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Abstract 
The asymptotic stability of the neutral systems with norm-bounded uncertainties and time-varying delays were 
discussed by using the method of LMI. The results were expressed in terms of linear matrix inequalities. 
Compared with some existing results, the criteria obtained in our paper are less conservative. 
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1. Introduction 
In recent years, in the neutral delay system stability studies, the main concern of neutral discrete time-delay 
system, for many time-delay system stability problems, some related time-delay dependent or delay-independent 
stability criteria was given .At the same time, many people pay attention to variable delay neutral systems, by 
making the identity transformation, structure reasonable Lyapunov function, we can obtain delay-depend 
stability criteria. 
Y.He studied the discrete time-delay system of neutral with the constant delays, by using the free weight matrix 
to indicate Newton-Leibniz formula, they got delay-depend stability criteria. This method reduced conservative. 
This paper will extend the result of Y.He to the time-varying delay neutral system. Using Lyapunov stability 
theory and free weight matrix approach, global stability of the system is transformed into a linear matrix 
inequality optimization problem, we can get the delay-depend stability criteria. 
2. Problem Formulations 
Considering the following neutral uncertain time-delay system 

( ) ( ) ( ))())(()())(())((
..

tdtxtBBtxtAAhtxtCCtx −Δ++Δ+=−Δ+−               (1) 

[ ]0,    )()( dtttx −∈= ϕ  

Where ( ) nRtx ∈  is the neuron state vector; nnRA ×∈ , nnRB ×∈ , nnRC ×∈  are the constant matrices 
with appropriate dimensions; ( )d t  denote the time-varying delay satisfies 

    dtd ≤< )(0  , μ≤)(
.

td                                 (2) 

in which d and μ  are the constants ; scalar 0>h  is the state derivative of the delay ; ( )A tΔ , ( )B tΔ  and 

)(tCΔ  reflect the system model in the time-varying parameter uncertainty in real matrix ; ( )tϕ  is a 
continuous vector initial . 

Assumption 1  In system (1) ( )A tΔ , ( )B tΔ and ( )C tΔ  satisfies 

1)()( EtDFtA =Δ  , 2)()( EtDFtB =Δ  , 3)()( EtDFtC =Δ                    (3) 

In which D , iE )3,2,1( =i  is a constant matrix of appropriate dimension ; )(tF  satisfies 

)(tF T )(tF I≤                                        (4) 
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3. Main Results 
Considering the following neutral uncertain time-delay system 

( ) ( ))()(
.

tdtBxtAxtx −+= ( )htxC −+
.

                      (5) 

Theorem1  On the assumption (3) , for a given constant d  ,  if there exist symmetric positive definite 
matrices P , R , 1Q , 2Q  , iiX , )5,,1( L=iYii  and arbitrary matrices  ),5,,1(, jiiYX ijij ≤= L  , makes 
the establishment of the following matrix inequality, then system (5) In the equilibrium is globally 
asymptotically stable 
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*stand for Symmetry elements of matrix transpose 
Proof   Construct the Lyapunov-Krasovksii functional: 

)()()()()()()( 654321 tVtVtVtVtVtVtV +++++=  

Now the derivative of ( )V t  along the trajectories of system (5) yields 
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Where  
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Base on Leibniz-Newton formula and Ref. (Y.He, M.Wu, J.H.She, G.P.Liu. 2004), we can get 
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Theorem is proven. 

Theorem2 On the assumption (3), for a given constant d  ,  if there exist symmetric positive definite matrices 
P , R , 1Q , 2Q  , iiX , )5,,1( L=iYii  and arbitrary matrices  ),5,,1(, jiiYX ijij ≤= L  , makes the 
establishment of the following matrix inequality, then system (1) In the equilibrium is globally asymptotically 
stable 
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Proof  In the proof of theorem 1 , using 1)( EtDFA + , 2)( EtDFB + , 3)( EtDFC +  replaced A , B  
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and C  , then get  
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Theorem is proven. 
4. Numerical Examples 
Examples 1 Consider the following system 
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When 0.1c =  , the result can be seen from table 1 , with the incremental of d  , h  regressive . 

When 0.1d =  , the result can be seen from table 2 , with the incremental of c  , h  regressive . 

Compared with the results of Q.L.Han, the criteria obtained in our paper are less conservative. 
5. Conclusion 
In this paper, with the method of Lyapunov and LMI, One sufficient condition for the neutral systems with 
norm-bounded uncertainties and time-varying delays is derived. Finally compared with some existing results, the 
criteria obtained in our paper are less conservative. 
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Table 1. The results when 0.1c =  

d  0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Han’s 0.80 0.73 0.65 0.57 0.49 0.41 0.33 0.24 0.16 0.07 

Theorem1 0.97 0.91 0.87 0.86 0.82 0.79 0.75 0.71 0.65 0.62 
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Table 2. The results when 0.1d =  

c  0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Han’s 0.92 0.73 0.55 0.41 0.29 0.19 0.11 0.04 

Theorem1 1.09 0.91 0.73 0.59 0.47 0.34 0.23 0.11 

 
 

 

 

 

 


