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Abstract 
Markov chains are usually used in modeling many practical problems. They are also effective in modeling time 
series. In this paper, we apply the Markov chains model to analyze and predict the time series. Some series can 
be expressed by a first-order discrete-time Markov chain and others must be expressed by a higher-order Markov 
chain model. Numerical examples are given. The results show that the performance and effectiveness of the 
Markov chain model to predict the time series is very well. 
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1. Introduction 
Markov chains are useful tools in modeling many practical systems such as queuing systems (Ching, 2001.and 
Sharma, 1995.), manufacturing systems (Buzacott & Shanthikumar, 1993.) and inventory systems (Ching, Fung 
& Ng, 2003,pp.291–298 and Nahmias, 1997). Applications of Markov chains in modeling categorical data 
sequences can also be found in (Ching, Fung & Ng, 2002, pp.87–199 and MacDonald & Zucchini, 1997). Time 
series occur frequently in many real world applications. If one can model the time series accurately, then one can 
make good predictions and also optimal planning in a decision process (Ching, Ng & Fung, 2008, pp.492–507).  
In this paper, we apply the Markov chains model to analysis and predict the time series. Some series can be 
expressed by a first-order discrete-time Markov chain and others must be expressed by a higher-order Markov 
chain model. Numerical examples are given. The results show that the performance and effectiveness of the 
Markov chain model to predict the time series is very well. 
2. Markov chain model 
2.1 The first-order Markov chain model 
We consider modeling a time series xt by a first-order Markov chains having k states E={1,2……k}. A 
first-order discrete-time Markov chain having k states satisfies the following relationship: 

1 1 0 0 1 1 1 1( | , , , ) ( | )t t t t t t t tP x i x i x i x i P x i x i+ + + += = = = = = =L , 

where xt is the state of a time series at time t and ij ∈E. The conditional probabilities 

1 1( | )t t t tP x i x i+ += =  

are called the one-step transition probabilities of the Markov chain. These probabilities can be written as pij = 
P(xt+1 = i| xt = j) for i and j in E. The matrix P=(pij)k×k is called the one-step transition probability matrix. We note 
that the elements of the matrix P satisfy the following two properties: 

0≤ pij ≤1 ∀i, j ∈ E and 
1

1
k

ij
i

p
=

=∑ ,∀ j ∈ E 

A first-order Markov chain model 
xt+1 = Pxt                                    (1) 

is then constructed for the observed time series. 
We have the following well-known proposition for a transition matrix P. The proof can be found in (Horn & 
Johnson, 1985, pp. 508–511) and therefore omitted here. 
Proposition 1. The matrix P has an eigenvalue equal to one and all the eigenvalues of P must have modulus less 
than or equal to one. 
Generally one has the following proposition for a non-negative matrix, see for instance (Horn & Johnson, 1985, 
pp. 508–511). 
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Proposition 2 (Perron–Frobenius theorem). Let A be a non-negative and irreducible square matrix of order m. 
Then 
(i) A has a positive real eigenvalue, λ, equal to its spectral radius, i.e., max | ( ) |k A

λ
λ λ=  where ( )k Aλ  denotes the 

kth eigenvalue of A. 
(ii) To λ there corresponds an eigenvector x of its entries being real and positive, such that A x = λx. 
(iii) λ is a simple eigenvalue of A. 
By using the above two propositions, one can see that there exists a positive vector 
x = [x1, x2,..., xm]T 

such that P x = x if P is irreducible. The vector x in normalized form is called the stationary probability vector of 
P. Moreover xi is the stationary probability that the system is in state i ( Ching, Ng & Fung, 2008, pp.492–507). 
2.2 The higher-order Markov chain model 
Higher-order (nth-order) Markov chain models have been proposed by Raftery (1985, p.528–539) and Ching et 
al. (2004, p.557–574) for modeling categorical data sequences. 
Ching, Ng & Fung (2008, pp.492–507) have suggested a series of modeling methods based on the Markov chain 
(including the higher-order Markov chain model). We note that a time series {xt } of k states can be represented 
by a series of vectors (probability distribution) 
{x0, x1, x2, . . . } 
called the canonical form representation. If the system is in state j ∈ E at time (t + i) then the state probability 
distribution vector is given by 

{
T

th entry
x (0, ,0,  1 ,0, ,0) .t i

j
+ = L L  

In addition, We assumes that the state probability distribution at time t = m + 1 depends on the state probability 
distribution of the sequence at times t =m, m−1, . . . , m−n+1. 
The model is given as follows: 

1 1
1

x x ,   1, ,
n

m i i n i
i

P i m mλ+ − +
=

= = −∑ L                          (2) 

with initials x0, x1, . . . , xn−1. Here the weights λi are non-negative real numbers such that 

1
1

n

i
i
λ

=

=∑ .                                     (3) 

Here xm is the state probability distribution at time m, Pi is the i-step transition matrix and λi are the non-negative 
weights. The total number of parameters is of O (nk2) (Ching, Ng & Fung, 2008, pp.492–507).  
We estimate the transition probability matrix Pi by the following method. Given the data series, we count the 
transition frequency from the states in the sequence at time t = m −i+ 1 to the states in the jth sequence at time t = 
m + 1 for 1≤i≤n. Hence one can construct the transition frequency matrix for the data sequences. After making 
normalization, the estimates of the transition probability matrices îP  can also be obtained.  
Besides the estimates of Pi, we need to estimate the parameters λi. As a consequence of Proposition 1 and 
Proposition 2, the nth order Markov chain has a stationary vector X. The vector xj can be estimated from the 
sequences by computing the proportion of the occurrence of each state in the series.  
As a consequence of Proposition 1 and Proposition 2, 

Qx ≡ x,  where 
1

.
n

i i
i

Q Pλ
=

=∑  

one would expect that 
ˆ ˆ ˆx xQ ≈ .                                     (4) 

From (4), one possible way to estimate the parameters λi is given as follows. One may consider solving the 
following minimization problem: 
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Here ||·|| is certain vector norm. If ||·|| is chosen to be the ||·||∞ norm then the above optimization problem becomes  
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where [·]i denote the ith entry of the vector. Problem (6) can be formulated as s linear programming problems as 
follows: 
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where 
1 2
ˆ ˆ ˆˆ ˆ ˆ[ x x  x]nM P P P= L . 

We remark that other norms such as ||·||2 and ||·||1 can also be considered. The former will result in a quadratic 
programming problem while the latter will still result in a linear programming problem  Then we use the 
higher-order Markov model to predict the next state of the sequence ˆtx  at time t which can be taken as the state 
with the maximum probability, i.e., 

ˆtx j= , if ˆ ˆ[x ] [x ] , 1t i t j i k≤ ∀ ≤ ≤ .                           (8) 

To evaluate the performance and effectiveness of the higher-order Markov chain model, a prediction result is 
measured by the prediction accuracy r defined as 

1

1 × 100%
N

t
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s a
N n = +

= ×
− ∑ , 

where N is the length of the data sequence and 
ˆ1,      if  

0,     otherwise
t t

t

x x
a

=⎧
= ⎨
⎩
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3. An application to analysis and predict the time series 
In this section, we demonstrate the effectiveness of the Markov chain model and we apply it to the price and 
sales volume for beef prediction problems in a supermarket. The time series of the price and sales volume for 
beef in a supermarket in AnKang is given in appendix. The price of beef can be classified into five possible 
states (1, 2, 3, 4, 5), see Appendix. The price series are expressed as 1 = very low (≤RMB 29/kg), 2 = low (RMB 
29∼32/kg), 3 = middle (RMB 32∼35/kg), 4 = high (RMB 35∼38/kg), 5 = very high (≥RMB 38/kg).Similarly, the 
sales volume of beef can also be classified into five possible states (1, 2, 3, 4, 5), see Appendix. The sales 
volume series are expressed as 1 = very low (≤50kg), 2 = low (50kg ∼55kg), 3 = middle (55kg ∼60kg), 4 = high 
(60kg ∼65kg), 5 = very high (≥65kg). Such expressions are useful from both marketing and production planning 
points of view. 
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On the one hand the supermarket sales demand for beef in order to minimize its inventory build-up, on the other 
hand the customers would like to predict the price of beef to decide purchase strategy. Moreover, the 
supermarket can understand the sales pattern of his customer and then develop a marketing policy to deal with 
customers.  
With the price series, today’s price mostly dependent on yesterday’s price. We choose the first-order Markov 
chain model. We first estimate the one-step transition probability matrix P by using the method said above. 

0.2917 0.0370 0.1500 0.1429 0.1096
0.1250 0.3704 0.1500 0.2500 0.3014
0.2083 0.0741 0.2000 0.0714 0.0685
0.1250 0.1296 0.2500 0.1429 0.1233
0.2500 0.3889 0.2500 0.3929 0.3973

P

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

And we also have the estimates of the stationary probability distributions of the price series 
Tx̂ [0.1200 0.2750 0.1000 0.1400 0.3650]=  

The prediction accuracy of the proposed model is r1 =0.5362. 
But the sales volume series are much more complicated. We choose the order arbitrarily to be five, i.e., n = 5. 
We first estimate all the transition probability matrices Pi by using the method proposed above and we also have 
the estimates of the stationary probability distributions of the product: 

Tx̂ [0.3350 0.1350 0.2150 0.0600 0.2550]=  

By solving the corresponding linear programming problems in (7), we obtain the following higher-order Markov 
chain model: 

1 1 4 3 5 4x 0.7022 x +0.0768 x 0.2210 xm m m mP P P+ − −= + , 

where 

1

0.4776 0.2222 0.0233 0.0909 0.5294
0.1045 0.2593 0.1163 0.0909 0.1373
0.0149 0.2963 0.6279 0.3636 0.0588
0.0149 0 0.1395 0.4545 0
0.3881 0.2222 0.0930 0 0.2745

P

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

4

0.3538 0.2593 0.1860 0.2000 0.4706
0.1692 0.1481 0.2093 0.2000 0.0196
0.1846 0.2593 0.3023 0.1000 0.1961
0.0462 0.1111 0.0930 0 0.0392
0.2462 0.2222 0.2093 0.5000 0.2745

P

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠  

5

0.4063 0.2593 0.2093 0.4000 0.3333
0.0625 0.2222 0.2326 0 0.1373
0.2656 0.2222 0.1860 0.1000 0.2157
0.0469 0.1852 0.0465 0 0.0392
0.2188 0.1111 0.3256 0.5000 0.2745

P

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠ . 

We can also see that the prediction accuracy of the proposed model is r2=0.5588. All results show that the 
effectiveness of the Markov model to analyze and predict the time series is very well. 
4. Summary 
In this paper, we applied the Markov model to analyze and predict the time series. Some series can be expressed 
by a first-order discrete-time Markov chain and others must be expressed by a higher-order Markov chain model. 
Numerical examples are given. We applied it to the price and sales volume for beef prediction problems in a 
supermarket. The results show that the performance and effectiveness of the Markov chain model to predict the 
time series is very well.  
Appendix. Price series of beef in a supermarket 
5 5 5 5 4 5 3 5 3 3 4 2 5 5 3 1 1 1 3 3 4 1 5 1 1 3 3 2 5 1 5 1 5 5 5 5 2 1 4 1 1 1 2 4 5 5 1 4 2 4 1 3 4 2 2 5 2 2 5 5 
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2 5 4 4 4 2 2 5 2 2 5 5 5 5 3 2 2 5 4 5 2 4 5 5 4 1 1 1 2 2 3 2 4 5 5 5 2 5 2 5 5 2 4 2 5 5 2 5 5 1 2 3 4 3 3 1 3 1 4 3 
5 4 5 5 4 5 5 2 5 2 5 2 2 3 5 5 3 5 2 5 4 2 1 5 2 5 2 2 2 2 5 5 4 5 5 2 2 5 2 2 2 3 4 4 4 5 4 5 1 5 5 1 3 5 5 5 1 5 2 2 
2 5 5 5 5 2 4 5 2 2 5 2 5 2 2 2 4 2 2 2 4 5 5 5 3 2 2 5 2 5 4 4 4 5 3 3 5 3 1 1 4 2 2 5 5 2 5 5 5 2 5 5 3 5 5 4 1 5 5 1 
5 5 1 5 1 5 5 5 5 1 5 5 5 2 1 2 5 2 5 5 2 3 5 5 5 5 5 2 5 
1 = very low (≤RMB 29/kg), 2 = low (RMB 29∼32/kg), 3 = middle (RMB 32∼35/kg), 4 = high (RMB 35∼38/kg), 
5 = very high (≥RMB 38/kg). 
Sales demand series of beef in a supermarket 
5 1 1 1 1 2 2 3 3 3 4 3 2 2 5 1 5 5 1 2 3 3 2 3 3 2 2 1 1 5 2 3 3 3 3 2 3 1 2 1 1 5 2 2 5 5 2 3 4 3 4 2 2 1 5 5 1 5 1 5 
5 1 1 5 3 3 3 3 3 3 4 3 3 5 1 5 5 1 1 5 1 5 5 1 5 5 1 5 5 1 5 1 5 2 3 3 3 3 3 3 3 5 1 5 5 1 5 1 5 5 5 5 1 5 1 1 5 3 3 3 
3 3 3 5 2 2 5 1 1 1 5 1 5 1 1 1 1 1 1 1 1 1 1 1 1 2 5 3 4 4 4 4 1 3 5 5 1 5 5 1 1 5 1 1 1 1 5 1 2 1 1 2 5 2 1 1 2 3 3 3 
3 4 4 3 2 2 5 1 5 1 1 1 5 2 1 1 1 1 4 4 3 3 3 3 2 5 1 5 5 1 5 1 5 1 1 2 2 3 3 4 3 3 1 1 1 2 1 1 5 1 1 1 5 1 1 1 1 1 1 1 
2 3 3 1 1 4 3 1 3 2 1 1 1 1 1 5 5 1 5 1 5 1 1 1 1 1 1 1 
1 = very low (≤50kg), 2 = low (50kg ∼55kg), 3 = middle (55kg ∼60kg), 4 = high (60kg ∼65kg), 5 = very high 
(≥65kg). 
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