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Abstract

The dynamics control of a dual-arm space robot installed on a free-flying spacecraft without base position and
orientation control holding a single object is discussed in this paper. The movement of two arms and the object
seriously affects position and orientation of the base and the robot grasp programming later due to heavy
coupling between the arms and the base. The closed kinematic chain constrains and the Generalized Jacobian
Matrix (GJM) of the dual-arm space robot are built. In order to save energy consumption, a coordinated
dynamics control scheme with zero internal forces control based on the well-known computed torque method is
used to control the trajectory of a grasped object, in which the disturbance to the base can be effectively
decreased. The validity of this method is proved by computer simulations for a grasp system with a planar
dual-arm space robot of three freedoms.
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1. Introduction

In recent years, coordinated control of multiple-arm space robot systems has received considerable attention,
because the utilization of the coordinated multiple-arm system provides greater lifting and manipulation
capability as well as higher flexibility in space tasks. The cooperation manipulation increases the possibility for
space robots to carry out more complicated and dexterous tasks, which may not be accomplished by a single
space robot. There are several approaches to the multiple-arm space robot. Kazuya Yoshida et al. (1991,
p-2516-2521) presented the control problem of multiple manipulators installed on a free-flying space robot, in
which a method to control two arms simultaneously: one arm traces a given path, while the other arm works both
to keep the satellite attitude .Yan-Ru Hu and George Vukovich (1998, p. 217-230) presented the position / force
control of coordinated robots mounted on spacecraft manipulating an object with closed kinematic chain
constraints. The Generalized Jacobian Matrix (GJM) is formulated for the motion control of the multi-arm
system. S.A.Moosavian and E. Papadopoulos (1997, p.853-858) and S. Ali A et al (1997, p.10-12.) suggested a
multiple impedance control (MIC) algorithm for space robotic systems in which manipulators are mounted on a
free-flying base. It was shown that under the MIC algorithm, all participating manipulators, the free-flyer base,
and the manipulated object exhibited the same designated impedance behavior. S.H.Murphy et al. (1991, p.
468-478) presented the dynamic equations of motion for two or more cooperating manipulators on a freely
moving mobile platform. The equations of motion were shown to be identical in structure to the fixed-platform
cooperative manipulator dynamics. A.K.Swain and A.S.Morris (2004, p.271-283) described the control of
multi-arm cooperating manipulator systems handing a common object. Inverse dynamics controllers with motive
force compensation were developed for the cooperating fixed-base, free-floating, and free-flying space
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manipulator system. In this paper, kinematics of a dual-arm space robot and the relationship with closed
constrains between the end-effects of the space robot and the object are obtained. In space operations it is
expected that internal force will be minimal to save energy consumption, hence a coordinated control scheme
with zero internal force control is presented. Simulation results for a planar dual-arm space robot show that
errors of the position and force asymptotically converge to zero.

2. The closed chained constrains and generalized Jacobian matrix
A grasp system consisting of a free-floating space dual —arm robot, spacecraft and the object is shown in Fig.1.

In order to describe the motion of the grasp system, coordinate systems are defined as:

Zo : The coordinate system fixed at the mass center of the spacecraft ;

21 : The inertial coordinate system fixed at the mass center of the coordinate system;
Zﬁ : The link coordinate system fixed at the i-th joint of the arm;

mg, / o :Mmass and inertial of spacecraft;

m; , I; :mass and inertial of the i-th link of the j-th arm;

m,_, I, :mass and inertial of the grasped object;

r, I'jlc , I, position vectors of all links from the
Origin of the coordinate system to the origin of the link system, mass center of all links and the load;

! P;: position vector of i-th link from the origin of i-th link to the mass center at the j-th arm;

i1llj :position vector from the origin of the link system of the (i-1) th link to the origin of the link system of the
i-th link expressed in the link system of the (i-1) th link of the j-th arm;

q; : joint velocity vector of the j-th arm;
iwj : angular velocities of the i-th link of the j-th arm expressed in Z;; system;
v fx linear velocity of the i-th link of the j-th expressed in Zﬁ system;

’a)/c : angular velocity of the mass center of the ith link of the j-th arm expressed in Zﬁ system,

where j=L,R are defined as left arm and right arm which have same the numbers of the freedom;i=1---n,n
is the numbers of freedom for the j-th arm.

The recursive relationships for all links are as follows
iy _ ip il i
w= R "w +q. z
i, _ ip (il i-1 i-1
V,=a R,V + T wx )
Where 'z ; 1s an identity vector of z axis in z _ coordinate. An operator ¢ X’for
ji

I‘:[rx,ry,rz]r

The velocity of the i-th link of the j-th arm can be expressed recursively based on Kazuya Yoshida et al.
(991,p.2516-2521) as follows:

i .. i1 i gyl .
V,=®,G,i-D)"V,+'ng, j=R,L )
. . . i ipi-lgx i
ey, <o Vg 8 e ', ~0000041
11T

The velocity of end-effectors for j-th arm expressed in the j-th link frame is represented as
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"=, (n+1,n)"V,
=4, (n+1,0)V, +4,(n+1,m)G,N 4,
WhereV, =[v," 0, 1"V, =[v,",0," 1",
q,=14;-4;1.6, =@, (n.1)-@,(n.m]. N ; =diag’'n;--"n,).

The velocity of j-th arm expressed in the j-th link frame is described as

X,=JdV,+J,q, (4)
WhereJ =R, D (n+10),J, =R, @ (n+Ln)G N R —dlag(M ,n+]R ). MR is a rotation matrix from

g J

3)

the end-effectors frame to the spacecraft frame. The linear and angular velocities of the mass center of the ith
link of the j-th arm are expressed as

i i X i
Vie | _ {E —P, } Vi (5)
i i
Dje 0 E | o
Where ‘v oo a). , y ; and '@ ; are the linear and angular velocities of the mass center of the i-th link

expressed in the i-th link frame for the j-th arm. £ € R*isan identity matrix, and in is the vector from the
origin of the ith link frame to the mass center of the ith link and expressed in the ith link frame for the j-th arm.

From Eq. (5), the linear and angular velocities of the mass center of the ith link of the j-th arm expressed in the
spacecraft frame can be described as

vi=s'"y, ©)
0 0p i X
; . 'R. —R.'p.
Where )/ —[’ ]T V vl a)T]T,SI,Z{I J i P }, %R is a rotation matrix from
vy @, j 0 op ity
ithj
the ith link frame to the spacecraft frame.

The velocities of all links and their mass centers of the j-th arm can be described as

Vi=®;N,q; +DJV, (7

Vie=SV; )

Where ="y Ty =00 ¥ T4 =041 .S, = diag(s;--5)) D, =9} (10)--g; (n0)]"
@y 0 0
e @2 - 0

@) @02 - (P,(n,n)
We assume that the coordinated space robotic system is operated in free-floating mode without external forces
and moments exerted on the grasp system, so the total linear and angular momenta are conserved respectively.
Furthermore, we assume the total linear and angular momenta are zero. The relationship between the joint and
spacecraft velocities is obtained as

Vo =Jsq 9)
Where g =-M,+H#,D+M.J,)" M, SON+H.J.) , Moz{mOEj O}GRGW
m, I, /,
N mE, 0
My =My " OLE O el =T TR b)Y
’ Mf/lnw*ﬁ ’ m.r. 1,
Jje Joe J
N =diag(¥ N ) . J(.,,=EJ(.Jh,J“, 10,9, 0,195,920, Iy =[5

J, =diag(J, ,Jd;) .@ is a transformation matrix, and §,0 , and N are relevant matrices, q is the

velocity vector of all robot joints.
In terms of the Eq. (4), the relationship between the object, spacecraft, and joint velocities is described as
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X, =JVy+J 4 (10)
Substituting Eq. (9) into Eq. (10). The closed chain constrains relationship between end-effectors and joint
velocities is expressed as follows

X,=J,JG+J,G=J4 (11)
Where J, = J,J, +J, is defined as the generalized Jacobian matrix (GIM) of the free-floating space dual-arm
robot, in which J, is related to dynamics parameters of all arms, spacecraft and
payload, J = dliag (J ,,J ;) isaconventional Jacobian matrix of fixed-base.

3. Dynamics coordinated control

3.1 Dynamics equation

Dynamics equation for free-floating space dual-arms is described based on Yan-Ru Hu et al. (1998, p. 217-230),
S.A.Moosavian et al (1997, p.853-858) and S. Ali A et al (1997, p.10-12.) as follows

MGg+C=-JF (12)
where M =N"@" W " +0H ;'DT) PN

C=N'&" M, +D0,"D")'[M, b——DH, b, +(@N +DJ,)q]

JT=N'®" M, +0M,"D")' M, B

. E, 0 . . .
with :{m"o } j|€R6 ¢, B, =[0 (@ *1eQ)"]",aq is an angular velociy expressed in spacecraft frame ,
T is the vector of joint driving torque , Mq =diag[#,,M,] ,

| E T e W, —diad W M oG- T b, =" NP P gy
v (e (e)

G is the vector of joint coordinate , F = [FLT,F RT]T
of the dual- arms, and F, = [F/ y37 1", F.=[F.F,.F.]". ] :nx,qy,qz]T (j=L,R).

J s the force Jacobian matrix for the end force, ’wj is the angular velocity of i-th link frame to the spacecraft

is the force vector exerted on the object by end-effectors

frame, and "wjx is ’w/ inverse symmetry matrix, 8 =[0---0 @ (n+1, .

According to Newton-Euler equation, dynamics equation of the object can be described as follows

MC(XC)XC +CC(XC’XC):JCETF:'C0 (13)
Where y :{mf‘l% O}ERM,)}; =[i",&'] eR’,C. =[0 @ x1)"]". €. is velocity for the object, F is
c 0 . g

the force of end-effect exerted on the object. F, =[ foT,N OT 1" €R®, E; e R*®is an identity matrix.

£, N, are the resultant force and moment applied to the object by dual arms.

3.2 Dynamics coordinated control
The end effectors force can be obtained by using a pseudo inverse technique. The result of computation is
written as

F=(J.))F,+(E~J.))Y@.,VA=F, +F, (14)
Where (.]EeT)+ :JCQ(J(ETJ“,)*‘, F =(E, —(JMT)+(~7(.€T))/1 is defined as an internal force which does not contribute

any driving force to the object, F, =[F ILT,F IRT]T eR™ and 1€ RCis any vector in the null-space of J“,T ,
that is J "F =0 ,F, is a manipulating force, F, = (JceT)+FO JE, €R%® is an identity matrix,

andr, =[] ;1" f,'; =[f1j.x, f;.y, GZ]TIE :nquqz]T. However in space operations it is expected that
a targeted object will be grabbed with a special tool or gripper. In such cases, it is expected that internal forces
and moments will be minimal and hence, F[ can be chosen equal to zero.
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Assume that all the end-effectors are firmly holding the object at the contact point so that there is no relative
motion between the object and any end-effectors. We have the relationship:

JGg=J.X, (15)
Assume that all robot manipulators work in nonsingular work space and J,is a nonsingular matrix, we also
have

d = Jeil(".]ceX.c + ‘]ce/\;c - Jed) (16)

With the above relations, substituting Eq. (14) and Eq. (16) into Eq. (12), the combined dynamics equation of the
entire grasp system for the free-floating space robot is obtained as

AX +B =T-JF, (17)

Whereg -, g, + 7' LY M. B.=W @ X -Ip+C+JI"(J.])C.-
Let A B can be exactly estimated, the following coordinated control law is proposed

ret, 41, (18)
Where 7 poT; are position control for the object and internal force control for the dual-arms respectively, and

they can be chosen as

Y o y
T=AX +K X =X)+K (X =X))+B, (19)
7, =JT(F + K[ (F = F)do) (20)
Where X Cd ,X Cd ,X Cd are the desired position, velocity and acceleration vectors of the object

Respectively; X', , X . are actual position and velocity vectors for the object; F Id ,F, are the desired force and
actual internal force vectors respectively. K f K 5 are feedback control gain matrices, K ii is an integral gain
matrix. J, € R is a nonsingular matrix.

Substituting the coordinated control law given by Eq. (18) into the combined dynamics equation of the entire
grasp system for the free-floating space robot, we can obtain

A6, +K!é,+K e, =J (e, +K/|e,di @n
Whereg={x. §={-.8 =¥ 5.6 =F -F.

Pr-multiplying (21) by .]CeTfT, and using the facts that J "e, =J_'(F’ —F,)=0,we can obtain
é,+K'é, +Ke, =0 (22)
Because of the choice of K", K ;’ , it can be concluded thatep and é'p converge to zero as f —»00 .

Substituting (22) into (21), and using J and J, are non-singular, error equation of internal forces can be

written as

e, +K/[e di=0 (23)

For any positive definite and symmetric matrix K, , error for internal force converges to zero as t —>00. Hence

the coordinated control law guarantees the asymptotic stability and convergence for both position and internal
force control.

4. Simulation

A simulation for a planar dual-arm space robot mounted on a spacecraft performing a cooperative manipulation
task is done to show effectiveness of the proposed coordinated control scheme in case of where the dynamics
parameters of the object and robot arms are exactly known. In the simulation, the planar dual-arms carry one
object as shown in Fig 5. The parameters for the grasp system are as follows:

mgy =100kg, m, =15kg, m, =10kg, m, =5Kg,, m. =10kg, [ =1, =1, =Im, I, =200kgm’,
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I, =03kgn 2, I, =0.2kgn’, I, =0.1kgn?, I, =15kgn?. The distances from the object mass center to two

end-effectors are 0.5m respectively. The distances from the mass center of the spacecraft to the first joints of two
arms are 1.5m respectively. The desired trajectories for the object are given as

X2(t) =1.5+0.2cos(2t)(m)
X5 (1) =1.0+0.2cos(21)(m)

d
Xy =0.05co0s(2t)(rad)
Where the initial position of the object is (1.5,1.0,0) (m), the initial position of the spacecraft is (1.500)(m).
Control gain matrices are chosen as K[ =6.7£,,K} =100F,,K; =1.2E,. The initial internal force is chosen as

F, =[500-500] (N), the desired zero internal force is chosen as F =[0,0,0,0,0,0]" (N).The sampling period is 10

ms. The tracking trajectories of the object are shown in Fig.2, and the movement of the spacecraft is shown in
Fig.3. The internal force responses are shown in Fig.4. Motion responses of dual-arms, object and spacecraft are
shown in Fig.5. From Fig.3, it is seen that the coordinated control scheme can effectively reduce the disturbance
to the spacecraft.

5. Conclusion

A coordinated control scheme for a free floating space dual-arm robot has been developed. The position/ force
hybrid control with zero internal force was proposed for the first time. Unlike previous coordinated control
schemes, zero internal force control for the space robots can save energy consumption throughout the operation.
The computation simulation results have shown the control objective was achieved successfully.
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Figure 1. The grasp system for a free-floating space dual —arm robot
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Figure 3. The movement of the spacecraft
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Figure 4. Zero internal force responses of the dual-arms
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Figure 5. Motion responses of the dual-arms,
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