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Abstract

The model-matching error and the optimal solution in the Hardy space are extended to the locally convex space, and the
model-matching error and the optimal solution in the locally convex space are achieved. Thereby the ordinary
H, -control theory is extended to with range in locally convex spaces through a form of a parameter vector. The
algorithms of computing the infimal model-matching error and the infimal controller are presented.
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1. INTRODUCTION

Assume that R is the real field and R” is the Cartesian product of 7 copies of R, here n is any positive integer,
and that C is a complex plane.

To solve the problem for simplicity, we apply the G(s) in the model matching problem to G(s,&),where s in
C,¢ in R",and G(s,&) isin C™(R™) (locally convex space) for each fixed s in C andin H, for each fixed
& in R". First, we extend several concepts.

Definition 1 The locally convex space VH, consists of all complex-valued parameter functions F(s,£) of a
complex variable s and a parameter £ which are analytic and bounded about s in Res > 0 ( for each fixed £ in
R™). Similarly, we define the VH,, -norm of F(s,&) is
0
IF (o= Y 25—,
k=12"(1+ gx)

where g, = sup "F(.’ég)"oo
—k<&<k

Definition 2 The subset of VH,, consists of all real-rational functions of s and ¢&,will be denoted by VRH,, .
Definition 3 Let & denote the infimal model-matching error

a=inf{||7; -L,0T; [||l: Q € VRH.. } . (1
A matrix Q in VRH, satistying o =|||7} -1,0T; |||, will be called optimal,where & is a model-matching error.
When T7;(s,&) are scalar-valued,then there is no need for both 7,(s,&) and T3(s,&).So we may as well suppose
T;(s,&) =1 It is also assumed that T 2’1(s,§) € VRH, to avoid the trivial instance of the problem.
Returning to the model-matching problem, bring in an inner-outer factorization of
T5(s5,8): T5(5,8) = T (5,6)T5, (5,6) »
we have

117 = L0 Moo=l R= X |l - 2)
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We conclude that

a=inf{||R— X |||,: X €e VRH .} = dist(R,VRH ). 3)
Definition 4 The VL, space, 1< p<w ,will be viewed as p th power integrable functions about § and &.When
p=o,VL_ isthe space of essentially bounded functions(for any fixed £ in R").
Definition 5 The VRL, space, VRL, ,will be viewed as a subset of VL, ,which consists of all real-rational functions of
S and £.
Definition 6
(i) Let F(s,&)eVL, and g(s,&) e VL, . Then the operator

Apig DNrpen8(8,6) = F(s,6)g(s,8)

is called the Laurent operator.

(i1) A related operator is A e | VH, ,the restriction of

Ay to VH,whichmaps VH, to yL,,where F(s,&)eVL,-
(iii) For t F(s,&) e VL, .the Hankel operator with symbol F(s,&),denoted by Ty, Maps VH, to VH," and is
defined as
Crey =LA o [VH,
where VL, =VH, ®VH," ,and TI, is the projection from yL, onto VH,".
Definition 7 We call F(s,&) to be strong proper if F(s,&)e VRH,, and sup |F(e.4] < oStrictly strong proper if
£eR"

F(o0,6)=0.

Definition 8 We call F(s,£) to be stable if F(s,£) e VRH,, and F(s,&) has no poles in the closed right half-plane
Res >0 ( for each fixed & in R").

If F(s,&) isreal-rational about s in Res >0, then F(s,£)eVRH,, if and only if F is strong proper and stable
(for each fixed ¢ in R"). Similarly, we define

T](S,f) TZ(Ss‘é:)

G(s,6) = {Tz .2 0

:|’K(S»§) = _Q(Ssg) 5

then the model-matching problem is
I 7, ~ T,0T; ||= min imunm ,
where T;(i =1,2,3) € VRH,, .The constraint that K stabilizes G is equivalent to that ge<vrH,, .

We shall give in the form of parameter valued case the algorithms of computing the model-matching error « and

the optimal controller ¢.
2. THE MINIMAL REALIZATION

Definition 9 The linear time invarient system S| defined by

X(6,€) = A(E)x(t,£)+ BEu(t,£) “
y(1,8) = C(&)x(1,8) ®)

Where A(£) is nxn,B(&) is nXm,and C(£) is 7Xn constant matrix depending on £,is said to be completely
controllable if the n X mn controllability matrix

U(&) =[B(£), AE)B(&)..... A" (E)B(E)] (©)
has rank # ,denoted by (A(&), B(&))-

Definition 10 The system S, described by (1) and (2) is completely observable if the observability matrix
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V& =[CE),CE) Q). COA™ @) )
has rank 7 ,denoted by (A(&),C(&)).

Definition 11 Given an 7 Xm matrix G(s,&) whose elements are rational functions of s ,we wish to find matrices

A(E),B(&) and C(&) depending on & having dimensions nXxn,nmxm and rxn respectively, such that
G(s,£) = C(&)(sT, = AE) ™ BE) (5) ®)
where [, is the unit matrix of order 7.

[A(E), B(E),C(£),0] is termed a realization of G(s,&) of order 7 ,and is not, of course, unique. All such the above
realizations will include matrices G(s,&) having the least dimensions-be called the minimal realizations.

Definition 12 The Laplace transform of parameter-valued function f(s,&) is defined by
F(s,6)= [ f(t.&)e™di = Lf (1,€) ©)
and the inverse Laplace transform of F(s,&) is
F@8 =7 Fs.fetds = L'F(s.8) (10)
we take the Laplace transform of (9) with zero initial conditions, we have

s x(s,5) = A(&) x(s,6) + B(S)u(s,5)

and after rearrangement

x(5,€) = (s, = A()) ™ B(E)u(s, &) )
Since from (10) the Laplace transform of the output is
y(5,6) = C(&)x(s,5) (12)
clearly
(5,8) = CE)sI, — AN BE)u(s,€) = G(s,£)u(s,&) (13)
where the »xm matrix
G(s,8) = C(E)(sT, — AE) ™ B(E) (14)

Suppose R(S,&)=[r;(s,&)] isan pXxm strictly proper rationalfraction matrix of S (for any fixed & in R").

Theorem 1 A realization [A($), B(E),C(£),0] of a given transfer matrix G(s,&) is minimal if (4(£),B(£)) is c.c.
and (4(&),C(&)) c.o.

Proof Let U(&) and V(&) be the controllability and observability matrices in (5) and (6) respectively. We wish
to show that if these both have rank » then R(s,&) has

least order n.

Suppose that there exists a realization {4(¢), B(&),C(&)}
of R(s,&),with 2(5) having order n,. Since

C(&)(sl,, — A&) ' B(&) = C(&)(sL,, — A)) ' B(&),
It follows that

C(E)e O B(&) = C(&)e " B(&),

Which implies, using the series
t2
(" =T+ A+, that

COA(E)BE) = COA (£)B(E) i=0,12,.
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Consider the product

[c©)

C(&AE)

V(EOUE) =|. B(£), A(E)B(&)..... A" (£)B(&)
L C(&A (&)

[cBE &A™ (©BE)

| C(OA (&) C(EA(E)B(E)

By assumping, V() and U(&) both have rank n, so the matrix V,(£)U;(£) also have rank n. However, the
dimension of V(&) and U,;(§) are respectively nnxn, and n; xmn, where n and m; are positive integers, so
that the rank of ix V(§)U;(£) can not be greater than n,. That is, n <n,, so there can be no realization of G(s,&)
having order less than 7.

3. INFIMAL MODEL-MATCHING ERROR

The Lyapunov equations are
AL+ L, (A (E)=B(E)B (&) (15)
AT L, () +L,(§AE) = CT(E)C(E) (16)

Define the two controllability and observability gramians:

L(&)= e BB (&) ar,
0

L@ =]
0

Theorem 2 L,(&) and L, (&) are the unique solutions of (12) and (13) respectively.

Proof Using the definition we have A(&)L.(&)+ L, (£)4" (&)

_ AT BEOBI O 4 L iepT ()i e B2)BT (e,
" MBOBT (e AT () o
Since A(&) is instable,
lim (e " BB (&)e ) = 0.

So L.(&) are the unique solutions of (12).From the discussion above, the uniqueness is obvious.
L,(&) are the unique solutions of (13) follows similarly.

Q.E.D.
Definition 13 Suppose the linear operator
T:X->Y,
it’s the unique operator
T*:Y* > X *,
Satisfying
(T*y*,x)=(*Tx),xc X*,yeT*,
T* 1is called the adjoint of 7 .
Define
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f(5,8) =[4(S), 0(£),C(£),0],

8(5,8) =[-A"(£), (O Ly(&)w(&), BT (£),0], (47
and
X(5,8)=R(5,8) = A&) f(5,6)/ g(5,%). (18)
So
[(5,8) = C(ENSI - AE) ' (&) e VRH, ™,
and

g(5,8) =B (E)T + A1) A )L, (E)a(§) € VRH, .
Theorem 3 Y There exists a closest VRH, -function X(s,&) to a given VRL_ -function R(s,&), and
IR =X [II=l T 1l
Factor R(s,&) as
R(5,6) = R (5,8) + Ry (5,¢)

With R,(s,&) strictly proper and analytic in Res<0 and R,(s,&) in VRH, . Then Ry(s,&) has a minimal
state-space realization

Ri(s,8) =[4(£), B(£),C(£).0]

Define
L(8) = AUS)a(S) (19)
Ly(&) = ASV(S) (20)
Lemma 4 The function f(s,£) and g(s,&) satisfying equations
TR(s.6)8(5,8) = A&) [ (5,) 2
T REs,6) f (5:€) = AE)E(5.€) (22)

Proof to prove (21) start with (15). Add and subtract sL.(£) on the left-hand side to get

= (s = AQ)L(E) + Le ()T + 4T (£) = B (&) B(&)
Now pre-multiply by C(&)(sl — A(f))_1 and pre--multiply by (s/ + AT(é‘))_lv(f) to get
— CELAENSI + AT (EW(E) + CENSI - AE) T L (v (E)
= C(&)(sI - AE) ' BB (&)(sl + A" (£))'v(&)

The first function on the left-hand side belong to VH, ; from (17) and (19) the second function equals
AE)f(s,¢) ;and from  (18) and (19) the function on the right-hand side equals R;(s,&)g(s,<&) . Project both side of

(23) onto VRH 2T to get
AN S (5,6) =R (5,6)8(5,6) = Tg (5,£)8(5,¢) -
But T'p(ss) =Tg (5,£)s hence (21) dolds.

(23)

Equation (22) is proved similarly starting with (16). Q.E.D.

From Lemma 4, we can conceive
Corollary 5 “FR(S@H =A(&)
Theorem 6 The infimum model-matching error  « equals A(&), the unique optimal X equals

f(s.9)
g(s,%)

Proof from Theorem 3 there exists a function X(s,&) in VH, such that

R(s,8) = A(S)
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IR -], =|kes.o (24)

It is claimed that every X (s,£) in  VH, satisfying (24) also satisfies
R(s,6) = X (5,£)8(s,6) =Tp(5,£)8(s,6) (25)

But (25) has a unique solution, namely,

X(5,8) = R(s,8) - &) L)
g(s,$)
Thus (21) and Theorem 3 imply
a($) =A(S).
Therefore
_ B S(s,8)
X(s,8)=R(s,%) a(f)—g(sé) :
Set
a($) =A%), 0(s,8) =Ty (5,) X (5,£). (26)

Since TZO(S,f),Tzo_l(s,é) € VRH ,, ,(26) sets up a one-to-one correspondence between functions Q(s,&) in VRH,,
and functions X(s,&) in VRH,, . Anoptimal X(s,&) yields an optimal Q(s,&) via (24)

For a single-input and single-output design in the form of parameter valued case, we have similar to ordinary computing
method.

Example.

(s—1(s-2)

(s+1)(s% +s+1+&2)

P(s,8) =

€ VRH ,, =0.01,
e=0.1.
From the above method, we derive

0.615(s +0.4)(s +1)(s> +s+1+&2)
s*+6.1455% 12,5452 +13.535+0.0232

K(s,6)=

Note K(s,&)¢ RH,,but K(s,&) e VRH,.

N(s,$)
Step 1. —P(s,&) =—222
ep (s,6) M.0)
N(S,f)Z—P(S,f),M(S,gE):l=X(S,§),Y(S,§):0.
Step 2.
s+1
T
k
Step 3. Tl(S»eﬁ)Z(SJr—l)k,
(10s+1)
k p— pa—
O JONN L.Vl (o (o N
A0s+ D) " (s+D)(s" +s+1+<7)
Vis)y=s+1.
Step 4. When k=1,
_(s—D(s—=2)
Step (1) T31(s,%) S e
Tyg = (s+D(s+2)

(105 +1)(s% +s 41+ E2)
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2
Step (2) R(s.§) =— D62
A0s+D)(s“ +s+1+E&9)

the minimal realization is

) 12
1 0 17
A= . B=| 1, c=[ 1.
0 2] 77|12
| 7
72 48] 11
121 77 2 3
St 3 L = 5 L = .
ep( ) c _ﬁ ﬁ 0 l l
L 77 49 | 3 4
Step (4) I 0.0898  0.0425
C . = .
P 071 _0.0668 —0.0853
Then
a; =0.2299>0.1.
When k=2,
(s—1)(s—2)
Step (1 Tyy(s,&) = — 22— =0
p (1) 21(8,6) GiD612)
(s+D(s+2)
T20=— ) ) .
(10s+1)(s“ +s+1+&7)
s+1 3 s+2
Step (2) R(s,&) =— 3D 6+
A0s+D)7(s" +s+1+&7)
the minimal realization is
i 24
10 T
A= : g=| 121} c=[t 1].
0 2 2
49
[ 24.12 _ 812 11
121.121 121.49 2 3
St 3 L = N L = .
() Tl 812 123 Tl
| 121.49 49.49 3 4
Step (4) L1 [0.0044 —0.0025
€ = .
P <*0710.0031 -0.0017
Then
1
@ =0.05113<0.1, = .
-0.7209
0.2791s —1.2791
Step (5) fG)=—""—""—
(s—1)(s—2)
_1 -0.0141s — 0.0657
gls)=2"
(s+D(s+2)
X(S)=6.15(s+1)(s—;2)(s+0.4) .
(105 +1)* (s +4.66)
Step(6) Set
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a=4=0.05113

(s +0.4)(s> +5+1+&2)
(s +1)(s +4.66)

0(s, &) =-6.15

(s+0.4)(s> +s+1+E2)
(10s +1)(s +1)(s +4.66)

Step 5. 0,(s,8)=-6.15

(s+04)(s+1)(s2 +s+1+E2)

K(s,£)=0.615— . 5 .
s +6.1455% +12.545% +13.535 +0.0232
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