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Abstract 
The electromagnetic launcher’s rail can be modeled as a beam which is on elastic foundation with cantilevered support 
by moving load. In this paper Euler beam theory is applied to build the Mathematic model and the complete solution of 
the equation is derived in detail. At last, a numerical experiment, which analyzes the influences brought by the moving 
load velocity and the damping force on the transient response of beam, shows that the moving load’s velocity has a 
quite obvious affect on the response of the beam. 
Keywords: Electromagnetic railgun, Elastic foundation beam, Mathematic model, Damping force, Lagrange equation  
1. Introduction 
According to the characteristics of modern warfare and the new military requirements, the rise of weapons of new 
concept is a leap in the development of military theory and technology in recent years. The electromagnetic railgun, as 
an important one of new concept weapons, has adopted the electromagnetic launching method, not only broke through 
the velocity limitation of the projectile by the launching method of traditional chemical energy, but also greatly 
surpassed the rate of cannon projectile and reduced the reaction time. Hence, it has a huge enlargement in recent years. 
The working principle of electromagnetic launcher is very different from traditional artillery for it’s using power as an 
energy source, such that the export speed, efficiency are greatly impacted by a number of factors. In order to fully 
understand the changes of performance of electromagnetic railgun, we must study deeply on it. According to the 
research at home and abroad in recent years, although there will be much time needed to apply the technology of 
electromagnetic launchers in combat, a framework of research of the overall electromagnetic launchers and local 
properties are built basically. To improve the electromagnetic launchers’ launching speed, efficiency and to extend the 
service life of the barrel, the research works are focus on launching ballistic model , the key lies in the high-precision 
numerical calculation and analysis of the influences by a variety of factors of electromagnetic launchers on emission 
properties, which contribute to the design a more reasonable electromagnetic launcher(Wang, Ying& Xiao, Feng, 
1994)( Hu, Yuwei. 2007). 
T.Tzeng(Jerome T. Tzeng &Wei, Sun., 2007) used the elastic foundation beam to build mechanical model of the 
electromagnetic railgun and deduced the solve process of governing equation. Weng xuetao Hu’an(Weng, Xuetao & 
Hu’, 2008) solved the governing equation’s numerical solution by double Fourier transform and analyzed the response 
of beam which is impelled by moving vibrating mass. Yu Yanli(Yu, Yanli., 2002) adopted the Fourier transform and 
Laplace transform methods to study the process of calculation on elastic grade beam. The damping force to the response 
of beam is ignored in the above researches. In this paper, regarding the rail as a cantilever beam on the elastic 
foundation and considering the damping force, using propose a mechanic model which is under the effect of moving 
load. Moreover, making use of variable method and the Lagrange equation which considering the damping force, the 
complete solution of the governing equation is derived and the influences brought by the velocity of moving load and 



Modern Applied Science                                                                 October, 2009 

 61

damping coefficient on the response of beam is analyzed. 
2. Mathematical Model 
Figure.1 shows a schematic of a electromagnetic railgun composed of power source, rail, armature and projectile. When 
the electric current of armature goes through the rail, it forms a strong magnetic field in the area of their encirclement. 
With the reaction by the magnetic field and the electric current, it emerges powerful electromagnetic force, which 
pushes the armature and projectile to do the accelerating motion along the rail till the projectile be launched out of the 
rail. 
Figure .2 is the physical model of the railgun —there is a cantilever beam with one end fixed and the other end free 
partially subjected to even load sitting on the elastic foundation. Considering the effect of the beam by the damping 
force and basing on the Euler beam theory, we obtain the governing equation of elastic foundation beam by moving 
load which is a transient fourth—order differential equation as follows(S.Timoshenko. 1965)( Liu, Xiaoyun, Tian Runli. 
2007):   

( )
2 4

2 4 1w w wm EI kw c q H x vt
t x t

∂ ∂ ∂
+ + + = − −⎡ ⎤⎣ ⎦∂ ∂ ∂

                                  (1) 

Where w is the deflection, which depend on time t and position x , m Bhρ= is the mass per unit length, ρ is the density 
of rail material, B and h are respectively the width and thickness of the rail, EI is the bending stiffness of beam, k is 
the elastic constant, c is the damping coefficient. The function ( )[ ]vtxHq −−1  in(1), represents the magnetic pressure 
front traveling along the rail v represented by a Heaviside step function ( )vtxH − , and q is a constant(Jerome T. Tzeng. 
2005). 
3. Solution of the homogeneous equation 
The homogeneous equation is a fourth—order partial differential equation, in order to change it into the ordinary 
differential equation, we solve it by the method of variable separation. 
Assume that the solution of the homogeneous equation can be expressed as follows:   

( ) ( ) ( ),w x t t xφ θ=                                         (2) 

Substituting(2)into the homogeneous equation of(1): 

       ( )
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                                       (3) 

That can be expressed as follows: 
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from equation(4), let: 
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And 
( )4

2EI k
cm cm

θ λ
θ

+ =                                           (6) 

That is     

                                 ( )4 4 0θ β θ− =                                                (7) 

where                        

   4 2 k cm
cm EI

β λ⎛ ⎞= −⎜ ⎟
⎝ ⎠

                                            (8) 
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solution of equation(5)can be expressed as follows: 

( ) 2 2
c R c R
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= +                                   (9) 

where:                       

 2 2 2 24 0R c cm λ= − >                                   (10) 

Based on the boundary condition of the cantilever beam, 
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                    (11) 

solution of equation(7)can be expressed as follows(Zhu, Shijian, Lou, lingjun. 2006): 
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Accordingly: 
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In terms of the orthogonality of ( )i xθ ( Zhang, Xiangting, Wang, Zhipei. 2006), we obtain: 
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∫                                         (14) 

Hence, deformation ( ),w x t of the beam can be expressed by the linear combination of ( )i xθ . 
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Where constants ,i iA B are determined by the initial conditions.  

4. General Solusion  

The general solution of the homogeneous part of (1) can be derived from the above, and the general solution(1)can be 
obtained by the Lagrange equation which considering the damping force ,whereT is the kinetic energy of the beam, 
U is the total stain energy, G is the dissipation function(Jin, Shangnian, Ma, Yongli. 2002).         

 
i

i ii i

d T T U G Q
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                                         (16) 

The kinetic energy of the beamT can be expressed as follows(Lou, Ping & Zeng, Qingyuan. 2003): 
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Where ( )2

0

L

i iM m x dxθ= ∫  represents the general mass of the beam.    

The total strain energy of the beamU is consisted by the strain energy bU of the beam, and the strain energy
fU of the 

foundation. 
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So the total strain energyU is obtained as: 
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The dissipation functionG can be expressed as: 
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The virtual work done by the magnetic pressure ( ) ( ), 1p x t q H x vt= − −⎡ ⎤⎣ ⎦ in a virtual displacement iδφ can be expressed 

as follows: 
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Where
iQ is the generalized force 
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Substituting iQGUT ,,, into the Lagrange equation which considering the damping force, we obtain an ordinary 

differential equation: 
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Where: 
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The general solution of equation (24) is: 
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So the general solution of (1) can be expressed as follows: 
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Assuming that the initial conditions are as: 
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Equation (23) becomes: 
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Take an integration of (26), we get: 
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Where: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

(

2 2 2

2

2 2
0

3 2 2 2 2 2 2 3

22 2 2 3 3 32

22

1 sinh

2 4 4 4 4

2 4 2 8

2 4 2

i i i

i i

i

c R c Rt tt
m m

i

vt vt vt
i i i i

c R tvt vt m
i i i i

c R tvt m
i i

v e e d

m R e R vmc R v m R v m e R vmce R

c Re c R e e m vR R vmc m vc m v

e e m vR R vmc m

ζ ζ

β β β

β β

β

β ζ ξ

β β β β

β β β β

β β

− + − −
− −

− +

− −

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

⎡= − − − + − +⎣

+ − + + − −

+ − + +

∫

) (
)

2 3 3 3 4 4 4

2 2 4 4 2 2 2 2 2 2 2 2

8 / 16

2 8 8

ivt
i i i

i i

vc m v e v m

c R c R c m v R m v

ββ β β

β β

⎤ ⎡+ ⎣⎦
⎤− + + − − ⎦

              (31) 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) (

) (

2 2
0

2 2 2 2

2 2 3 3 3 2 22 2

3 3 3 4 2 2 2 2 2 2 4

2 sin

4 4 cos sin 4 sin sin

2 4

2 4 / 2 8

c R c Rt tt
m m

i

i i i i i i

c R c Rt t
m m

i i i i i i

i i i

v e e d

m vmcR vt R vt R v m vt c R vt

e m vR vmc m vcR m v e m vR vmc

m vcR m v c c R c m v R

ξ ξ
β ξ ξ

β β β β β β

β β β β β β

β β β

− + − −
− −

− + − −

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
= + + −⎡⎣

− + + − + +

⎤− + − + +⎦

∫

)2 2 2 2 2 2 28 16i iR m v m vβ β+ +

          (32)               



Modern Applied Science                                                                 October, 2009 

 65

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

(

2 2 2

2

2 2
0

3 2 2 2 2 2 2 3

2 2 2 2 2 2 3 3 2 2 22

2 2 2 2 2 3 32

3 cosh

2 4 4 4 4

4 4

4

i i i

i i

i

c R c Rt tt
m m

i

vt vt vt
i i i i

c Rtvt vt m
i i

c R tvt m
i

v e e d

m R e R vmc R v m R v m e R vmce R

c Re e e cR c R R v m c R cm v

e e cR c R R v m c R

ζ ζ

β β β

β β

β

β ζ ξ

β β β β

β β

β

− + − −
− −

− +

− −

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

⎡= − − − + +⎣

− + − − − + +

+ + + − −

∫

) (
)

2 2 2 4 4 4

2 2 4 4 2 2 2 2 2 2 2 2

4 / 16

2 8 8

ivt
i i

i i

cm v e v m

c R c R c m v R m v

ββ β

β β

⎤ ⎡+ ⎣⎦
⎤− + + − − ⎦

                (33) 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) (
) (

2 2
0

2 3 2 2 2

3 2 2 2 2 2 3 2 2 2 3 2 22 2

2 2 2 3 2 2 2 4 2 2

4 cos

2 8 sin 2 sin 2 cos 4 cos

4 4

4 4 / 2

c R c Rt tt
m m

i

i i i i i i

c R c Rt t
m m

i i

i i

v e e d

m vmcR vt c R vt R vt R v m vt

e c c R cR mc v R R R v m e c c R cR

mc v R R R v m c c R

ζ ζ
β ζ ξ

β β β β β β

β β

β β

− + − −
− −

− + − −

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
= − + − −⎡⎣

− + − + − − + − + +

⎤− − − − +⎦

∫

)2 2 2 2 4 2 2 2 2 2 2 28 8 16i i ic m v R R m v m vβ β β+ + +

   (34) 

( ) ( ) ( )

( ) ( )

2 2
0

2 2
2 2

5 2

4 2

c R c Rt tt
m m

c R c Rt t
m m

e e d

m R c R e c R e
c R

ζ ζ
ξ

− + − −
− −

− + − −

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
⎡ ⎤

= − + + + +⎢ ⎥− + ⎣ ⎦

∫                            (35)         

Substituting(31)—(35)into(30), then the substituting the calculating result into(27),can obtain the general 
solution ( ),w x t of(1). The moment and the shear force of the beam in the rail can be further derived from ( ),w x t , which 
provides a theoretical method for the overall investigation of the dynamic behavior of the electromagnetic railgun. 
5. Numerical example 
Since there are differences among materials of electromagnetic rail launcher, the damping force and the rate of moving 
load will possibly bring influence to the response of the rail. As the result, it is necessary to consider the damping force 
and the rate of moving load and to compare the response of the rail. 
Sitting the governing equation of beam by using the below parameter(Anthony J. Johnson & Francis C.Moon. 2005); 
modulus of rail material 120GPaE = , the moment of inertia of the rail cross section 9 42.5 10 mI −= × , the elastic 
constant 10 22.532 10 N/mk = × , the density of rail material 38320kg/mρ = , the width of rail 23 10 mB −= × ,the thickness of 
rail 21 10 mh −= × ,the magnetic pressure 100MPaq = , the length of rail 2mL = ,the velocity of 
projectile 1000m/sv = ,Accordingly, the time of armature’s movement in the rail is 32 10t −= × . 

Figure.3 shows the dynamic response of the elastic beam by the rate of moving load. It confers that the 
deformation ( )w  is larger when the rate of moving load ( )v  is bigger at the 30 1.6 10 s−− × . 
Figure.4 shows the dynamic response of the beam by the damping coefficient. Along with the damping 
coefficient ( )c increasing, the curve of time-deformation is a decreasing trend. Under the calculating conditions given by 
this paper, for the rail of which c equals to 51.3 10 Ns/m× , the deformation ( )w of the beam is 32.95 10 m−× when the 
armature moves to the moment 31.2 10t −= × . While for the rail of which c equals to 56.5 10 Ns/m× , the 
deformation ( )w of the beam is 32.6 10 m−×  at the same moment, we see that the latter is 8.5% smaller than the former. 
6. Conclusions 
(1) Regarding the rail as a cantilever beam on the elastic foundation and considering the damping force, building a 
mathematic model for the electromagnetic railgun.  
(2) Making use of variable method and the Lagrange equation which considering the damping force, The general 
solution of the homogeneous part and the complete solution of the governing equation is derived 
(3) The dynamic response of the beam which is influenced by the velocity of moving load and damping coefficient are 
analyzed by the MATLAB software. With the increasing time, the response of beam is more obvious when the rate of 
the moving load is more larger. While the deformation is much smaller when the damping coefficient becomes larger. 
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Figure 1. The general diagram of the railgun 

 

Figure 2. The rail is modeled as a beam on elastic foundation 
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Figure 3. Deformation curve of elastic foundation beam 
by moving load of differences velocity 
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Figure 4. Deformation curve of by differences damping coefficient 

 

 
 
 
 
 


