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Abstract 
The aim of this work is the analysis of biological bi-dimensional structures in order to study their shapes during 
the growing process. At first we have proceeded to extraction of deformable contours of biological forms using 
as external forces, the generalized gradient vector flow, GGVF (Xu C. Prince I.J.,1998b). In this study, by 
evaluating the map of divergence associated with the GGVF field we automatically generate the initial contour 
using the level curves of a divergence map, therefore we obtain the final curve with a great accuracy. Finally, the 
study of the extracted edges was achieved by polynomial piecewise Hermite interpolation, in order to carry out a 
comparative analysis of morphology. 
Keywords: Active contour, Spline interpolation, Shape analysis, Biological shape, Biological growth 
1. Introduction 
In this work biological structures at different stages of development were considered (Fig. 1), in order to analyze 
the form, highlight the main morphological features and study the underlined characteristics of the growing 
process. The organic growth takes place on a surface or along an edge, named growth surface or growth curve, 
respectively (Skalak R., 1982, 1996). Carefully examining a biological surface we can identify a set of curves 
that suggest how the process of growth has occurred. Usually the biological bodies have complex and highly 
variable shapes. What you can analyze is the resulting final shape and the structure of fibers with the associated 
most significant points, the landmarks, which remain to testify the modality of development.  
2. Edge extraction 
For each structure, which has been considered in our biological application, the edges are extracted by a 
deformable contour procedure.  
Deformable geometric contour models are curves or surfaces defined within a 2D or 3D image, moving under 
the action of internal forces derived from the model itself and external forces coming from the image data. 
Deformable models are widely used in many image analysis applications, including edge detection, shape 
analysis, segmentation, motion tracking. 
Mathematically, in the two-dimensional case, deformable models are elastic curves defined within a given image 

),( yxI . They are subjected to variations and modifications under the action of internal and external forces, 
until the resulting curve conforms to the final contours of the object that you want to extract. 

Given an image CRDI →⊂ 2: , at each point Dyx ∈),(  is associated a colour in the colour space C . 

We suppose that a geometric contour of parametric equations [ ]1,0,))(),(()( ∈= ssysxsxr  is embedded 
in it. The final shape of the contour to be extracted will be such as to minimize the energy associated with it, 
expressed by the functional: 

( ) ( ) ( ) ( ) ( )[ ] )1()()(∫ Ε+Ε=+= dssxsxxExExE ExtIntExtInt
rrrrr

 

The first term ( )xEInt
r

 is the internal energy that expresses a priori knowledge of the model and relates to the 
degree of flexibility of the active contour, resulting from material properties such as elasticity and rigidity: 
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In equation (2) the term )(sα  controls the tension of the contour, while )(sβ  regularises rigidity. By 
increasing the intensity of )(sα , a non-negative function of the parameter s, the tension of the curve increases, 
so that the result is a reduction of anomalies such as knots, loops or waves. On the other way an increasing of 

)(sβ  produces a more flexible contour.  

The second term ( ))(sxEExt
r

 represents the external energy that supports the curve a potential energy function 

( ))(sxP r
, which derives from the image ),( yxI . Its local minima correspond to the edges of the features to be 

extracted: 

( ) ( )∫= dssxPsxEExt )()( rr
 

In the balloon models, the pressure forces or inflation forces are also included among the external forces. They 
are used to push the active contour towards the edges to be extracted even in the presence of noise (Mc Inerney 
et al.,1995, 2000):  

( ) ( ) )(),( snyxIFxf p
rrr

⋅=  

where )(snr  is the normal versor at each point of the contour and ( )),( yxIF  is the force intensity. 

In agreement with the calculation of variations, the contour that minimizes the total energy must satisfy the 
equation of Euler-Lagrange: 
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where ∇  is the gradient operator. The differential equation )3(  expresses the equilibrium condition between 
internal and external forces for the deformable model:  

( )( ) ( )( ) ( )( ) ( )( )sxfsxfsxPsxf ExtpInt
rrrrrrr

=+−∇=  

the resulting external forces are obtained as a sum of the gradient of the potential ( )yxP ,  and of the inflation 
forces. 

Given a grayscale image ),( yxI , defined as a continuous function of the variables ),( yx , we can evaluate 

the potential energy ( )yxP ,  associated with it, by means of one of the following expressions:         

)4(),(),( 2 ayxIyxP ∇−=  

( ) )4(),(*),(),( 2 byxIyxGyxP σ∇−=  

in the equation (4b) ( )yxIyxG ,*),(σ  represents the convolution of the Gaussian kernel with standard 
deviation σ. For the circle in the image of Fig.2, the potential energy computed by the formulas (4a) and (4b) 
(with σ = 2)  respectively, can  be compared one another.  

It appears natural to see the minimization of energy as the resolution of a static problem. To build a dynamic 
system that evolves toward a state of equilibrium, is far more efficient in determining a local minimum of 
functional (1). This system can be constructed by applying the principles of Lagrangian mechanics, which lead 
to a dynamic deformable model able to combine geometry and movement, creating a dynamic geometrical shape 
that evolves over time.  
A simple example of a dynamic model can be obtained by introducing a time-variable parametric equation 

)),(),,((),( tsytsxtsx =
r

, with a density of mass )(sμ  and a damping coefficient )(sγ . In this way, we 
obtain the equation 
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In equation (5) the first two terms represent the inertial and damping forces. The equilibrium is reached when the 
internal and external forces are equal, which implies the steady state of the active contour, so that we have 
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When the solution ),( tsxr  stabilizes, we reach the result of the equation (3). Indeed, at this point, the time 
derivatives vanish and we have the equation (3). Neglecting the inertial term and considering dumping, elasticity 
and rigidity as constant functions, we obtain a simplified version of equation (5): 
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A solution of (7) can be found by discretizing and solving the obtained finite linear system interactively.  
The numerical solution of equation (7), can thus be reduced to the differential dynamic equation: 
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where ( )xFExt
rr

 is the external force field, and ( )sx0
r

 is the initial contour. Hence the coordinates of the 
deformable model are independent, for sake of simplicity we refer to a single coordinate. Approximating the 
derivatives with finite differences and assuming the damping coefficient )(sγ  equal to one, the component of 

the discrete solution ( ))(),( ihyihxxi =
r

, must satisfied the equation: 
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that may be written in matrix form as: 
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where A  is a diagonal band matrix. The equation (9) may be resolved with an iterative procedure, using the 
formula (11) shown below: 
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We wish to outline that the solution of the differential equation associated with deformable model takes the form 
(11), whatever the applied external force field is.  
3. Generalized Gradient Vector Flow: Initialization Problem  
In this study of growing biological structures we have realized edge extraction of deformable contours using a 
different class of external forces, called Generalized Gradient Vector Flow, GGVF (Xu C., Prince 
I.J.,1997,1998b). In this case the force field used, or GGVF field, is obtained by solving differential equations 
which deriving from a diffusion problem, which propagate the force field gradient evaluated from the image. 
The GGVF force field differs from those previously treated, since the external forces are not expressed as a 
negative gradient of a potential function.  
In the GGVF contour generation, a static vectorial field formed by two independent components can be used: the 
irrotational and the solenoidal one, with rotor and divergence null, respectively. In this approach we evaluate a 
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static external force field ),( yxvf GGVF
Ext

rr
= , so that the corresponding dynamic equation of the active contour 

will be 
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The numerical solution of equation (12) is obtained iteratively, in the same way used by other active contour 
models.  
For the determination of the GGVF vector field, we start with the evaluation of the edge map 

( ) 2),(*),(),( yxIyxGyxf σ∇=  or ( )),(),( yxIyxf ∇= , derived from the original image ),( yxI  
and often normalized in order to reduce the dependence on absolute intensities.  

The gradient ),( yxf∇  is a field whose vectors are directed towards the edges of the image, with norms 
significantly different from zero in proximity of them. On the contrary it is approximately zero in homogeneous 
regions, where the image intensities ),( yxI  are essentially constant.  

The main limitations to be overcome in the generation of deformable contours are: 1) the convergence of the 
model towards the edges in regions with highly variable concavities, 2) the initialization problem, i.e. the 
excessive sensitivity to the shape and the initial position of the active contour, 3) the extension of the capture 
range. As we can see in the image of Fig.3, the convergence of the initial contours (in green) towards the edges 
leads only partially to the expected result. 

Using the calculus of variations (Xu C., Prince I.J.,1997,1998a.1998b), the GGVF force field ),( yxvr  can be 
found by solving the following diffusion equation: 

( ) ( ) ( )fvfhvfgvt ∇−⋅∇+∇⋅∇=
rrr 2  

where 2∇  is the Laplacian operator, ( )fg ∇  and ( )fh ∇  are space varying weighting functions, being 

dependent on the gradient of the edge map, generally not uniform. The function ( )fg ∇  will be monotonically 

non-increasing, since the vector field ),( yxvr  will be weakly variable far from the edges to be extracted where 

the image intensities are uniform. On the other hand, ( )fh ∇  should be monotonically non-decreasing, 

therefore, when  f∇  is large, the vector field ),( yxvr   should have a trend nearly equal to the gradient of 

the edge map. In this way the GGVF model improves the efficiency of the vector force field ),( yxvr  to define 
contours with very pronounced concavities.  
In this study we describe a method to generate automatically the initial curve, that could be able to adequately 
reconstruct the final contour. The effects due to initialization problem and the capture range extension are 
reduced using the divergence map of the force field, defined as   
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For the image of Fig.3, it has been shown in Fig.4b. As we can see in Fig.5, the map of divergence associated 
with the field GGVF is strictly related to the initialization problem. 
We can note in Fig.5 that active contour converges toward the final edge if the initial contour doesn’t intersect 
the curve of highest intensities of the divergence map.  
The map of divergence is characterized by a uniform gray background, black curves corresponding to the edges 
where the divergence is null, and a system of light curves with high intensity values. Furthermore we put in 
evidence (see blue arrows in Fig.6) the presence of a sort of “tails”, pointing towards the most significant 
geometric points of the edge to be extracted, to which correspond highest curvature values.  
Hence the expected result can be obtained by selecting as initial contour the level curve of the divergence map, 
drawn in Fig.7a. The level curves of intensity 153 may be used to define automatically the initial contour and the 
capture range extension. As we can see the edge is extracted correctly (Fig.7b). 
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4. Comparison of biological shapes with polynomial Hermite interpolation 
In this section two oak leaves at different stages of development were considered (Fig.1), in order to analyze the 
forms and to highlight their main features. Usually organic bodies have complex and variable shapes. What we 
can analyze is the resulting shape, the fiber structures and the associated most significant points, landmarks or 
principal growth points, which remain to testify the manner of growing process. 
For each structure considered in our biological application, the contour is extracted by the procedure described in 
the preceding paragraphs. For the leaf edge smaller the edge map used is shown in Fig.8, for the largest we must 
refer to Fig.11. 
After the generation of the divergence map associated with the force field of GGVF, the level curves of intensity 
153 were extracted. In both cases, we have used them as initial curves. The initialization curve (in blue) and the 
extracted edge (in red) were superimposed to the original image in Fig.10 and Fig.13, respectively for the small 
and large leaf. 
Making a comparison of the extracted curves by means of the level curves of divergence map, shown in blue in 
Fig.10 and 13, we can notice a marked splitting of the two biological form edges in corresponding traits. This 
suggests a comparative analysis of the contours in order to be able to highlight the main morphological 
characteristics and to study the regularity of growth in subsequent phases. The two biological structures, in 
stages of development certainly different, are strongly characterized by zones with high curvature, with 
pronounced changes in the directions of tangent vectors to the edge. This leads to the use of piecewise 
interpolation with cubic Hermite splines for a comparative analysis.  
The polynomial Hermite interpolation is not restricted to the points of the contour but includes the tangent 
directions in the extreme points, so that it is particularly suitable to the study of the edges of the leaves 
concerned. 

A spline curve parameterization )(uxr  is a continuous map of a collection of intervals Luuu << .....10  into 

the Euclidian plane 2E  or the Euclidian space 3E . Each interval [ ]1, +∈ ii uuu  is mapped onto a 

polynomial curve segment, the numbers iu  are called knots, and the set of all iu  is named knot sequence, the 

given points of the curve )( iuxr  are called junction points.  

We are interested in 2C  piecewise cubic spline curves, obtained by means polynomials of third degree 
continuously differentiable up to the second order at the junction points. The study of the growing curves is 
realized by polynomial piecewise interpolation. The growing edge is represented by as many spline curves as 
principal growth points are, each spline curve is formed by a variable number of polynomial segments as the 
number of interpolation points are. 
The tangent vectors of the edge could mostly vary abruptly at the principal growth points. Therefore the 
interpolation scheme that is more suitable, is the cubic Hermite one, because it is not restricted to interpolation of 
data points. Indeed, for a given spline curve, we have to include the derivative data at the end points, that will be 
indicated with ( )00 uxm &rr

=  and  ( )LL uxm &rr
=  respectively. 

Moreover, as we can see, the great importance of the use of tangent vector data at principal growth points is due 
to the observation that the shape of biological structures is conserved during the development, thanks to their 
reduced variation.  
Using the piecewise cubic Hermite form, a single segment of each spline curve that maps the interval  
[ ]1, +ii uu  onto the curve segment between the known data points ( )ii uxx rr

=  and ( )11 ++ = ii uxx rr
, may be 

parameterized as                   
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with [ ]1, +∈ ii uuu , iii uu −=Δ +1 , where )(3 uH j  are cubic Hermite polynomials.             
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In the formula ( )14  ixr  represents the known data points, whereas 1,..1,)( −== Liuxm ii
&rr

 are the 

unknown tangent vector at ixr , if we required that the interpolant has to be 2C  at any junction points the 
following relation must be satisfied: 

( ) ( ) )15(ii uxux +− = &&r&&r  

where )(ux−
r

 and )(ux+
r

 represent the polynomial curve segments mapped from the parameter intervals 

[ ]ii uuu ,1−∈  and [ ]1, +∈ ii uuu  respectively and explicitly expressed by:     
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the polynomial curve segments )(ux−
r

 and )(ux+
r

 are shown in Fig.14. The evaluation of the second 

derivatives )(ux−
&&r  and )(ux+

&&r  give us 

( ) ( ) ( ) ( ) ( )

)17(6426

1111

2
111

1
2

1

1

3
32

1

3
2

1

3
1

1

13
02

1

1

a
xmmx

H
x

H
m

H
m

H
x

ux

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i
i

−−−

−

−

−

−−−

−

−

−
−

Δ
⋅−

Δ
⋅+

Δ
⋅+

Δ
⋅=

Δ
+⋅

Δ
+⋅

Δ
+

Δ
=

rrrr

&&
r

&&
r

&&
r

&&
r

&&r

 

( ) ( ) ( ) ( ) ( )

)17(6246

0000

2
11

2

3
32

13
2

13
1

3
02

b
xmmx

H
x

H
m

H
m

H
x

ux

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i
i

Δ
⋅+

Δ
⋅−

Δ
⋅−

Δ
⋅−=

Δ
+⋅

Δ
+⋅

Δ
+

Δ
=

++

++
+

rrrr

&&
r

&&
r

&&
r

&&
r

&&r

 

so by condition )15( , after short calculations, we could obtain the equations (Farin G.,1990,2000): 
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This linear system has the tangent vectors 1,...1 −= Limi
r

 as unknowns. Its solution will give us the final 

interpolating curve, using the data points Lixi ,...0, =
r

 and the tangent vectors 0mr , Lmr  at the end points.  

Furthermore, the resolution of the linear system )18(  give us, after a normalization, so many values of tangent 
vectors, as the data points are.  

By resolving it )18( , we could directly evaluate the angles formed by the tangent vectors ( )
iyixi mmm ,=
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with the horizontal axis, by means  

( ) 1,1arctan −=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= Li

m

m
u

iy

ix
iθ  

Thereafter, by observing the expressions )17( a  or )17( b  we could immediately evaluate the signed 
curvature at the inner points of each piece, with the following formula: 
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As we can see in the application, the analysis of the tangent  curve could define a shape function corresponding 
to each piece of the biological form, that may characterize a standard behaviour of the growing curve. 
In the figures from 15a to 17b, we have graphically represented curvature )(uk  and angle of tangent vectors 

)(uθ  versus a normalized curvilinear abscissa, evaluated for the two leaves corresponding sections and defined 
by  the edge maps associated to the  contours of  Fig.10 and Fig.13.  
For each section was assessed a polynomial curve with a best-fitting procedure, that approximates the 
represented data. The images are displayed in succession in order to facilitate a comparative view. 
As we can see, the analogy between the interpolated curves shows a good regularity of the growth process for 
the analyzed biological forms.  
5. Conclusions 
In this paper we have presented a method for comparing bi-dimensional biological structures in different 
growing phases, in order to investigate the regularity of the growth process.  After the extraction of edges with 
the active contour method GGVF, the study of the edges was achieved by polynomial piecewise Hermite 
interpolation, in order to carry out a comparative morphological analysis of homologous segments. We may 
conclude that the growing form results strongly characterized by the tangent vectors trend of corresponding traits. 
Therefore the analysis of the geometrical shape of biological edges may lead to the definition of standard 
reference forms for them. 
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Figure 1. Two oak leaves at different stages of development 

 

Figure 2. Image ),( yxI , Potential Energy: 
2),(),( yxIyxP ∇−= and ( ) 2),(*),(),( yxIyxGyxP σ∇−=  
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Figure 3. The initialization problem for active contour 

 

        Figure 4a: ( ) ),(log,~ yxvyxI r
=              Figure 4b. ( ) ⎟
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Figure 5. Initial contour of arbitrary shape and position 
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Figure 6. Initial contour selected by means the divergence map 

 
 
 Figure 7a. Level Curves of Divergence Map        Figure 7b. Initial contour selected from Divergence Map 
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Figure 8. Small leaf and associated edge map 
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Figure 10. Extracted edge of small leaf with initial contour generated automatically 
 

 
 

Figure 11. Large leaf and associated edge map 
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Figure 12a. ( ) ),(log,~ yxvyxI r
=                 Figure 12b. ( ) ⎟
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Figure 13. Extracted edge of large leaf with initial contour generated automatically 

 

Figure 14. The polynomial curve segments )(ux−

r
 and )(ux+

r
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Figure 15a. Curvature )(uk and angle of tangent vectors )(uθ  of the small leaf 

 

Figure 15b. Curvature )(uk and angle of tangent vectors )(uθ  of the large leaf 
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Figure 16a. Curvature )(uk and angle of tangent vectors )(uθ  of the small leaf 

 

Figure 16b. Curvature )(uk and angle of tangent vectors )(uθ  of the large leaf 
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Figure 17a. Curvature )(uk and angle of tangent vectors )(uθ  of the small leaf 

 

Figure 17a. Curvature )(uk and angle of tangent vectors )(uθ  of the large leaf


