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Abstract

The interactive fuzzy programming approach can be used to address two-level programming problems if a
mutually cooperative relationship exists between the decision-makers. In this approach, a satisfactory solution is
obtained by taking into account the minimum satisfaction level of the decision-maker at the upper level. In
addition, the overall satisfaction balance between the decision-maker at the lower level and the decision-maker at
the upper level must be appropriate. In this paper, interactive fuzzy programming is used to achieve a
satisfactory solution for a two-level linear programming problem with two decision-makers at the upper level.
The method is designed in such a way that both decision-makers at the upper level achieve their minimum
satisfaction levels together with the appropriate satisfaction balance between the decision-maker at the lower
level and each decision-maker at the upper level. A numerical example is given to illustrate the method.
Moreover, it is indicated that a three-level program can be considered as a two-level program with two
decision-makers at the upper level.

Keywords: membership function, satisfactory solution, optimization, interactive fuzzy programming, multi-level
programming

1. Introduction

Two-level mathematical programming problems are used to model decision-making problems in the real
scenarios of decentralized organizations (Abd El-Wahed & Lee, 2006; Bard, 1998; Migdalas et al., 1998;
Sakawa et al., 2001, 2002; Stackelberg, 1934). In the two-level programming problem, two decision-makers
(DMs) make decisions successively. The DM at the upper level (leader) specifies a strategy; then the DM at the
lower level (follower) subsequently specifies a strategy to optimize his or her own objective function with full
knowledge of the leader’s action. Finally, the leader optimizes his or her own objective function according to the
rational response of the follower. The obtained solution described in this situation is a Stackelberg solution.
Three categories are considered for obtaining Stackelberg solutions to the two-level linear programming
problems (two-level LPPs) as the vertex enumeration approach (Bialas & Karwan, 1984), the Kuhn-Tucker
approach (Bard & Falk, 1982; Bard & Moore, 1990; Bialas & Karwan, 1984; Hansen et al., 1992) and the
penalty function approach (Anandalingam & White, 1990; White & Anandalingam, 1993).

The concept of the Stackelberg solution arises when no cooperative relationship exists between the DMs, or if
these DMs do not come to an agreement even if such a cooperative relationship exists. The problem of finding a
Stackelberg solution is well known and this problem is both non-convex and strongly NP hard.

Lai (1996) and Shih et al. (1996) proposed the use of fuzzy programming to obtain a solution if a cooperative
relationship exists between DMs, a situation that differs from the Stackelberg solution concept. In their fuzzy
approach, the membership function of the objective functions and the variables are used to obtain a satisfactory
solution. Because of the inconsistency between the membership functions of variables and objective functions,
this method does not always yield a desirable solution. Later, Sakawa et al. (1998), suggested an interactive
fuzzy programming approach in which only the membership of the objective functions plays role in obtaining a
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satisfactory solution. In this approach, the leader first specifies a minimum level of satisfaction, which is updated
during the algorithm to achieve a reasonable overall satisfaction balance between the leader and the follower.
Eventually, the method leads to a compromise satisfactory solution, which is also a Pareto optimal solution.

The application of the interactive fuzzy programming approach is not limited to two-level programming
problems, but can be used to address multi-level programming problems, decentralized two-level programming
problems, nonlinear two-level programming problems, and fuzzy two-level linear fractional programming
problems (Sakawa et al., 1998, Sakawa & Nishizaki, 2001, Sakawa & Nishizaki, 2002, Sakawa et al., 2000,
Borza et al. 2012). All of these problems have been solved with the assumption that only one DM exists at the
upper level.

For a decentralized organization with three DMs the appropriate mathematical model for the organization
represents a three-level programming problem with single DM at each level, or a two-level programming
problem with two DMs at the upper level and single DM at the lower level; or a two-level programming problem
with single DM at the upper level and two DMs at the lower level.

Bard (1984) and Wen and Bialas (1986) introduced approaches to address non-cooperative three-level linear
programming problems. In the method of Bard (1984), the Stackelberg solution obtained using Kuhn-Tucker
optimal conditions. While, in the method of Wen and Bialas (1986), the Stackelberg solution obtained using Kth
best method. The non-cooperative two-level LPPs with single leader and many followers were considered by
Simaan and Cruz (1973), and Anandalingam (1988). In the proposed methods, the leader optimizes the objective
of self over a feasible region which is constructed by the intersection of the inducible regions made by the
followers individually. The analysis of the Stackelberg solutions to the non-cooperative two-level LPPs with
many leaders and single follower was studied by Sherali (1984).

The interactive fuzzy programming approaches proposed by Lai (1996), Shih et al. (1996), Sakawa et al. (1998),
and Sakawa and Nishizaki (2009) can be used to find satisfactory solutions to the cooperative three-level linear
programming problems. In addition, Sakawa and Nishizaki (2002) introduced an interactive fuzzy programming
approach to address the cooperative two-level LPP with single leader and multiple followers. In their interactive
fuzzy programming, the satisfactory solutions are obtained after passing two phases.

Under these circumstances, this paper aims to introduce an interactive fuzzy programming approach so as
to obtain a satisfactory solution for the two-level LPPs with two DMs at the upper level and single DM at
the lower level when a mutually cooperative relationship exists between the DMs. In the method, the minimum
satisfaction levels of the leaders are updated during the algorithm to achieve an overall satisfaction balance
between the follower and each leader. A numerical example is also given to illustrate the method. Additionally, it
is showed that a three-level LPP can be transformed into a two-level LPP with two DMs at the upper level and
single DM at the lower level. As a consequence, the proposed method can be used instead of rather difficult
method introduced by Sakawa and Nishizaki (2009).

2. Method

The general form of a two-level LPP with two DMs at the upper level and a single DM at the lower level with a
cooperative relationship established among the DMs is formulated as follows:

Problem 1

Minimize Zl(xl,xZ, X3) =C11X1 + C12X>y + C13X3,
upper level

Minimize Zz(xl,xZ, X3) = Cy1X1 + Cy2Xyp + Cy3X3,
upper level

Minimize,wer tever 23 (X1, X2, X3)=C31%1 + C3%; + C33%3,
s.t Ayxqy + Ayxy + Azx3 < b,
x1 =20,x, 20,x3 =0,
where x;, i = 1,2,3 is an n;-dimensional decision variable, c;;,i = 1,2,3 is an n,-dimensional constant row
vector, ¢;,,i = 1,2,3 is an n,-dimensional constant row vector, c;3,i = 1,2,3 is an ns-dimensional constant row
vector, b is an m-dimensional constant column vector, and A4;,i = 1,2,3 is an m X n; constant matrix.
In the above problem, z; (xq, X, X3), 2z,(x1, X5, x3), and z3(xq, x5, x3), respectively, represent objective functions

of the upper levels, and the lower level, while x;, x,, and x5, respectively, represent decision variables of the
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upper levels, and the lower level.

First, to apply the interactive fuzzy programming approach to obtain a satisfactory solution to Problem 1, every
DM must define a membership function according to his or her own fuzzy goals. In this paper, we assume that DMi
for i = 1,2,3 selects the following linear membership function ui(zi(x = (xl,xz,x3))), which is a strictly

monotonic decreasing function for z,™" < z;(x) < z;™%*.

0 , Zi(x) = Zimax
2;(x)—z;Ma* .
”i(zi(x)) = Zilmin_zlimax ’ Zimm = Zi(x) < Zimax (1)
1, z;(x) < z;™"

In the above definition, z;™" and z,™%* are fuzzy goals for i?" decision-maker, and can be specified by
the following roles:
Minimize {z;(x):x € X} for i = 1,2,3. 2

Let x* for i =1,2,3 be the solution of the i**problems in (2); subsequently, to find z;™** for i = 1,2,3 the
suggested method by Zimmermann (1978) can be used as follows:

z;%% = Maximize {z;(x/) for j =1,2,3 j # i}, for i=1,2,3. 3)
According to the fuzzy decision making theory by Bellman and Zadeh (1970), the following addresses Problem
I:

Maximize {minimum y; (z;(x)) for i = 1,2,3}
s.t Ayxy +Ayxy, + Asx3 < b,
x;=20,%, 20,3 =0.

The above problem can be transformed into the following equivalent problem using the auxiliary variable 4 as
follows:

Problem 2

Maximize A

s.t t(z(x)) = 4,

1z (2,(0)) = 4,

ps(z3(x)) = 2,

0<1<1,
Ayxy + Ayxy + Azx; < b,
x;=20,x, 20,3 =0.

If both decision-makers at the upper level are satisfied with the optimal solution x* of the above problem, then
it is concluded that x* becomes a satisfactory solution; otherwise, DM1 and DM2 specify the minimum of the
decision-makers’ satisfaction levels with full knowledge of the membership function value for decision-maker at

the lower level. If &, and &, are the minimum satisfaction levels specified by DM1 and DM2, respectively,
then the following problem must be solved to obtain a solution for which DM1 and DM2 are satisfied.

Problem 3

Maximize p5(z3(x))

s.t Hq (Z1(x)) = 81;
1z (2,(x)) = 8,
Ai1xq + Ayxy + Asxz < b,

x, =20,x, 20,x3 =0.
With the assumption that the objective functions at both levels conflict with one another, the obtained satisfaction
level for DM1 and DM2 at x* causes the satisfaction level of the DM3 to decrease, and consequently, this

reduction may not be desirable for the DM3 at the lower level, who acts in cooperation with DM1 and DM2. To

Hlowerlevel

overcome this problem, the ratio A = introduced by Lai (1996) is used to adjust the satisfaction levels

Hupperlevel
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between the DMs for two-level linear programming problems with single decision-maker at both levels.

In Problem 1, because two decision-makers are presented at the upper level, according to the idea of Lai (1996),

uz(z3(x)) d Auy= uz(z3(x))

the two ratios Ag;= B
€ two ratios Agy =~ 327w (22(0)

must be defined for solution x to adjust the satisfaction levels

between the DMs for a two-level linear programming problem with two decision-makers at the upper level and
single DM at the lower level. Let [A;3q,Ays1] and [Apsz, Aysz] be the desirable domains for As; and Aj,
specified by DM1 and DM2, respectively and x* be the optimal solution obtained of Problem 3. If Az €
[Ars1,Ayzq] and As,€ [Ar3,, Aysz], x*becomes a satisfactory solution and the interactive fuzzy process stops.
Otherwise, the values of §; and 8, must be updated. The following procedure, which is derived directly from Lai
(1996), needs to be considered to update the values of &, and &,

[Procedure 1 to update the values of &; and &,]

If no feasible solution exists for Problem 3 for minimal satisfaction levels &; and §,, then DM1 and DM2
decrease their value of &; and §,, respectively.

If Ag;< Apz; and As,€ [Apsp, Ayss], the value of &, is increased by DMI.

If As;> Ayzy and  Azo€ [Aray, Aysz], DM1 decreases the value of §;.

If A< Az, and As;€ [Apsq, Ays], DM2 increases the value of &,.

If Azp> Ay, and Az; € [Arz, Ayzi], DM2 decreases the value of 5.

If Az;< Apziand Az,< Aps,, DMI and DM2 increase the values of §;and §,, respectively.

If Az;> Ayziand Ag,> Ays,, the values of §;and 8, are decreased by DM1 and DM2, respectively.

If A3;< Apzqand As,> Ays,, the value of §;is increased by DM1and the value of §, is decreased by DM2.

If Az;> Ayz; and Az, < Aps,, the value of 8, is decreased by DM1and the value of §,is increased by DM2.
Because of many comparisons, using Procedure 1 may be encompasses some difficulties in practice.

Introducing an easier procedure is the main idea of this paper. To do this, with the assumption that x* is the
optimal solution of Problem 3, we subsequently define:

(A1, Ay] = [AL31, Aysq] N [ALz2, Aysal, 4

A — uz(z3(x*)) 5
MAxX " min{u; (z1(x*)).uz (Z2(x*)Y ©)

_ usz(z3(x*))
A max{py (21 (x),u2(22(x*)} ©)

min—

Remark 1. It is inferred from definitions of Al,,, and Al;, that A3;€ [Apsq, Aysq] and Az, € [Arsy, Aysslif

and only if AL, € [A;,Ay] and AL ;€ [A,, Ayl

In accordance with the values of A,,,,and A,,;,, obtained from relations (5) and (6), DM1 and DM2 must update
levels of their satisfactions, according to the following procedure:

[Procedure 2 to update the minimal satisfactory levels &; and §,]

If no feasible solution exists for Problem 3 for a minimal satisfaction level &; and §,, then DM1 and DM2
decrease their value of &; and §,, respectively.

If Apnax> Ay, then the decision-maker at the upper level with a minimum value of membership function must
increase his or her own minimum satisfaction level.

If A,in< A, then the decision-maker at the upper level with a maximum value of the membership function must
decrease his or her minimum satisfaction level.

If A qr< Ap, then both decision-makers at the upper level must decrease the values of their minimum satisfaction
level.

If A,in> A, then both decision-makers at the upper level must increase the values of their minimum satisfaction
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level.

For the updated values &, and §,, Problem 3 must be resolved and the ratios A,,q, and A, must be checked
again for the obtained optimal solution. Additionally, the above procedure needs to be repeated until the values of
Apax and Ay, lie in the interval [Ag, Ay].
us(zh) 1 w3 (z5)

—2—— and A, =—F—P— 1=
minfua(Da@D] 0 T max(us (D) kaD)
degrees of satisfaction of DMI1, DM2 and DM3, the ratio of satisfaction degree of the follower to the minimum
satisfaction degree of the leaders, and the ratio of satisfaction degree of the follower to the maximum value of
satisfaction degree of the leaders, respectively. Let the solution be x! at iteration [. The interactive process
terminates if the following two conditions are satisfied, and DM1 and DM?2 yield the overall satisfactory solution.
[Termination conditions of the interactive process]

At iteration [, let py(z1),uy(28), 13 (28), Abax= denote the

Condition 1: The minimal satisfaction levels of DM1and DM2 must be greater than §;and §,, respectively. (i.e.,
y (z1) = Sland py(z3) 2 52)

Condition 2: AL, € [A,,Ay] and AL, € [AL, Ayl

Proposition 1. Solution obtained of the interactive fuzzy programming introduced in the above is a Pareto optimal
solution.

Proof. Let x'be an unique optimal solution of Problem 3obtained in iteration [. If x! is not a Pareto optimal
solution for Problem 1. Therefore, there exists feasible point X such that z;(%) < Zj(xl) for some j and
z;(X) < z;(x*), for i = 1,2,3, i # j. Due to the fact that y;(z;(x)) is a monotone decreasing function for z;(x),
accordingly, we have:

ti(z:(®) = pi(z:(xH) = §;, for i =123, i #j and 1j (zj(f)) > p; (Zj(xl)) > 8]-. This is a contradiction
to uniqueness optimality of x! for Problem 3.

Remark 2. The following problem needs to be considered to check the uniqueness of x‘obtained from Problem
3. (Sakawa 1993).

Maximize €; + €, + €5
s.t z.(0) + €, < z,(xH),
2,(x) + €, < z,(xY),
z3(x) + €3 < z3(xY),
Aix; + Ayxy + Azx; < b,
€20, 620, 63=20,%x; =0,x5,x3 =0.

Let an optimal solution of the above problem be (¥, &) where € = (€;,&,, ;). If € =0 then x! is a Pareto
optimal solution for Problem 3, otherwise X is a Pareto optimal solution.

3. Numerical Example

The following two-level linear programming problem with two decision-makers at the upper level is solved to
illustrate the proposed method. All data are taken from Sakawa and Nishizaki (2009).

Problem 4
15
min Z C1iX;
upper level
i=1
15
min Z Cyi X
upper level
i=1
15

min Z C3iX;
lower level

i=1
s.t A1x1 + -+ A15x15 < b,

x; =20fori =1,..,15.
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Table 1. The coefficients of Problem 4

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

¢y 49 -5 45 -5 34 -16 33 -19 -12 -21 -7 -23 -12 -8 -11
c; -12 -10 -4 -19 -10 -30 -25 -49 -18 -37 -17 -13 -24 -15 -10
c3 25 -7 31 -12 24 -12 -5 -4 33 -6 41 -22 -37 -14 -23

A; 46 29 48 31 21 -47 37 37 32 19 21 2 -11 35 -2 b 0

0 39 12 -14 29 -42 -26 42 31 -19 -25 6 4 2 5 26

38 27 5 31 14 -38 29 -5 -47 49 45 45 5 10 -40 -111
26 16 44 6 9 17 27 32 17 -6 27 1 18 -6 15 88
-48 13 2 33 19 22 35 27 -35 -35 -26 -16 37 47 -2 -37
9 -6 12 -17 -32 -8 24 24 45 -31 16 -9 -19 17 44 12

-9 2 -16 8 32 -6 -25 -25 -8 4 23 41 30 36 11 45

24 30 42 -26 16 19 -18 -18 9 -34 -46 30 3 -1 -45 -8
26 -8 0 41 -42 -19 13 -42 49 27 4 2 -12 24 -33 -47
29 16 -16 -4 18 45 -8 21 6 47 43 46 206 22 -5 136
-7 1 -3 38 18 43 -15 31 -34 23 -35 -34 20 -15 -26 -48
-12 4 47 0 -4 -18 -19 28 47 -36 -45 20 40 3 -15 19
-12 46 11 -47 -47 19 30 50 12 -24 13 20 -43 -8 20 -31
5 -2 37 38 0 12 -34 34 28 -40 -18 33 39 14 2 88

49 41 3 12 -48 15 12 32 31 -28 -25 -23 -6 -25 -15 14
-17 -6 34 21 11 5 28 -46 -15 9 12 49 4 -17 47 -18

To identify the membership functions of the fuzzy goals for the objective functions, three individual
minimization problems of the three decision-makers are solved at the beginning of the procedure. The individual
minima and the corresponding optimal solution are shown in Table 2.

Table 2. Optimal Solutions to individual problems

min
X1 X2 X3 X4 X5 Xe X7 Xg Xo X170 X11  X12 X133 X114  X15 Z;

DMI 318 0 0 1 346 224 408 0 O 030 1356 0 0 093 0 -475
DM2 272 0 O 222 25 164 441 0 0 105 128 O 0 155 0 -345
DM3 263 0 088 0.61 241 161 309 0 0 026 221 O 1.1 0 0 -327

Suppose that the decision-makers employ the linear membership function (1) whose parameters are determined by
relations (2) and (3). Subsequently, one finds that (z{"", z]"%%) = (—474.6844, —414.4563), (z"",z"%) =
(—344.4466,—296.4661) and (z'™, z'%) = (—327.4543,—279.0825), and maximization of Problem 2 for
this problem can be written as:

Problem 5

Maximize A
s.t
(z1(x) + 414.4563)/(—474.6844 + 414.4563) > A,
(z5(x) + 296.4661)/(—344.4466 + 296.4661) = 1,
(z5(x) + 279.0825)/(—327.4543 + 279.0825) = 1,

x €S,
where S denotes the feasible region of Problem 4. The result of the first iteration, including an optimal solution
to Problem 5, is shown in Table 3.
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Table 3. Iteration 1

X1 X2 X3 X4 X5 X6 X7 Xg X9 Xip X11 X122 X133 X134 X35
2.71 0 0.73 2.06 242 1.73 357 0 0 091 167 O 0 124 0
zi 73 zz3 @z pa(z3) ps(z3)

-444  -3203 -303.1 0.498 0.498  0.498

Suppose that DM1 and DM2 are not satisfied with the solution obtained in iteration 1, taking into account the
result of the first iteration, they subsequently specify their minimum satisfaction levels at &§; = 0.75 and
8, = 0.7. Moreover, suppose that DM1 and DM2 specify [A;31,Ay31] = [0.6,0.8] and [A;35,Ayss] =
[0.6,0.75], taking into account the result of the first iteration. According to relation (4), [A;, Ay] = [0.6,0.75].

The problem with the minimum satisfaction levels (3) is written as follows:
Problem 6
Maximize us(z5(x))
S.t
(z1(x) + 414.4563)/(—474.6844 + 414.4563) > 0.75,
(zy(x) + 296.4661) /(—344.4466 + 296.4661) = 0.7,

x €S.
The result of the second iteration including an optimal solution to Problem 6 is shown in Table 4.

Table 4. Iteration 2

X1 X2 X3 X4 X5 Xe X7 Xg X9 X10 X11 X12 X13  X14 X315
293 0.00 0.009 1.67 2.96 1.91 425 0 0 0711 141 O 0 1.26 0
le ZZ2 Z% .ul(zlz) 2% (ZZZ) Us (Zg) A12nax A%nin

-459  -330 -289 0.75 0.7 0211 03 0.28

In the second iteration, the satisfaction degree u,;(z?) = 0.75 of DMI becomes equal to the minimum
satisfaction level 0.75, and u,(z2)=0.7 of DM2 becomes equal to the minimum satisfaction level 0.7, but the
ratio A%,,,=0.3014 is not in interval [0.6,0.75]. Therefore, this solution does not satisfy the second
condition for termination of the interactive process. BecauseA2,,, < A, both the minimum satisfaction levels of
DM1 and DM2 must be decreased. Suppose that DM1 and DM2 update their minimum satisfaction levels at
8, = 0.65 and &, = 0.6, respectively. Then, the problem with the revised minimal satisfactory levels (3) is
subsequently solved, and the result of the third iteration is shown in Table 5.

Table 5. Iteration 3

X1 X3 X3 X4 X5 Xe X7 Xg X9 X190 X111 X12 X113 X14 X155
2.8453 0 03 1.8161 2.7519 1.8469 39527 O 0 07 15 0 0 12 0
Zi?, 223 Z; 251 (213) Uz (223) Us (233) Ar3nax Afnin

-453 -325  -295 0.65 0.6 0.344  0.5733 0.529

In the third iteration, the ratio A3,,,= 0.5733 is not in the interval [0.6,0.75]. Therefore, this solution does not
satisfy the second condition of termination of the interactive process. Because A3, < A, both minimal
satisfactory levels of DM1 and DM2 must be decreased. Suppose that DM1 and DM2 update their minimal
satisfactory levels at §; = 0.62 and &, = 0.58, respectively. The problem with the revised minimal satisfactory
levels (3) is subsequently solved, and the result of the fourth iteration is shown in Table 6.
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Table 6. Iteration 4

X1 X2 X3 X4 X5 X6 X7 Xg X9 X100 X11 X112 X13 X14  Xi5
2.8184 0 0.4 1.8646 2.6875 1.8237 3.8769 0 0 08 1.5 0o 0 1.2 0
7z 7 @) w(@) m@) A A

-451 -324  -297 0.62 0.58 0.37 0.645 0.6

In the fourth iteration, the satisfaction degree p,(z}) = 0.62 of DMI becomes equal to the minimum
satisfaction level 0.62, and u,(z3)=0.58 of DM2 becomes equal to the minimal satisfactory level 0.58, and
the ratios Af,,= 0.6453 and A},,= 0.6037 are both in the interval [0.6,0.75]. Therefore, this solution
satisfies the termination conditions of the interactive process, and becomes a satisfactory solution to Problem 4.

4. Three-Level Programming

In this section, the three-level linear programming problem is addressed using two different interactive fuzzy
programming approaches.

The general form of a three-level linear programming problem is given as following:

Problem 7

Minimize jepe; 1(pm1) 71 (X1, X2,X3) = C11X1 + C12X5 + C13X3,

Minimize z,(x:, X, X2) = Co1X4 + CooXo + CoaX
level 2(DM2) 2(%1, X, x3) 21%1 22X2 23X3,

Minimize z;(xq, X5, X2) = C31X1 + CayXy + CaaX
level 3(DM3) 3(x1, %2, X3) 3141 3242 33X3,

st Aix; +A,x, + Asx3 < b,
x; 20,2, 20,x3 = 0.
To begin with, the fuzzy goals and membership functions need to be specified by the decision- makers in order

to apply interactive fuzzy programming. In this section, the membership functions and fuzzy goals are identified
in accordance with relations (1), (2), and (3).

4.1 An Interactive Fuzzy Programming Approach

In this subsection, the interactive fuzzy programming approach introduced by Sakawa and Nishizaki (2009) is
given to address Problem 7. In their interactive fuzzy approach, Problem 2 is formulated for Problem 7 to find an
initial satisfactory solution. In addition, enough knowledge about the membership function values of the

objectives are provided which help the decision-makers at levels 1 and 2 to identify minimal satisfaction
_ H2(z2(x))

degrees for selves. Additionally, suitable upper and lower bounds are specified for ratios A,;= @) and
1\41
32= H3(23() by decision-makers at levels 1 and 2, respectively.
_Ha(z2(x))

Let 6, and 6, be the minimal satisfaction degrees of the decision-makers at levels 1 and 2, respectively.

Moreover, assume that decision-maker at level 1 specifies A;,; and Ay,; as the lower and upper bounds for

Ay = %, respectively, while decision-maker at the second level identifies A;3, and Ays, as the lower and upper
1

bounds for A;,= %, respectively.
2

With the assumption that the decision-makers at levels 1 and 2 are not satisfied with the solution obtained of
Problem 2, the following problems need to be considered to achieve a satisfactory solution for which the
decision-makers at the levels 1 and 2 reach their minimal satisfaction degrees §; and &, of selves. Moreover,
the satisfaction degrees of the decision-makers at the levels are balanced. To do so, the following problem is
solved first in which only levels 2 and 3 are considered.
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Problem &

Maximize A

s.t #z(zz(x)) 2 82.
H32(Az5) = 83,
#3(23(75)) =,
Axy + Ayxy + Azx3 < b,
x;=20,%, 20,3 =0.

In the above problem, linear membership function s, is defined according to values A;3, and Ays, as
follows:

0, A3,< A3,
Azy; —Aps,

Us2(A3,) = {

) A3 < A3 < A
t Aysp — sy 132= A32= Ay
1

A322 AU32

In addition, &5, is identified by decision-maker at level 2 as the minimal satisfaction degree of fi3,(Asz,).

If Problem 8 is not feasible, either values of &, or &3, or values of §, and &;,must be decreased by
decision-maker at level 2 till Problem 8 attains feasibility.

Let X be the solution obtained of Problem 8. Subsequently, the following problem is solved to achieve a
satisfactory solution for Problem 7.

Problem 9

Maximize A

s.t (2, () = 6y,
Uz1(Bz1) = 821:
“Z(Zz(x)) = /‘ls

> u3(z3(%)
Hs (Z3 (x)) ZAx (Iiz(Zz(??)))

Ayxy + Ayxy + Azx3 < b,
x;=20,%,=20,%x3 =0.
In the above problem p,,(A,;) is defined as follows:

0, Ay Apyy
Ay —Appq
H21(Bz1) = A AL Ap21= 871 Ayas-
uz1 — D21
1, Ay = Ays,

Additionally, &,; is a minimal satisfaction degree for u,;(A,;) specified by the decision-maker at the first
level.

If Problem 9 loses feasibility, either values of &; or 8,; or values of &, and §,;must be decreased by
decision-maker at level 1 so as to Problem 9 becomes feasible.

The solution obtained of Problem 9 is a satisfactory solution for Problem 7 in the method introduced by Sakawa
and Nishizaki (2009).

4.2 Three-Level to Tivo-Level Program

In this part, it is demonstrated that a three-level LPP with mutual cooperative relationship established between
can be further DMs reduced into a two-level LPP with two DMs at the upper level and single DM at the lower
level. The proposed method in section 3 can therefore be used to find a satisfactory solution instead of rather
difficult proposed method in subsection 5.1 by Sakawa and Nishizaki (2009).

Similar to the previous subsection, Problem 2 is formulated for Problem 7 to find an initial satisfactory solution.
This initial satisfactory solution provides a full knowledge of membership functions of the objectives for DMs at
the levels 1 and 2 to specify minimal satisfaction degrees for selves in addition to identify lower and upper
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bounds for the ratios of satisfaction degrees.

Let 8, and &, be the minimal satisfaction degrees of the DMs at levels 1 and 2, respectively. Moreover,

assume that the DM at level 1 specifies A;,; and Ay,; as the lower and upper bounds for A,;= %,

1
respectively, while DM at the second level respectively identifies A;3, and Ays, as the lower and upper

bounds for Aj,= %
2

According to the fact that DMs at levels 1 and 2 have minimal satisfaction degrees of selves and higher priority
to the one at level 3, Problem 7 can therefore be transformed into two-level LPP. In the resulted two-level
programming problem, decision-makers at the first and second levels of Problem 7 are considered as leaders and
the one at the third level is considered as follower. As a consequence, Problem 7 is reduced into the following
two-level linear programming problem in which there exists two DMs at the upper level and single DM at the
lower level:

Problem 10

Minimizeypper tever(pmr) 21 (X1, %2,X3) = C11%1 + C12X5 + C13%3,

Minimize  z,(xy, X3, X3) = C31%1 + C32X5 + C33X3,
upper level(DM?2)

Minimize z3(xq, X, X3) =C31X; + C32X5 + C33X3,
lower level(DM3)

st Aix; +Ayx, + Asx3 < b,
x; 20,2, 20,x3 = 0.
Lower and upper bounds for the ratio of satisfaction degree of DM1 to satisfaction degree of DM3 must be

identified in order to find a satisfactory solution to the above problem. To do this, lower bound A;3;=A;3, X A;54

3

and upper bound Ayz;= Aysz, X Ay, are accordingly obtained for Az = Z— using relation BBy 2
1

Ha Hz M

In the above problem, DM1 and DM2 are decision-makers at the top level with minimal satisfaction degrees &,
and §&,, respectively. Procedure 2 described in section 3 must accordingly be followed to update minimal
satisfaction degrees &; and 8,o0f decision-makers at the upper level in order to achieve a satisfactory solution.
The termination conditions at iteration [ are therefore as following:

Condition 1: The minimal satisfaction levels of DMland DM2 must be greater than §;and §,, respectively. (i.e.,

i (z}) = b1and pp(25) = 65).
5. Discussion

The problem considered in this paper is the cooperative two-level LPP with two leaders and single follower. Two
constraints related to the minimum satisfaction degrees of the leaders must be added to the feasible region of the
problem in order to find the satisfactory solution in such a manner to be in favor of the leaders. While, only one
constraint needs to be considered regarding the minimum satisfaction degree of the leader in the two-level LPP
with single leader. Due to the fact that adding a more constraint to a feasible region make that feasible region
smaller, therefore the feasible region of a two-level LPP with two leaders is smaller than the same problem with
only one leader. Thus, the satisfactory solution obtained for two-level LPP with single leader and single follower is
better than the same two-level LPP with two leaders. In other word, the average of the membership function’s
value of the objectives of the two-level LPP with two leaders is smaller than the average of the membership
functions’ values of the objectives of the same two-level LPP with only one leader.

6. Conclusion

In this paper, a method based on interactive fuzzy programming was introduced to obtain a satisfactory solution to
the two-level linear programming problems with two decision-makers at the upper level and single-decision maker
at the lower level when a mutually cooperative relationship exists between the decision-makers. For the obtained
satisfactory solution, which is also a Pareto optimal solution, both leaders are satisfied, and an appropriate
coordination exists between the satisfaction degree of the follower and the satisfaction degree of each leader. In
addition, it was shown that a three-level program can be transformed into a two-level program with two
decision-makers at the upper level.
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