

The Model-Matching Error and Optimal Solution in Locally Convex Space

Lixin Ma

Department of Mathematics, Dezhou University, Dezhou 253023, China E-mail: malixin6019@yahoo.com.cn

Abstract

The model-matching error and the optimal solution in the Hardy space are extended to the locally convex space, and the model-matching error and the optimal solution in the locally convex space are achieved. Thereby the ordinary H_{∞} -control theory is extended to with range in locally convex spaces through a form of a parameter vector. The algorithms of computing the infimal model-matching error and the infimal controller are presented.

Keywords: Locally convex space, Inner-outer function, Minimal realization, Infinal model- matching error

1. Introduction

Assume that R is the real field and R^n is the Cartesian product of n copies of R, here n is any positive integer, and that C is a complex plane.

To solve the problem for simplicity, we apply the G(s) in the model matching problem to $G(s,\xi)$, where s in C, ξ in R^n , and $G(s,\xi)$ is in $C^{\infty}(R^n)$ (locally convex space) for each fixed s in C and in H_{∞} for each fixed ξ in R^n . First, we extend several concepts.

Definition 1 The locally convex space VH_{∞} consists of all complex-valued parameter functions $F(s,\xi)$ of a complex variable s and a parameter ξ which are analytic and bounded about s in $\operatorname{Re} s > 0$ (for each fixed ξ in R^n). Similarly, we define the VH_{∞} -norm of $F(s,\xi)$ is

$$|||F|||_{\infty} = \sum_{k=1}^{\infty} \frac{g_k}{2^k (1+g_k)},$$

where
$$g_k = \sup_{-k < \xi < k} ||F(\bullet, \xi)||_{\infty}$$

Definition 2 The subset of VH_{∞} consists of all real-rational functions of s and ξ , will be denoted by VRH_{∞} .

Definition 3 Let α denote the infimal model-matching error

$$\alpha = \inf\{\| T_1 - T_2 Q T_3 \|_{\infty} : Q \in VRH_{\infty} \}.$$
 (1)

A matrix Q in VRH_{∞} satisfying $\alpha = |||T_1 - T_2QT_3|||_{\infty}$ will be called optimal, where α is a model-matching error.

When $T_i(s,\xi)$ are scalar-valued, then there is no need for both $T_2(s,\xi)$ and $T_3(s,\xi)$. So we may as well suppose $T_3(s,\xi) = 1$. It is also assumed that $T_2^{-1}(s,\xi) \in VRH_{\infty}$ to avoid the trivial instance of the problem.

Returning to the model-matching problem, bring in an inner-outer factorization of

$$T_2(s,\xi):T_2(s,\xi)=T_{2i}(s,\xi)T_{2o}(s,\xi)$$
,

we have

$$|||T_1 - T_2Q|||_{\infty} = |||R - X|||_{\infty}.$$
 (2)

We conclude that

$$\alpha = \inf\{|||R - X|||_{\infty}: X \in VRH_{\infty}\} = dist(R, VRH_{\infty}). \tag{3}$$

Definition 4 The VL_p space, $1 \le p < \infty$, will be viewed as p th power integrable functions about s and ξ . When $p = \infty$, VL_∞ is the space of essentially bounded functions (for any fixed ξ in R^n).

Definition 5 The VRL_p space, VRL_p , will be viewed as a subset of VL_p , which consists of all real-rational functions of S and ξ .

Definition 6

(i) Let $F(s,\xi) \in VL_{\infty}$ and $g(s,\xi) \in VL_{2}$. Then the operator

$$\Lambda_{F(s,\xi)}: \Lambda_{F(s,\xi)}g(s,\xi) = F(s,\xi)g(s,\xi)$$

is called the Laurent operator.

(ii) A related operator is $\Lambda_{F(s,\epsilon)} | VH_2$, the restriction of

 $\Lambda_{F(s,\xi)}$ to VH_2 , which maps VH_2 to VL_2 , where $F(s,\xi) \in VL_{\infty}$.

(iii) For t $F(s,\xi) \in VL_{\infty}$, the Hankel operator with symbol $F(s,\xi)$, denoted by $\Gamma_{F(s,\xi)}$, maps VH_2 to VH_2^{\perp} and is defined as

$$\Gamma_{F(s,\xi)} = \Pi_1 \Lambda_{F(s,\xi)} | VH_2,$$

where $VL_2 = VH_2 \oplus VH_2^{\perp}$, and Π_1 is the projection from VL_2 onto VH_2^{\perp} .

Definition 7 We call $F(s,\xi)$ to be strong proper if $F(s,\xi) \in VRH_{\infty}$ and $\sup_{\xi \in \mathbb{R}^n} |F(\bullet,\xi)| < \infty$, strictly strong proper if

 $F(\infty,\xi)\equiv 0$.

Definition 8 We call $F(s,\xi)$ to be stable if $F(s,\xi) \in VRH_{\infty}$ and $F(s,\xi)$ has no poles in the closed right half-plane $\text{Re } s \geq 0$ (for each fixed ξ in \mathbb{R}^n).

If $F(s,\xi)$ is real-rational about s in $\operatorname{Re} s > 0$, then $F(s,\xi) \in VRH_{\infty}$ if and only if F is strong proper and stable (for each fixed ξ in R^n). Similarly, we define

$$G(s,\xi) = \begin{bmatrix} T_1(s,\xi) & T_2(s,\xi) \\ T_2(s,\xi) & 0 \end{bmatrix}, K(s,\xi) = -Q(s,\xi),$$

then the model-matching problem is

 $|||T_1 - T_2QT_3||| = \min imum$,

where $T_i(i=1,2,3) \in VRH_{\infty}$. The constraint that K stabilizes G is equivalent to that $Q \in VRH_{\infty}$.

We shall give in the form of parameter valued case the algorithms of computing the model-matching error α and the optimal controller ϱ .

2. THE MINIMAL REALIZATION

Definition 9 The linear time invarient system S_1 defined by

$$x(t,\xi) = A(\xi)x(t,\xi) + B(\xi)u(t,\xi) \tag{4}$$

$$y(t,\xi) = C(\xi)x(t,\xi) \tag{5}$$

Where $A(\xi)$ is $n \times n$, $B(\xi)$ is $n \times m$, and $C(\xi)$ is $r \times n$ constant matrix depending on ξ , is said to be completely controllable if the $n \times mn$ controllability matrix

$$U(\xi) = [B(\xi), A(\xi)B(\xi), ..., A^{n-1}(\xi)B(\xi)]$$
(6)

has rank n, denoted by $(A(\xi), B(\xi))$.

Definition 10 The system S_1 described by (1) and (2) is completely observable if the observability matrix

$$V^{T}(\xi) = [C(\xi), C(\xi)A(\xi), ..., C(\xi)A^{n-1}(\xi)]^{T}$$
(7)

has rank n, denoted by $(A(\xi), C(\xi))$.

Definition 11 Given an $r \times m$ matrix $G(s,\xi)$ whose elements are rational functions of s, we wish to find matrices $A(\xi), B(\xi)$ and $C(\xi)$ depending on ξ , having dimensions $n \times n, n \times m$ and $r \times n$ respectively, such that

$$G(s,\xi) = C(\xi)(sI_n - A(\xi))^{-1}B(\xi)(5)$$
(8)

where I_n is the unit matrix of order n.

 $[A(\xi), B(\xi), C(\xi), 0]$ is termed a realization of $G(s, \xi)$ of order n, and is not, of course, unique. All such the above realizations will include matrices $G(s, \xi)$ having the least dimensions-be called the minimal realizations.

Definition 12 The Laplace transform of parameter-valued function $f(s,\xi)$ is defined by

$$F(s,\xi) = \int_0^\infty f(t,\xi)e^{-st}dt = Lf(t,\xi) \tag{9}$$

and the inverse Laplace transform of $F(s,\xi)$ is

$$f(t,\xi) = \int_{\sigma_{-j\infty}}^{\sigma_{+j\infty}} F(s,\xi) e^{st} ds = L^{-1} F(s,\xi)$$
 (10)

we take the Laplace transform of (9) with zero initial conditions, we have

$$\hat{s} x(s,\xi) = A(\xi) x(s,\xi) + B(\xi) u(s,\xi)$$

and after rearrangement

$$\hat{x}(s,\xi) = (sI_n - A(\xi))^{-1} B(\xi) \hat{u}(s,\xi)$$
(11)

Since from (10) the Laplace transform of the output is

$$\hat{y}(s,\xi) = C(\xi)\hat{x}(s,\xi) \tag{12}$$

clearly

$$\hat{y}(s,\xi) = C(\xi)(sI_n - A(\xi))^{-1}B(\xi)\hat{u}(s,\xi) = G(s,\xi)\hat{u}(s,\xi)$$
(13)

where the $r \times m$ matrix

$$G(s,\xi) = C(\xi)(sI_n - A(\xi))^{-1}B(\xi)$$
(14)

Suppose $R(S,\xi) = [r_{ij}(S,\xi)]$ is an $p \times m$ strictly proper rational fraction matrix of S (for any fixed ξ in \mathbb{R}^n).

Theorem 1 A realization $[A(\xi), B(\xi), C(\xi), 0]$ of a given transfer matrix $G(s, \xi)$ is minimal if $(A(\xi), B(\xi))$ is C.C. and $(A(\xi), C(\xi))$ C.O.

Proof Let $U(\xi)$ and $V(\xi)$ be the controllability and observability matrices in (5) and (6) respectively. We wish to show that if these both have rank n then $R(s,\xi)$ has

least order n.

Suppose that there exists a realization $\{\overline{A}(\xi), \overline{B}(\xi), \overline{C}(\xi)\}\$

of $R(s,\xi)$, with $\overline{A}(\xi)$ having order n_1 . Since

$$C(\xi)(sI_m - A(\xi))^{-1}B(\xi) = \overline{C}(\xi)(sI_m - \overline{A}(\xi))^{-1}\overline{B}(\xi),$$

It follows that

$$C(\xi)e^{A(\xi)t}B(\xi) = \overline{C}(\xi)e^{\overline{A}(\xi)t}\overline{B}(\xi),$$

Which implies, using the series

$$(e^{A(\xi)t} = I + tA(\xi) + \frac{t^2}{2}A^2(\xi) + ...),$$
 that

$$C(\xi)A^{i}(\xi)B(\xi) = \overline{C}(\xi)\overline{A}^{i}(\xi)\overline{B}(\xi) \qquad i = 0,1,2,...$$

Consider the product

$$\begin{split} V(\xi)U(\xi) &= \begin{bmatrix} C(\xi) \\ C(\xi)A(\xi) \\ \vdots \\ C(\xi)A^{n-1}(\xi) \end{bmatrix} \begin{bmatrix} B(\xi), A(\xi)B(\xi), \dots, A^{n-1}(\xi)B(\xi) \end{bmatrix} \\ &= \begin{bmatrix} C(\xi)B(\xi) & C(\xi)A^{n-1}(\xi)B(\xi) \\ \vdots & \vdots \\ C(\xi)A^{n-1}(\xi) & C(\xi)A^{2n-2}(\xi)B(\xi) \end{bmatrix} \\ &= \begin{bmatrix} \overline{B}(\xi), \overline{A}(\xi)\overline{B}(\xi), \dots, \overline{A}^{n-1}(\xi)\overline{B}(\xi) \end{bmatrix} = V_1(\xi)U_1(\xi). \end{split}$$

By assumping, $V(\xi)$ and $U(\xi)$ both have rank n, so the matrix $V_1(\xi)U_1(\xi)$ also have rank n. However, the dimension of $V_1(\xi)$ and $U_1(\xi)$ are respectively $r_1n \times n_1$ and $n_1 \times m_1n$, where r_1 and m_1 are positive integers, so that the rank of ix $V_1(\xi)U_1(\xi)$ can not be greater than n_1 . That is, $n < n_1$, so there can be no realization of $G(s,\xi)$ having order less than n.

3. INFIMAL MODEL-MATCHING ERROR

The Lyapunov equations are

$$A(\xi)L_c(\xi) + L_o(\xi)A^{\mathsf{T}}(\xi) = B(\xi)B^{\mathsf{T}}(\xi) \tag{15}$$

$$A^{\mathsf{T}}(\xi)L_{o}(\xi) + L_{o}(\xi)A(\xi) = C^{\mathsf{T}}(\xi)C(\xi) \tag{16}$$

Define the two controllability and observability gramians:

$$L_{c}(\xi) = \int_{0}^{\infty} e^{-A(\xi)t} B(\xi) B^{T}(\xi) e^{-A^{T}(\xi)t} dt,$$

$$L_{o}(\xi) = \int_{0}^{\infty} e^{-A^{T}(\xi)t} C^{T}(\xi) C(\xi) e^{-A(\xi)t} dt.$$

Theorem 2 $L_c(\xi)$ and $L_o(\xi)$ are the unique solutions of (12) and (13) respectively.

Proof Using the definition we have $A(\xi)L_c(\xi) + L_c(\xi)A^{T}(\xi)$

$$= \int_0^\infty (A(\xi)e^{-A(\xi)t}B(\xi)B^{\mathsf{T}}(\xi)e^{-A^{\mathsf{T}}(\xi)t} + B(\xi)B^{\mathsf{T}}(\xi)e^{-A^{\mathsf{T}}(\xi)t} + B(\xi)B^{\mathsf{T}}(\xi) - \lim_{t \leftarrow \infty} (e^{-A(\xi)t}B(\xi)B^{\mathsf{T}}(\xi)e^{-A^{\mathsf{T}}(\xi)t}).$$

Since $A(\xi)$ is instable,

$$\lim_{\xi \to \infty} (e^{-A(\xi)t} B(\xi) B^{T}(\xi) e^{-A^{T}(\xi)t}) = 0.$$

So $L_c(\xi)$ are the unique solutions of (12). From the discussion above, the uniqueness is obvious.

 $L_o(\xi)$ are the unique solutions of (13) follows similarly.

Q.E.D.

Definition 13 Suppose the linear operator

$$T: X \to Y$$
,

it's the unique operator

$$T^*: Y^* \to X^*$$

Satisfying

$$(T * y*, x) = (y*, Tx), x \in X*, y \in T*,$$

 T^* is called the adjoint of T.

Define

$$f(s,\xi) = [A(\xi), \omega(\xi), C(\xi), 0],$$

$$g(s,\xi) = [-A^{T}(\xi), \lambda^{-1}(\xi)L_{0}(\xi)\omega(\xi), B^{T}(\xi), 0],$$
(17)

and

$$X(s,\xi) = R(s,\xi) - \lambda(\xi)f(s,\xi)/g(s,\xi). \tag{18}$$

So

$$f(s,\xi) = C(\xi)(sI - A(\xi))^{-1}\omega(\xi) \in VRH_2^{\perp},$$

and

$$g(s,\xi) = B^{\mathsf{T}}(\xi)(sI + A^{\mathsf{T}}(\xi))^{-1}\lambda^{-1}(\xi)L_o(\xi)\omega(\xi) \in VRH_2 \; .$$

Theorem 3 [4] There exists a closest VRH_{∞} -function $X(s,\xi)$ to a given VRL_{∞} -function $R(s,\xi)$, and $\||R-X|| = \|\Gamma_R\|$.

Factor $R(s,\xi)$ as

$$R(s,\xi) = R_1(s,\xi) + R_2(s,\xi)$$

With $R_2(s,\xi)$ strictly proper and analytic in ${\rm Re}\, s < 0$ and $R_2(s,\xi)$ in VRH_∞ . Then $R_1(s,\xi)$ has a minimal state-space realization

$$R_1(s,\xi) = [A(\xi), B(\xi), C(\xi), 0]$$

Define

$$L_c(\xi) = \lambda(\xi)\omega(\xi) \tag{19}$$

$$L_0(\xi) = \lambda(\xi)\nu(\xi) \tag{20}$$

Lemma 4 The function $f(s,\xi)$ and $g(s,\xi)$ satisfying equations

$$\Gamma_{R(s,\xi)}g(s,\xi) = \lambda(\xi)f(s,\xi) \tag{21}$$

$$\Gamma^*_{R(s,\xi)}f(s,\xi) = \lambda(\xi)g(s,\xi) \tag{22}$$

Proof to prove (21) start with (15). Add and subtract $sL_c(\xi)$ on the left-hand side to get

$$-(sI - A(\xi))L_c(\xi) + L_c(\xi)(sI + A^{\mathsf{T}}(\xi)) = B^{\mathsf{T}}(\xi)B(\xi)$$

Now pre-multiply by $C(\xi)(sI - A(\xi))^{-1}$ and pre-multiply by $(sI + A^{T}(\xi))^{-1}v(\xi)$ to get

$$-C(\xi)L_{c}(\xi)(sI + A^{T}(\xi))\nu(\xi) + C(\xi)(sI - A(\xi))^{-1}L_{c}(\xi)\nu(\xi)$$

$$= C(\xi)(sI - A(\xi))^{-1}B(\xi)B^{T}(\xi)(sI + A^{T}(\xi))^{-1}\nu(\xi)$$
(23)

The first function on the left-hand side belong to VH_2 ; from (17) and (19) the second function equals $\lambda(\xi)f(s,\xi)$; and from (18) and (19) the function on the right-hand side equals $R_1(s,\xi)g(s,\xi)$. Project both side of (23) onto VRH_2^T to get

$$\lambda(\xi)f(s,\xi) = \Pi_1 R_1(s,\xi)g(s,\xi) = \Gamma_{R,(s,\xi)}g(s,\xi).$$

But $\Gamma_{R(s,\xi)} = \Gamma_{R_1(s,\xi)}$; hence (21) dolds.

Equation (22) is proved similarly starting with (16).

Q.E.D.

From Lemma 4, we can conceive

Corollary 5
$$\left\| \Gamma_{R(s,\xi)} \right\| = \lambda(\xi)$$

Theorem 6 The infimum model-matching error α equals $\lambda(\xi)$, the unique optimal X equals

$$R(s,\xi) - \lambda(\xi) \frac{f(s,\xi)}{g(s,\xi)}$$
.

Proof from Theorem 3 there exists a function $X(s,\xi)$ in VH_{∞} such that

$$||R - X||_{-} = ||\Gamma_{R(s,\xi)}|| \tag{24}$$

It is claimed that every $X(s,\xi)$ in VH_{∞} satisfying (24) also satisfies

$$R(s,\xi) - X(s,\xi)g(s,\xi) = \Gamma_{R(s,\xi)}g(s,\xi)$$
(25)

But (25) has a unique solution, namely,

$$X(s,\xi) = R(s,\xi) - \lambda(\xi) \frac{f(s,\xi)}{g(s,\xi)}.$$

Thus (21) and Theorem 3 imply

$$\alpha(\xi) = \lambda(\xi)$$
.

Therefore

$$X(s,\xi) = R(s,\xi) - \alpha(\xi) \frac{f(s,\xi)}{g(s,\xi)}.$$

Set

$$\alpha(\xi) = \lambda(\xi), \qquad Q(s,\xi) = T_2^{-1}(s,\xi)X(s,\xi). \tag{26}$$

Since $T_{20}(s,\xi), T_{20}^{-1}(s,\xi) \in VRH_{\infty}$, (26) sets up a one-to-one correspondence between functions $Q(s,\xi)$ in VRH_{∞} and functions $X(s,\xi)$ in VRH_{∞} . An optimal $X(s,\xi)$ yields an optimal $Q(s,\xi)$ via (24)

For a single-input and single-output design in the form of parameter valued case, we have similar to ordinary computing method.

Example.

$$P(s,\xi) = \frac{(s-1)(s-2)}{(s+1)(s^2+s+1+\xi^2)} \in VRH_{\infty}, \omega_1 = 0.01,$$

$$\varepsilon = 0.1.$$

From the above method, we derive

$$K(s,\xi) = \frac{0.615(s+0.4)(s+1)(s^2+s+1+\xi^2)}{s^4+6.145s^3+12.54s^2+13.53s+0.0232}.$$

Note $K(s,\xi) \notin RH_{\infty}$, but $K(s,\xi) \in VRH_{\infty}$.

Step 1.
$$-P(s,\xi) = \frac{N(s,\xi)}{M(s,\xi)},$$

$$N(s,\xi) = -P(s,\xi), M(s,\xi) = 1 = X(s,\xi), Y(s,\xi) = 0$$
.

Step 2.

$$W(s,\xi) = \frac{s+1}{10s+1}$$
.

Step 3.

$$T_1(s,\xi) = \frac{(s+1)^k}{(10s+1)^k}$$
,

$$T_2(s,\xi) = -\frac{(s+1)^k(s-1)(s-2)}{(10s+1)^k(s+1)(s^2+s+1+\xi^2)},$$

$$V(s) = s + 1$$
.

Step 4. When k = 1,

Step (1)
$$T_{21}(s,\xi) = \frac{(s-1)(s-2)}{(s+1)(s+2)},$$

$$T_{20} = -\frac{(s+1)(s+2)}{(10s+1)(s^2+s+1+\xi^2)}.$$

Step (2)
$$R(s,\xi) = \frac{(s+1)^2(s+2)}{(10s+1)(s^2+s+1+\xi^2)}$$

the minimal realization is

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, B = \begin{bmatrix} -\frac{12}{11} \\ \frac{12}{7} \end{bmatrix}, C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$$

Step (3)
$$L_c = \begin{bmatrix} \frac{72}{121} & -\frac{48}{77} \\ -\frac{48}{77} & \frac{36}{49} \end{bmatrix}, \qquad L_0 = \begin{bmatrix} \frac{1}{2} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{4} \end{bmatrix}.$$

Step (4)
$$L_c L_0 = \begin{bmatrix} 0.0898 & 0.0425 \\ -0.0668 & -0.0853 \end{bmatrix}.$$

Then

$$\alpha_1 = 0.2299 > 0.1$$
.

When k=2,

Step (1)
$$T_{21}(s,\xi) = \frac{(s-1)(s-2)}{(s+1)(s+2)},$$

$$T_{20} = -\frac{(s+1)(s+2)}{(10s+1)(s^2+s+1+\xi^2)}$$

Step (2)
$$R(s,\xi) = \frac{(s+1)^3(s+2)}{(10s+1)^2(s^2+s+1+\xi^2)}$$

the minimal realization is

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \qquad B = \begin{bmatrix} -\frac{24}{121} \\ \frac{12}{49} \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$$

Step (3)
$$L_{c} = \begin{bmatrix} \frac{24.12}{121.121} & -\frac{8.12}{121.49} \\ -\frac{8.12}{121.49} & \frac{12.3}{49.49} \end{bmatrix}, \qquad L_{0} = \begin{bmatrix} \frac{1}{2} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{4} \end{bmatrix}.$$

Step (4)
$$L_c L_0 = \begin{bmatrix} 0.0044 & -0.0025 \\ 0.0031 & -0.0017 \end{bmatrix}.$$

Then

$$\alpha_1 = 0.05113 < 0.1, \qquad \omega = \begin{bmatrix} 1 \\ -0.7209 \end{bmatrix}.$$

Step (5)
$$f(s,) = \frac{0.2791s - 1.2791}{(s-1)(s-2)}$$
$$g(s) = \lambda^{-1} \frac{-0.0141s - 0.0657}{(s+1)(s+2)}$$

$$X(s) = 6.15 \frac{(s+1)(s+2)(s+0.4)}{(10s+1)^2(s+4.66)}.$$

Step(6) Set

 $\alpha = \lambda = 0.05113$ $Q(s,\xi) = -6.15 \frac{(s+0.4)(s^2+s+1+\xi^2)}{(s+1)(s+4.66)}$ $Q_{\alpha}(s,\xi) = -6.15 \frac{(s+0.4)(s^2+s+1+\xi^2)}{(10s+1)(s+1)(s+4.66)},$ $K(s,\xi) = 0.615 \frac{(s+0.4)(s+1)(s^2+s+1+\xi^2)}{s^4+6.145s^3+12.54s^2+13.53s+0.0232}.$

References

Step 5.

Francis, B.A. (1987). A course in H_{∞} -Control Theory. Spring-Verlag, Berlin. Heidelberg. New York, 1987. 61-80. Francis, B.A., & Doyle, J.C. (1987). Linear Control Theory with an H_{∞} -Optimality Criterion. *SIAM control and Optimization*, 1987. 25: 815-844.

Francis, B.A., & Zames, G. (1984). On H_{∞} -Optimal Sensitivity Theory for SISO Feedback System. *IEEE Trans. Auto Cont*, 1984. AC-29: 9-16.

Kerulen, B.V. (1993). H_{∞} -Control with Measurement-Feedback for Infimite-Dimensional Systems. *Journal Mathematical Systems*, Estimation and control, 1993.3: 373-411.