
Modern Applied Science; Vol. 9, No. 8; 2015 
ISSN 1913-1844   E-ISSN 1913-1852 

Published by Canadian Center of Science and Education 

386 
 

Defining Thermophysical Parameters of Electric Devices Based on 
Solution of Inverse Heat Transfer Problem 

Yuriy Alekseevich Bachvalov1, Nikolai Ivanovich Gorbatenko1 & Valeriy Viktorovich Grechikhin1 
1 Platov South-Russian State Polytechnic University (NPI), Russia 

Correspondence: Valeriy Viktorovich Grechikhin, Platov South-Russian State Polytechnic University (NPI), 
346428, Novotcherkassk, Prosveshenija, 132, Russia. 

 

Received: December 18, 2014          Accepted: January 2, 2015         Online Published: July 30, 2015 

doi:10.5539/mas.v9n8p386             URL: http://dx.doi.org/10.5539/mas.v9n8p386 

 

Abstract 
This paper describes application of the study methods based on the solution of inverse problems of mathematical 
physics to define thermophysical parameters of electric devices. The mathematical model of the device is 
developed based on equations of non-stationary heat conductivity. The algorithm to define thermohysical 
parameters is developed; this algorithm uses the finite element method to solve a direct heat transfer problem and 
the gradient method to minimize the objective function. Examples of the algorithm application are given. The 
problem to define an equivalent heat transfer coefficient of the solenoid area covered with heavy winding and a 
heat emission from its inside surface is considered. In the second example thermophysical parameters of 
electromagnetic valve actuator of an ICE (internal combustion engine) gas distribution mechanism are defined. 
The obtained results show that thermophysical parameters and temperature distribution in non-stationary and 
steady-state operating conditions of electrical devices may be evaluated with adequate efficiency based on the 
solution of inverse heat transfer problems.  

Keywords: inverse problems, heat transfer, non-stationary heat conductivity, electrical device 

1. Introduction 
The need to save energy and resources leads to creation of technical units characterized by marginal operation, 
high thermal, electro-magnetic and mechanical loads on their materials and structures. All of these require a 
reliable identification of the study subjects i.e. parameters and characteristics of materials and structures used in 
mathematical modeling shall be defined with an adequate accuracy. At the same time some of the parameters and 
characteristics can not be directly defined. In such cases the only way to obtain necessary information is to use a 
study approach based on solving inverse problems of mathematical physics (Alifanov, 1994), (Bachvalov et al., 
2013), (Beck et al., 1985), (Bui, 1994), (Grechikhin and Grecova, 2011), (Korovkin et al., 2006), (Ozisik and 
Orlande, 2000), (Tikhonov and Arsenin, 1977), (Vatulyan, 2007). It is one of the main trends in studying 
physical processes and optimizing operating parameters of technical units and operating procedures.  

Functioning of a number of technical units, including electric devices, is accompanied with heat transfer 
processes, which in their turn have an impact on the unit technical characteristics. Tougher tolerances are being 
established for temperature ranges of parts and devices, requirements to reliability in maintaining these ranges 
and reduction of material intensity of structures are getting tougher. Therefore thermophysical study of electric 
devices and calculation of their thermal rates becomes very important. Effectiveness of decisions made depends 
a lot on completeness and accuracy of heat transfer study. This justifies a necessity to conduct full-scale and 
modeling tests of devices (Grechikhin and Grecova, 2011). During the tests temperature ( )tMT i ,∗  is measured 
in points Mi of the device on a bounded time interval [ ]et,0 . Then, a thermal mathematical model of the device is 
adjusted by variation of a system of n thermophysical parameters nxxx ,...,, 21  in such a way, that the values 

( )tMT i ,∗  of the device agree with ( )tMT i ,  of the model on the interval [ ]et,0 with an adequate accuracy. 
Then, using the model, desired time to achieve the steady-state condition ts and temperature distribution of the 
device in this condition are defined. 

Heat transfer and heat conductivity coefficients which values either unknown or known but with low accuracy 
can be used as adjustable thermophysical parameters. It is known, that temperature measurement data remain the 
main source of inaccuracy in solving applied problems to define these parameters (Beck et al., 1985). This is 
caused by performance features of temperature sensors. Therefore it is practical to identify heat transfer and heat 
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conductivity coefficients based on the solution of inverse heat transfer problems (Alifanov, 1994), (Beck et al., 
1985), (Ozisik and Orlande, 2000). This paper describes a mathematical model and an algorithm to define 
thermophysical parameters of electric devices using such an approach.  

Two problems are solved. The first one determines an equivalent heat transfer coefficient for a solenoid heavy 
winding of a measuring system designed to define magnetization curves (B-H curves) and hysteresis loops for 
ferromagnetic materials as well as a heat transfer coefficient between the solenoid inside surface and the ambient 
air. The second problem defines thermophysical parameters of an electromagnetic valve actuator in an ICE gas 
distribution mechanism. 

This paper shows the results of using thermal testing methods for the stated devices based on the solution of an 
inverse heat transfer problem resulting in essential decrease of testing time and power consumption.  

2. Methodology 
2.1 Statement of the Problem  

The studied electric device together with the ambient environment are represented as a multiply connected 
domain V (Fig. 1), with subdomains Vi , and heat sources with volume density qv. 
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...
......

...
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S
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Figure 1. Multiply connected domain 

 
Non-stationary temperature distribution in the domain V is described with a system of equations  

( ) ( )( )
iviii

ii
ii qMT

t

MT
c +λ=

∂
∂

ρ graddiv ; mi ...,,2,1= ,   (1) 

where ( )iMT  – temperature in the point ii VM ∈ ; iλ  – heat transfer coefficient of the medium in Vi; ivq – 

volume density of the heat sources in a subdomain Vi; ρi – density of the medium in Vi; ci – specific heat capacity 

of the medium in Vi; m – number of bodies in the studied domain V. 

Boundary conditions are added to the system of equations (1): 

( )ambTT
n

T −α−=
∂
∂λ  on S;                       (2) 

( ) ( )1+= ii MTMT , )()( 11 ++ ∂
∂λ=

∂
∂λ iiii M

n

T
M

n

T
                    (3) 

at interfaces of media with different iλ . Here, α – heat emission coefficient, Tamb – ambient temperature.  

Initial temperature distribution in the domain V at a point of time 0=t is considered to be known: 

( ) ( )ii MTMT =0, , mi ...,,2,1= .                   (4) 

Problem (1) – (4) describes heat transfer in linear and non-linear media. (1) – (4) forms a direct problem to find 
the function T(Mi,t). Analytical (Polyanin et al., 2005) and numerical (Samarskii, 2001), (Zienkiewicz and Taylor, 
2000) methods of solving this direct heat transfer problem are well known. 

Let us consider an inverse problem where, for instance, in addition to T(Mi,t), a heat transfer coefficient λ(T) and 
a heat emission coefficient α (T) are unknown. The unknown coefficients shall be restored by solving the system 
(1) with conditions (2) − (4) and additional information  
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( ) ( )tTtMT M

~
,* =∗ , ( ) ( )tTtNT N

~
,* =∗ , VNM ∈**, , [ ]и,0 tt ∈ .        (5) 

where M*, N* − fixed points, where temperature is measured with an error *TΔ . 

The formed problem belongs to inverse heat transfer problems of a mixed type (coefficient and boundary). The 
studies (Alifanov et al., 1995), (Borukhov et al., 2005) prove the existence and uniqueness of the solutions to 
such problems. Solution stability is ensured by selecting them in a class of functions with a bounded norm 
(Tikhonov’s stability) (Tikhonov and Arsenin, 1977). 

2.2 Computational Algorithm  

To define thermophysical parameters of electric devices based on the solution of an inverse heat transfer problem 
we shall use a conjugate gradient method (Alifanov et al., 1995), (Dinh and Reinhardt, 1998), (Rumyantsev, 
1985). It is an iterative process of minimizing the objective function  

( ) ( ) ( )[ ] ( ) ( )[ ] dttMTtMTdttNTtNTJ

tt

 ∗∗∗∗ −+−=αλ
ии

0

2

*

0

2

* ,,,,, .          (6) 

Iterations, which define minimizing sequence of the function (5), are imposed with recursion 

( ) ( )
( )

λ∂
∂ρ−λ=λ +

n
nn J1 , ...,2,1=n ;             (7) 

( ) ( )
( )

α∂
∂ρ−α=α +

n
nn J1 , ...,2,1=n ,           (8) 

where ( )nλ , ( )1+λ n  – n and ( )1+n  approximation for λ(T); ( )nα , ( )1+α n  – n and ( )1+n  approximation for 

α(T); 
( )

λ∂
∂ nJ

,
( )

α∂
∂ nJ

 – partial derivatives of the function (6). 

The iterative process is terminated when the equation 

( ) ( ) ( )[ ] ( ) ( ) ( )[ ] *

0

2

*

0

2

*

ии

,,,, TdttMTtMTdttNTtNT

t

n

t

n Δε≤−+−  ∗∗∗∗        (9) 

is true, 

where ε – given empirical parameter, defined using the criteria described in (Samarskii, 2001), (Tikhonov et al., 

1995), ( )( ) ( )( )tMTtNT nn ,,, ∗∗  – problem solution (2) – (4) when ( ) ( )( )TT nλ=λ  and ( ) ( )( )TT nα=α . 

Considering (6) – (9) we shall present the sequence for solving the inverse problem (2) – (5). We shall select 

initial approximation ( ) ( )( )TT 0λ=λ , ( ) ( )( )TT 0α=α  and increments λΔ , αΔ , ρ and tΔ . 

Iteration loop of the algorithm for each ...,2,1,0=n  consists of the steps as follows:  

1. We solve a direct problem (2) – (4) where ( ) ( )( )TT nλ=λ , ( ) ( )( )TT nα=α  and define a temperature field 

including the values ( )jtNT ,∗  and ( )jtMT ,∗ , nj ...,,2,1= , at the time points tj. 

2. We find a value of the function (6). 

3. We check the condition for termination of the calculations (9). If the condition (9) is satisfied, values 

( ) ( ) ( )TT nλ=λ , ( ) ( ) ( )TT nα=α  and ( )( ) ( )( )tMTtNT nn ,,, ∗∗  are considered to be the solution of the problem. 

If the condition (4) is not satisfied, then go to 4. 
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4. We find the next values of the desired variables using a gradient method and the equations (7) and (8). 

5. Go back to 1. 

As a rule numerical implementation of this algorithm is based on the application of a finite element method 
(FEM) or a finite difference method.  

3. Results and Discussion  
3.1 Thermophysical Parameters of the Measuring System Solenoid 

The applicable standards (IEC Standard 60404) for measuring static magnetic characteristics of soft magnetic 
materials are not adopted for testing under changing temperature and mechanical stresses. For instance, during 
operation the temperature of automobile starters and generators may reach 200 °C, their stress – 200 MPa. In 
cases like that it is practical to take measurements on an open magnetic circuit, using a solenoid to magnetize the 
material (Hall et al., 2009). 

Let us consider a problem of finding thermophysical parameters of a solenoid of a measuring system designed to 
define magnetization curves (B-H curves) and hysteresis loops for soft magnetic materials. They include an 
equivalent heat transfer coefficient λ2 of area 2 of the solenoid, covered with heavy winding, and a heat emission 
coefficient α1 between the solenoid inside surface with a radius r1 and the ambient air (Fig. 2).  

r 4
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r 1
 r 2
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Figure 1. Sketch of a solenoid 

 

Smallness of the radius r1 makes it harder to measure thermophysical parameters inside the solenoid and allows 
for only one temperature sensor to be placed inside that area. 

Considering axial symmetry of the solenoid, we will use a cylindrical coordinate system r0z. 

In this case a system of equations (1) is  
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The initial temperature distribution in the solenoid at the point of time 0=t  ( ) ( ) 3,2,1,0, == iNTNT ii ; and the 
ambient temperature Tamb are considered to be known. 

Boundary conditions are: 

− On the inside surface of solenoid area 1  

( )[ ]amb111
1

1 ,
1

TtrT
n

T

rr
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∂
∂λ

=
; 

− On the outside surface of solenoid area 2  
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2 ,
3
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n

T
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∂
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=
; 
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− On the surfaces of area 3, which are in contact with the ambient environment:  

03 =
∂
∂

n

T
; 

− At the media interfaces 
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– at the interfaces of areas 2 and 3 
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where α1, α2 – heat emission coefficients between the inside and outside surfaces of the solenoid and the ambient 
air, respectively. 

Computational domain is given in Fig. 3. 

 

r0

z

N∗M∗
 

Figure 3. Computational domain with FEM mesh (709 elements) 

M∗, N∗ – points where temperature sensors are placed 

 

Unknown values are λ2, α1 and ( ) 3,2,1,, == itNTT ii . 

We shall formulate a problem: it is required to define the equivalent heat transfer coefficient λ2 of the area 

covered with the solenoid winding, the heat emission coefficient α1 and the functions ( ) 3,2,1,, == itNTT ii , 

which satisfy the system of equations (10) and the above given initial and boundary conditions; there are 

additional known data– functions ( )tNT ,*
∗  and ( )tMT ,*

∗ , obtained by taking measurements in ∗N  and ∗M  

(Fig. 3) with error *TΔ  on the time interval [ ]et,0 . 

Let us convert the solution of this problem to the solution of a sequence of direct problems – a system of 
equations (10) with the above given initial and boundary conditions using the FEM. 

We shall select initial approximation ( )0
2λ , ( )0

1α  and increments 2λΔ , 1αΔ , ρ1, ρ2 and tΔ . 



www.ccsenet.org/mas Modern Applied Science Vol. 9, No. 8; 2015 

391 
 

Then, according to the algorithm, we shall solve a direct problem using the FEM when ( )n
22 λ=λ , ( )n

11 α=α  

and define the temperature field, including ( )jtNT ,∗  and ( )jtMT ,∗ , nj ...,,2,1= , at the points of time tj.  

As in our case the functions ( )tNT ,и
∗  and ( )tMT ,и

∗  are represented as table data, instead of (6) we will use a 

function type 

( ) ( ) ( )( ) ( ) ( )[ ] ( ) ( )[ ]
=

∗∗

=

∗∗ −β+−β=αλ
p

j

jj

p

j

jj
nnn tMTtMTtNTtNTJ

1

2

*2

1

2

*112 ,,,,, , 

where p – number of temperature measurements on the interval [ ]et,0 ; β1, β2 – weight factors, 311 =β ; 

322 =β . 

According to (9), we shall check the condition for calculation termination. If the condition (9) is not satisfied we 
start calculating, similar to (7) and (8), the next values of the desired variables: 

( ) ( )
( )

2
22

1
2 λ∂

∂ρ−λ=λ +
n

nn J
; 

( ) ( )
( )

1
11

1
1 α∂

∂ρ−α=α +
n

nn J
, 

and solve the direct problem again using the FEM when ( )1
22

+λ=λ n , ( )1
11

+α=α n  . 

Let us consider using the algorithm to define the heat emission coefficient α1 and the equivalent heat transfer 

coefficient λ2 of the solenoid area, covered with heavy winding of a copper wire with the following parameters: 

3
1 1012 −⋅=r  m; 3

2 1015 −⋅=r  m; 3
3 1050 −⋅=r  m; 3

4 1085 −⋅=r  m; 31025 −⋅=h  m; 310505 −⋅=L  m; 

3.031 =λ=λ  W/(m⋅K) (material – textolite); specific heat capacity of copper 385=Cuc  J/(kg⋅K); density of 

copper 3109.8 ⋅=ρCu  kg/m3; number of turns 2514=w ; wire diameter (copper only) 3101.2 −⋅  m; insulation 

thickness 3102.0 −⋅  m; volume of copper 31002.1 −⋅=CuV m3; we shall consider that specific heat capacity and 

density values of other materials equal to zero ; test time 30=et  min. 

Table 1 gives measurements of the temperature ( )tNT ,*
∗  and ( )tMT ,*

∗  in the points ∗N  and ∗M , the heat 

flux density q*, from the surface of area 2, the ambient temperature Tamb measured with ITP–MG4.03/3(1) Potok 

heat flux density and temperature measuring device with the solenoid winding powered from d.c. power source 

with voltage 75.18=U  V, current 53.7=I  А. The instrument error: 6±  % relative error for heat flux density, 

and 2.0±  °С absolute error for temperature. 

 
Table 1. Experimental data 

t, min 0 5 10 15 20 25 30 
( )tNT ,*

∗ , °С 22 25.5 29.2 32.0 34.6 37.7 40.1 
( )tMT ,*

∗ , °С 22 24.5 29.3 33.8 38.6 43.2 47.8 
q*, W/m2 0 43.1 77.2 106.1 137.1 165.6 188.7 
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Tamb, °С 22 22 22 22 22 22 22 
 

Using data from Table 1, we shall define the mean value of the heat emission coefficient from the solenoid 
surface 

( ) 1,11
, amb*

*
2 =

−
=α ∗ TtNT

q
 W/(m2⋅K).  

Now we shall find other solenoid parameters, reduced to the volume of area 2 (solenoid winding) V2: 

( ) ( ) ( ) 3323232
2

2
32 1061.310505101510501416,3 −−−− ⋅=⋅⋅



 ⋅−⋅=−π= LrrV  m3; 

39122
1061.3

53.775.18
3

2
2

=
⋅
⋅== −V

UI
qV  W/m3; 

6
3

3
3

2
22 1064.1

1061.3

1002.1
385109.8 ⋅=

⋅
⋅⋅⋅⋅=ρ=ρ −

−

V

V
сc Cu

CuCu  J/(kg⋅K). 

We consider that ( ) 01.00
2 =λ  W/(m⋅K), 003.0=λΔ  W/(m⋅K), 410−=ε , ( ) 50

1 =α  W/(m2⋅K), 

5.01 =αΔ  W/(m2⋅K), 5=Δt  min. 

Computational domain (Fig. 2) is covered with the FEM mesh which consists of 709 triangles. Using the above 

algorithm, the fifth iteration gives us 027.02 =λ  W/(m⋅K), 5.61 =α  W/(m2⋅K).  

Relative error of 2λ  and 1α is not more than 3 % for the method used.  

The standard deviation ( )tMT ,∗  of ( )tMT ,*
∗  with the found values λ2 and 1α  on the interval [0, 30 min] 

was 1.3 °С (Fig. 3), which is acceptable. The same deviation is in the point ∗N . 

The developed mathematical model and the algorithm allowed defining temperature distribution in the solenoid 

in the steady-state condition (Fig. 4), which was reached within 12 h, as well as dependences ( )tMT ,∗ , 

( )tNT ,∗  (Fig. 5) and the steady-state temperatures ( ) 4.173st =∗MT °С, ( ) 9.80st =∗NT °С. 

 

Figure 4. Results of measurements and temperature calculation in the point M∗ 
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 Figure 5. Temperature distribution in the solenoid cross-section in the steady-state condition  

 

 

Figure 6. Temperature-time curve in the points M∗ and N∗: 1 – T(M∗, t); 2 – T(N∗, t) 

 
Let us check if the first law of thermodynamics is satisfied in the reached steady-state (temperature Tst) – the 
capacity supplied to the solenoid winding shall be equal to the sum of heat energy radiated from the solenoid 
surface to the ambient environment: 

( )[ ] ( )[ ]ambstext2ambstint1 TNTSTMTSUI −α+−α= ∗∗ ,                      (11) 

Where 0384.010505102414.32 33
1int =⋅⋅⋅⋅=⋅π= −−LrS  m3, 1586.0105051.014.32 3

3ext =⋅⋅⋅=⋅π= −LrS  
m3. 

Based on (11) we have: 

( ) ( )229.801586.01.11224.1730381.05.653.775.18 −⋅⋅+−⋅⋅=⋅  or 17.1412.141 ≈ . 

Consequently, heat transfer and heat emission coefficients of the test unit and temperature distribution in it can 
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be evaluated with an adequate accuracy based on the solution of the inverse heat transfer problems.  

3.2 Thermophysical parameters of an Electromagnetic Valve Actuator of an ICE Gas Distribution Mechanism 
Quick-action electromagnetic actuators are used as basic parts in many fuel delivery and air/gas mixing 
assemblies of ICEs. They are used for gas distribution mechanisms with individual valve actuators, blow off 
valves, gas recirculation systems and other devices, which improve energy, economic and environmental 
performance indicators of motors (Bolshenko, (2013), (Dresner and Barkan, (1989). The actuators work under 
conditions of excessive power loads, which makes it necessary to study heat parameters of the equipment 
operation. 

A mathematic model represented by a system of equations (10) with boundary conditions on the outside surface 
of the actuator (2) is used to analyze heat transfer processes in the valve actuator of the ICE gas distribution 
mechanism (Figure 7).  

 

Figure 7. Electromagnetic valve actuator of a gas distribution mechanism 

1 –adjusting screw; 2 – upper flange; 3 – external valve spring; 4 – internal valve spring; 5 – stop; 6 – solenoid 
mounting plate; 7 – constant magnet; 8 – coil; 9 – housing; 10 – anchor; 11 – lower flange; 12 – nut; 13 – bush; 
14 – hub; 15 – rod 

 

Unknown parameters in our case are equivalent coefficients of heat transfer eqλ , specific heat capacity eqc  
and equivalent density eqρ of the coils 8, as well as a heat emission coefficient α of the housing 9. Other 
parameters are known.  

To solve an inverse heat transfer problem on a trial actuator and the time interval [ ]et,0  functions ( )tMT ,1∗  in 

the point M1 with the relative error ( )( )1MT∗δ  and heat flux density ( )tMq ,2∗  in the M2 with the relative error 

( )( )2Mq∗δ  are measured (Figure 7). 

The inverse problem shall be solved using the following algorithm. We shall select initial values ( )0
eqλ  , ( )0

eqc , 

( )0
eqρ . Then, we solve the system (10), (12) and find the function to be minimized: 
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where β1, β2 – weight factors, 311 =β ; 322 =β ; ( )( ) ( )( )j
nn

j tMTMT ,11 = ; ( )( ) ( )( )j
nn

j tMqMq ,22 = ; 

( ) ( )jj tMTMT ,11 ∗∗ = ; ( ) ( )jj tMqMq ,22 ∗∗ = ; tj – point of time on the interval [ ]i,0 t : p – number of jth points on 

the interval [ ]et,0 . 

Then, we shall check the condition 

( ) 2
maxδ≤nJ ,                          (13) 

where ( )( ) ( )( )[ ]21max ,max MqMT ∗∗ δδ=δ . 

If the condition (13) is satisfied, the problem is solved. If not, then new values of the desired variables shall be 
found using a gradient method of minimizing the function (12), and we shall go to the start of the algorithm. 

Let us consider using the described algorithm to solve an inverse heat transfer problem for the given actuator, 
(Figure 8): 56ext =D  mm; 49em =h  mm; h = 65 mm; H = 108.5 mm. 

Figure 8. Main dimensions of the actuator  

 

Design of the actuator, its dimensions, properties of the accessories (ρ, c, λ – density, specific heat capacity, heat 

transfer coefficient), except for the same parameters of the coils 8, relative errors of the temperature 

measurement ( )( )1MT∗δ  and the heat flux density ( )( )2Mq∗δ  are known.  

The actuator parts: 1 – 6, 10 – 12, 14, 15 are made from steel (grade 1010); 7 – NdFe35; 8 – copper; 9 – 

aluminum; 13 – brass .  

Testo 922 is used to measure temperature, relative error of the temperature measurement ( )( ) 11 =δ ∗ MT  %, 

ITP–MG4.03/3(1) Potok is used to measure heat flux density, relative error ( )( ) 62 =δ ∗ Mq  %. 

As the result of the solution of the inverse heat transfer problem the following parameters are defined: 

03.0=λeq  W/(m⋅K); 164=eqc  J/(kg⋅K); 6800=ρeq  kg/(m3); 18=α W/(m2⋅K). Figures 8 and 9 show the 

functions on the time interval [ ]s103.0 3× : 1 – experimental data; 2 – data received from the calculation using 

h

De

h e
m H
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eqλ , eqc , eqρ  and α . The standard deviation ( )tMT ,1∗  of experimental data is 2.7 %. The standard deviation 

( )tMq ,2∗  of experimental data is 5.7 %.  

 

Figure 9. Results of temperature measurement and calculation in the point M1 

 

Figure 10. Results of heat flux density measurement and calculation in the point M2 

 
The undertaken studies of the heat transfer processes in the actuator using the developed model showed that at 
the ambient temperature of 150 °C, actuating pulses with the duration of 0.5 ms, the pulse period of 9.5 ms and 
the maximum current amplitude of 116 A, the temperature of the actuator winding in the steady-state is 196 °C 
and the temperature limit for such insulation class is 200 °C. 

4. Conclusions 
The results of the conducted study show that thermophysical parameters and temperature distribution in 
non-stationary and steady-state operating conditions of electrical devices may be evaluated with adequate 
efficiency based on the solution of inverse heat transfer problems.  

The developed model and algorithm allow defining maximum temperature of a device as well decreasing time 
on thermal testing and electric power consumption.  

It is planned that further studies will consider internal convection in a heat transfer model, and will help optimize 
the structure and the operating parameters of electric devices based on the obtained results.  
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