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Abstract  
The purpose of this paper is to solve the portfolio problem when security returns are uncertain variables. Two types of 
portfolio selection programming models based on uncertain measure are provided according to uncertain theory. Since 
the proposed optimization problems are generally difficult to solve by conventional methods, the models are converted 
to their crisp equivalents when the return rates are adopted some special uncertain variables such as linear uncertain 
variable, trapezoidal uncertain variable and normal uncertain variable. Thus the transformed models can be completed 
by the conventional methods. In the end of the paper, one numerical experiment is provided to illustrate the 
effectiveness of the method. 
Keywords: Portfolio selection, Uncertain variable, Chance-constrained programming model, Optimistic value, Crisp 
equivalent programming model 
1. Introduction 
The theory of portfolio selection was initially provided by Markowitz (1952, p.77) and has been greatly developed since 
then. It is concerned with selecting a combination of securities among portfolios containing large number of securities to 
reach the goal of obtaining satisfactory investment return. In his path-break work, Markowitz proposed a principle that 
when making investment decision, an investor should always strike a balance between maximizing the return and 
minimizing the risk, i.e., the investor maximize return for a given level of risk, or one should minimize risk for a 
predetermined return level. More importantly, Morkowitz initially quantified investment return as the expected value of 
returns of securities, and risk as variance from the expected value. After Maokowitz’s work, scholars have been showing 
great enthusiasm in portfolio management, trying different mathematical approaches to develop the theory of portfolio 
selection. Traditionally, returns of individual securities are assumed to be stochastic variables, and many researchers were 
focused on extending Markowitz’s mean-variance models and on developing new mathematical approaches to solve the 
problems of computation. In fact, the real life decisions are usually made in the state of uncertainty. In order to deal with 
subjective uncertainty, Liu (2007) founded an uncertainty theory, and had it become a branch of mathematics based on 
normality, monotonicity, self-duality, countable subadditivity and product measure axioms. Based on the uncertain space, 
uncertain variables are developed to describe the uncertainty phenomena. When the return rates are neither random 
variables nor fuzzy ones, the return rates can be attributed to uncertain variables. In general, there are three types of 
stochastic programming models for optimization problems in uncertain environment. The first is expected value model 
(EVM), which optimizes the expected objective function subject to some expected constraints. The second 
chance-constrained programming (CCP) was proposed by Charnes and Cooper (1965, p.73) and developed by many 
scholars as means of dealing with uncertainty by specifying a confidence level at which the uncertain constraints hold. 
We try to do something in this area. In this paper, returns of securities are assumed to be uncertain parameters instead of 
stochastic ones. The portfolio will be selected according to the second type of programming models for optimization 
problems. When the return rates are considered as uncertain variables, the chance measure in the conventional 
chance-constrained programming model becomes the uncertain measure in the sense of uncertainty theory. 
The rest of this paper is arranged as follows. After reviewing some necessary knowledge about uncertain variable in 
section 2, in section 3, one type of uncertain measure model and one type of uncertain CCP model are proposed for 
portfolio selection is introduced in section 3. Then section 4 discusses the special cases when the return rates are regarded 
as some special uncertain variables such as linear uncertain variable, trapezoidal uncertain variable and normal uncertain 
variable. In section 5, we provide one numerical example to demonstrate the potential application and the effectiveness of 
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the new models. Finally, we conclude the paper in section 6.  
2. Preliminaries 
Let Γ  be a nonempty set, and let Α  be a σ -algebra over Γ . Each element Α∈Λ  is called an event. In order to 
provide an axiomatic definition of uncertain measure, it is necessary to assign to each event Λ a number }{ΛM which 
indicates the level that Λ  will occur. In order to ensure that the number }{ΛM has certain mathematical properties, Liu 
(2009) proposed the following five axioms: 
Axiom 1 (Normality) 1)( =ΓM ; 

Axiom 2 (Monotonicity) )()( 21 Λ≤Λ MM  whenever 21 Λ⊆Λ ; 

Axiom 3 (Self-duality) 1)()( c =Λ+Λ MM  for every event Λ ; 

Axiom 4 (Countable subadditivity) For every countable sequence of events }{ iΛ , we have  

)()( 11 iiii MM Λ∑≤Λ ∞
=

∞
=U . 

The following is the definition of uncertain measure. 
Definition 1 (Liu (2009)). The set function is called an uncertain measure if it satisfies the normality, monotonicity, 
self-duality and countable subadditivity axioms. 
Example 1 Let },{ 21 γγ=Γ . For this case, there are only 4events. Define 

1)(,0)(,6.0}{,4.0}{ 21 =Γ=== MMMM φγγ , 

then M  is an uncertain measure because it satisfies the four axioms. 
Definition 2 (Liu (2009)). Let Γ  be a nonempty set, Α  a σ -algebra over Γ , and M  an uncertain measure. Then 
the triplet ),,( MΑΓ  is called an uncertain space. 

The product uncertain measure is defined as follows. 
Axiom 5 (Liu (2009)). (Product Measure Axiom) Let kΓ  be nonempty sets on which kM are uncertain measures, 

nk ,,2,1 L= , respectively. Then the product uncertain measure on Γ  is  
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 For each event Α∈Λ , denoted by nMMMM ∧∧∧= L21 . 

Definition 3 (Liu (2009)). An uncertain variable is a measurable function ξ  from an uncertainty space ),,( ΜΑΓ  to 
the set of real numbers, i.e., for any Borel set Β  of real numbers, the set 

})(|{}{ Β∈Γ∈=Β∈ γξγξ  

is an event. 
A random variable can be characterized by a probability density function and a fuzzy variable may be described by a 
membership function, uncertain variable can be characterized by identification function. 
Definition 4 (Liu (2009)). An uncertain variable ξ  is said to have a first identification function λ  if 

(1) )(xλ  is a nonnegative function on R such that  

;1)()(sup =+
≠
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yx

λλ  

(2) For any set Β  of real numbers, we have 
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Definition 5 (Liu (2009)). The uncertainty distribution ]1,0[: →Φ R  of an uncertain variable ξ  is defined by 

}{)( xMx ≤=Φ ξ . 
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Definition 6 (Liu (2009)). Let ξ  be an uncertain variable, and ]1,0(∈α . Then 

}}{|sup{)(sup αξαξ ≥≥= rMr  

is called the optimistic−α value to ξ , and  

}}{|inf{)(inf αξαξ ≥≤= rMr  

is called the cpessimisti−α value to ξ . 

3. Uncertain chance-constrained programming models  
Since the optimal investment return may not be obtained in the total viewpoints, it is natural that people would like to 
accept the compromise optimal value in some constrained conditions. However, at a given confidence level which is 
considered as the safety margin, the objective must be achieved. If the investor requires that the maximal investment 
return should be obtained at uncertain measure not less than a predetermined confidence level, then the selection idea 
can be modeled as follows. 

Let ix  denote the investment proportions in security i , to reflect the uncertainty of the return rates iξ  for the thi  
security, ni ,,2,1 L=  , respectively, let us express them in terms of uncertain variable. If the investor wants to 
maximize the chance of the total investment return no less than R  at the confidence levelα , where R  is the 
predetermined total return and α is the predetermined confidence level, then the model can be formulated as 
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where fmax  is the α return which means the maximal investment return the investor can obtain at confidence level 

α , here it is actually the optimistic−α value to the total return rate ξTx , and r is the minimum return that the 

investor can accept satisfying βξ ≤≤ }{ rxM T in which rxT ≤ξ  means the investment risk. It is obvious that the 
optimal solution of the model (1) is the optimal portfolio the investor should select. 
If the investor gives the investment return one expects first, then one’s objective should be to maximize the chance to 
obtain this return level subject to the same constraint conditions with model (1). To express the idea in mathematical 
formulation, we have the following model                             
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where R  is the preset return level that the investor is satisfied with, T
nxxxx ),,,( 21 L= is the decision variable and 

),,,( 21 nξξξξ L= . 

4. Special cases 
The models (1) and (2) represent ill-posed problems, since these models include uncertain parameters. In the first phase, 
uncertain programming model is transformed to a usual mathematical model managing the uncertainties based on various 
interpretations of the problem. In the second phase, the transformed mathematical model is solved by an optimal 
technique. The obtained solution is optimal or efficient to the transformed mathematical model, however, it is not always 
reasonable to the original uncertain model. Thus, in the third phase, the optimality or efficiency of the solution can be 
examined. If the solution is improper, the uncertain model is rebuilt to a mathematical model based on the improved 
interpretation and the same procedure is iterated.  

Theorem 1 Letξ  be an uncertain variable with regular uncertainty distributionΦ . Then its optimistic−α value and 
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cpessimisti−α value are )()(),1()( 1
inf

1
sup ααξααξ −− Φ=−Φ= . 

In model (1), fmax  is actually the optimistic−α value to the total return rate ξTx  as referred to in the former section. 
In accordance with theorem 1, model (1) can be transformed into the following formulation 
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Since the self-duality of the uncertain measure, in model (2), we have 

)(1}{ RRxM T Φ−=≥ξ . 

Since maximizing the function )(1 RΦ−  is equivalent to minimizing function )(RΦ .Thus the model (2) has the 
following form 
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In model (3) and (4), the functionΦ represents the uncertainty distribution of the total return rate ξTx . 

Next we will establish some important results when the return rate iξ  adopts some special uncertain variables. 

4.1 Models for triangular uncertain return  
By a triangular uncertain variable we mean the uncertain variable fully determined by the triplet ),,( cba  of crisp 
numbers with cba << , whose first identification function is 
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For simplicity, we write ),,( cba=ξ . Since }{)( xMx ≤=Φ ξ , It follows by definition 4 in section 2 that the uncertainty 
distribution of ξ  is 
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If the return rates are all triangular uncertain variables, Let iξ  be ),,,( iii cba  where nicba iii ,,2,1, L=<< . It 

follows from operational law of triangular uncertain variables that ),,,( 111 ii
n
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n
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n
i

T cxbxaxx === ∑∑∑=ξ  which is 

also a triangular uncertain variable. Then the uncertainty distribution of ii
n
i x ξ1=∑  is the following 
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For any ]1,0(∈α , it is easily to verify that the function )1(1 α−Φ− is 
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When the returns are all triangular uncertain variables, the models (3) and (4) are linear programming models which can 
be solved by conventional methods easily. 
4.2 Models for linear uncertain return  
An uncertain variable ξ  is called linear if it has a linear uncertainty distribution  
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denoted by ),( baL  where a  and b  are real number with c 
Theorem 2 Let ξ  be a linear uncertain variable ),( baL . Then its optimistic−α value is  
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Thus the models (3) and (4) can be converted into the following models 
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and  
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which can be solved by the traditional methods. 
4.3 Models for normal uncertain return  
An uncertain variable ξ  is called normal if it has a normal uncertainty distribution 

Rxxex ∈
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denoted by ),( σeN where e and σ are real number with 0>σ . 

Theorem 3 Let ξ  be a normal uncertain variable ),( σeN . Then its optimistic−α value is 

.
1

ln3)(sup α
α

π
σαξ

−
−= e  

Assumed that the return rate of thi security is normally distributed with parameters ie  and nii ,,2,1,0 L=>σ  and 
nixi ,,2,1, L= are the nonnegative decision variables. Then according to the operational laws of normal uncertain 

variable, we have 
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Corollary 2 Let nxxx ,,, 21 L  be nonnegative decision variables and nξξξ ,,, 21 L are independently uncertain 
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Thus the models (3) and (4) can be converted into the following models 
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which can be solved by the traditional methods. 
5. Numerical Examples 
Example 2 Assume that there are 6 securities. Among them, returns of the six securities are all triangular uncertain 
variables 6,5,4,3,2,1),,,( == icba iiiiξ . The data set is given in Table 1. 

Then the total return is 

),,(6
1 cbax iii =∑ = ξ  

where 654321654321 8.11.26.128.12,4.04.02.03.01.02.0 xxxxxxbxxxxxxa +++++=−−−−−−=  and  

654321 39.24.29.25.23.2 xxxxxxc +++++= . 
Suppose that the investor accepts 0.9 as the safe confidence level, and requires the investment return be maximized at 
uncertain measure not less than this level and 3.0,0.1 == βr , then the model (3) is given as follows: 
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By use of Matlab 7.0 on PC, we gain the maximum investment return at uncertain measure not less than 0.85, the 
investor should assign his money according to the Table 2. The corresponding maximum return is 0.2125. 
6. Conclusions 
In this paper, we have considered uncertain chance-constrained portfolio selection problems involving uncertain returns 
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and propose two different models. To describe uncertain events, we provide the portfolio selection models based on 
uncertainty measures. The uncertain programming problems are converted into equivalent deterministic programming 
problems using identification function of uncertain variables. One numerical example is shown for better illustration of 
our models. In future, we will apply there general uncertain portfolio selection problems to other asset allocation 
problem, multi-period problems and combinational optimization models and so on. The proposed models can also be 
extended to complex portfolio selection models considering higher moments. 
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Table 1. Uncertain returns of 6 securities (units per stock) 

Security i   Uncertain return 

1 
2 
3 
4 
5 
6 

 (-0.2, 2.0, 2.3) 
(-0.1, 1.8, 2.5) 
(-0.3, 2.0, 2.9) 
(-0.2, 1.6, 2.4) 
(-0.4, 2.1, 2.9) 
(-0.4, 1.8, 3.0) 

 
 
Table 2. Allocation of money to 6 securities 

 Securities i       
 1 2 3 4 5 6 

Allocation of money 0.0000 0.4375 0.5625 0.0000 0.0000 0.0000 
 

 
 
 
 


