. The grasp system for a free-floating space dual –arm robot 
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Figure 2. The tracking trajectories of the object 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. The movement of the spacecraft 
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Figure 4. Zero internal force responses of the dual-arms 
 

                                           
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Motion responses of the dual-arms, object and spacecraft 
 

 
 
 

 
 


