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Abstract

This paper presents a novel nonparametric efficiency analysis technique based on the Genetic Programming
(GP) in order to measure efficiency of Iran electric power plants. GP model was used to predict the output of
power plants with respect to input data. The method, we presented here, is capable of finding a best performance
among power plant based on the set of input data, GP predicted results and real outputs. The advantage of using
GP over traditional statistical methods is that in prediction with GP, the researcher doesn’t need to assume the
data characteristic of the dependent variable or output and the independent variable or input. In this proposed
methodology to calculate the efficiency scores, a novel algorithm was introduced which worked on the basis of
predicted and real output values. To validate our model, the results of proposed algorithm for calculating
efficiency rank of power plants were compared to traditional method. Real data was presented for illustrative our
proposed methodology. Results showed that by utilizing the capability of input-output pattern recognition of GP,
this method provides more realistic results and outperform in identification of efficient units than the
conventional methods.

Keywords: electric power plants, performance evaluation, genetic programming
1. Introduction and Background

The most significant issues developing countries are facing with, is finding the appropriate way of operating and
managing their power industries (Yunos & Hawdon, 1997). Electricity is extremely important in the economic
development of every society (Liu et al., 2010). In 2007, Iran generated about 190 billion kilowatt-hours (Bkwh)
electricity and consumed 153 Bkwh. Iran heavily relies on conventional fossil fuel power plants (especially
natural gas generator). Iran’s nominal electrical production capacity is about 49,000 Megawatts (MW). Nominal
capacity of some power plants is under 10%. Most power plants in Iran are old, and can’t work under nominal
capacity. On the other hand, Iran needs to increase its power plants generate capacity around 10% annually, to
fulfill the 7-9 percent annual demand growth (http://www.eia.doe.gov).

The expenses of constructing electricity power plants and producing electricity are relatively high. In addition,
the environmental damage and its consequent costs of burning fossil fuels for electricity generation is
remarkable. Hence, performance assessment and efficiency evaluation of a group of selected homogenous
thermal electricity power plants or in performance evaluation literature, decision-making units (DMUs) to reduce
such costs seem necessary. In 2007, 25.6 percent of the whole amount of electricity produced came from gas
turbines; 2.2 from hydroelectric plants; 45.4 from steam power plants; and 26.6 from combined cycle power
plants. The rest of it was produced by diesel generators. Figure 1 shows the electricity generated by each of
different types of power plants in Iran (http://www.tavanir.org.ir).
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Figure 1. Electricity generation by different types of power plants

One of the benchmarking methods in performance evaluation is frontier benchmarking method. This method has
a stronger concentration on performance differences among DMUs than other methods. This approach can be
most suitable when the main goal is to reduce the performance space among the DMUs (Jamasb & Pollitt, 2004).
In the field of efficiency frontier analysis, several approaches and methodologies are applied in the past thirty
years, like performance indicators. There are different types of parametric econometric methods such as ordinary
least square (OLS), Stochastic frontier approach (SFA), thick frontier approach (TFA) and distribution-free
approach (DFA). Data Envelopment Analysis (DEA) and Free Disposal Hull are two widely used and well
known nonparametric methods which are based on a mathematical programming (Tyagi et al., 2009; Bauer et al.,
1998). These parametric and non-parametric methodologies are applied to many cases in electrical field (Azadeh
et al., 2009; Iglesias et al., 2010; Park & Lesourd, 2000; Yunos & Hawdon, 1997; Pérez-Reyes & Tovar, 2010;
Sueyoshi et al., 2010). Among the efficiency frontier analyses, DEA is more widely applied in many fields. Park
and Lesourd (2000) presented an application of DEA-BCC (Banker, Charnes and Cooper) and SFA for
measuring of South Korea, 64 conventional fuel power plants efficiencies. To improve the statistical explanation
of data, they export the DEA-BCC efficiency results into an econometric estimate of a standard production
function. They further perform a statistical analysis of the DEA results and compared the results with results
obtained by the previous stochastic-frontier method (Park & Lesourd, 2000). During the period 2001-2004,
Iglesias et al. (2010) applied DEA and SFA methods, to measure the relative efficiency of a set of wind farms.
They debated that the results can provide, an important pre efficiency measure, plus economic impact aspects of
relevance for wind farm development companies (developers), technology suppliers and operators (Iglesias et
al., 2010). During 2004-2006, Liu et al. (2010) evaluate the power-generation efficiency of main thermal power
plants in Taiwan using DEA. In the mentioned study to verify the stability of the DEA model a stability test was
performed. The results show that all power plants achieved acceptable overall operational efficiencies.
Combined cycle power plants were the most efficient plants (Liu et al., 2010).

Pombo and Taborda (2006) assessed Colombia’s power distribution utilities performance before and after the
regulatory reform in 1994. They measured the DEA technical efficiencies and showed that econometric tests on
DEA efficiency scores show a positive effect of regulatory reform. Sueyoshi and Goto (2001) applied the
slack-adjusted DEA (SA-DEA) model to examine the performance of Japanese electric power generation
companies from 1984 to 1993. It is clear that by applying different methods and considering the variety of
assumptions in different methods, Inconsistency of conclusions for DMUs efficiency are often happened
(Azadeh et al., 2010). Each of the parametric and non-parametric methods has its strengths and weaknesses. The
parametric methods require assumption about the data characteristic structure. Despite the fact that the
non-parametric methods do not require any assumption for data structure, therefore if the data has statistical
noise the calculated efficiencies, e.g. by DEA, may be distorted (Tyagi et al., 2009; Bauer, 1990). Azadeh et al.
(2007) mentioned the fact that DEA is barely capable to estimate the DMUs performance. They showed that
artificial neural networks (ANNs) can be used to overcome this issue. ANNs are the widely accepted pattern
recognition approach. The ANN mechanism is motivated by the animal central nervous systems. It has been
proven that ANNs are efficient in estimating the production function behavior and then in measuring the
efficiency considering non linear condition (Azadeh et al., 2007). Despite having a very good performance,
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ANN:Ss is not capable of extracting interpolation equations. The ANN implementation is needed to be done by a
computer program. The new hybrid approach combining DEA and ANNs (Athanassopoulos & Curram, 1996)
has been applied in many fields (Mostafa, 2009; Pendharka, 2010; Celebi & Bayraktar, 2008; Wu, 2009; Wu et
al., 2006; Wang et al., 2009). Wu et al. (2006) integrated DEA and ANNSs to calculate the relative efficiency of a
big Canadian bank branches. In this study in first stage a CCR model of DEA and in the next stage NN model
was used to measure the relative efficiencies. By better estimation of performance pattern this approach can
identify efficient units robustly. In the field of vendor evaluation and selection, Wu (2009) presented a DEA,
decision trees and NNs hybrid model to evaluate performance of suppliers. The mentioned hybrid model can
perform as a classification and a regression model simultaneously. The model consists of two modules: Module
1 calculate DEA efficiencies and Module 2 utilizes efficiencies data to train Decision Tree, NNs model and
applies the DT-NN model to new suppliers. In this paper Genetic programming (GP) is applied as a novel
approach for evaluating performance of power generation industry. GP is a machine learning method that can be
used to find the best fitness function. The results of GP are represented as hierarchy structures and show the
steps to obtain the fitness function. The main advantage of GP over ANN and traditional statistical methods is its
ability to generate simplified estimation equations without considering any assumption about data relationship
and structure of data. GP is applied in several fields (Kaboudan, 2003) such as forecasting electricity demand
(Lee et al., 1997); forecasting long term energy consumption (Karabulut et al., 2008) in real-time runoff (Khu et
al., 2001); predicting financial data (Iba & Sasaki, 2002); predicting stock prices (Kaboudan, 2000) in fault
analysis of the diesel engine fuel (Sun et al., 2004); prediction of ski-jump bucket spillway scour (Azamathulla et
al., 2008); river pipeline scour (Azamathulla & Ghani, 2010) and longitudinal dispersion coefficients in streams
(Azamathulla & Ghani, 2011) and etc. This study presents a genetic programming procedure for performance
evaluating of a set of homogeneous steam power plants and benchmarking. By considering a set of power plants
of same types to apply the presented model, more accurate and reliable results are guaranteed.

2. Genetic Programming

Genetic programming (GP) as an extension of the genetic algorithms was firstly presented by Koza (1992). GP is
an area of evolutionary computation methods that creates computer programs.

The computer programs generated by GP are presented as tree structures and expressed in the functional
programming language (LISP) (Koza, 1992). The classical GP technique is also called “tree-based GP” (Koza,
1992). The main differences between GP and GA are (Willis et al., 1997):

*  GP creates solutions or chromosomes as a tree structured in the variable length; while GA’s generally
make use of chromosomes of fixed length and structure.

* GP typically integrate syntax with a specific domain that regulates meaningful arrangements of
information on the chromosome. For GAs, the chromosomes are typically syntax-free.

*  GP maintain the syntax of its tree-structured chromosomes in ‘reproduction’ step, by using the genetic
operators.

*  GP solutions are often coded in the way that let the chromosomes to be executed directly. GA’s are
rarely coded in this form.

GP is able to automatically predict the generation of mathematical expressions or programs (Tsakonas, 2006).
Like many other areas of computer sciences, GP has been widely utilized in the real world condition. GP creates
numerous random populations in the large space of possible solutions (computer programs) to avoid the
likelihood of stopping in a “local optimum” (Muttil & Lee, 2005). The functions or programs are called
organisms or chromosomes. During the evolution process to find best solution, the size and form of the
populations dynamically change (Brezocnik & Balic, 2001). From a set of function and terminal genes, possible
solutions in GP can be formed in a recursive manner.

In GP, function set (F) is consisting of all mathematical functions (the basic mathematics operations (+, -, x, /,
etc.), Boolean logic functions (AND, OR, NOT, etc.) or ...).

The terminal set T contains the arguments for the functions and can consist of numerical constants, logical
constants, variables, etc. In Figure 2 a simple tree structure of a GP model is shown. GP Tree structure has a root
node with links went out from each function and end to a terminal.
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Figure 2. The tree structure of a GP model (X, + 3/X5)* (Gandomi et al., 2010)

After several random populations of random parse trees has been produced, the GP algorithm calculates their
fitness and selects the better parse trees for generates new individuals by reproduction, crossover, and mutation,
in all iterations, GP creates the new generation (Koza, 1992). This three process (selection, reproduction and
variation) will be go on until the specific stopping criterion (such as specific MSE) is satisfied. During the
crossover procedure, a point on a branch of each pair of chosen parent is selected randomly and then the set of
terminals and/or functions from that point exchanged to obtain two new programs. To ensure the exchange of
genetic material among the evolved programs the crossover operation is required. Figure 3 shows a typical
crossover operation of two computer programs. From two parental computer programs (Parent I, Parent II) two
new child computer programs (Child I, Child II) are generated. The randomly generated Childs by crossover can
be seen in Figure 3. Both child programs include the genetic material from their parents. Preserve syntactical
structure of the computer programs during the crossover process is very important (Kovacic et al., 2004).

Parent I Parent IT Child I Child I

O (9

o ©

- SO &
QO ® ©® @
®

Figure 3. Typical crossover operation in GP (Gandomi et al., 2010)

Crossover is responsible for improvements in fitness, and mutation takes a secondary role responsible for
reintroducing random population that have been missed from the population. In the mutation operation, the GP
algorithm selects a function or terminal randomly and mutates it. Both of a function node or a terminal node can
be exchanged during mutation. A node in the tree is chosen at random. If it’s a terminal node it is simply replaced
by another terminal and if it is a function node in the point mutation application, it is replaced by a new function
with the same equality. In the tree mutation application, a new function node (not necessarily with the same
parity) is chosen, and the original node together with its relative sub-tree is substituted by a new randomly
generated sub-tree (Li et al., 2007). Figure 4 shows a typical mutation operation in GP. Generally mutation
doesn’t play a major role in GP (Koza, 1992).
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Figure 4. Typical mutation operation in GP

Here are the steps the GP algorithm follows to generate a computer programs (see Figure 5):

(1) Creation an initial population by producing of random compositions of the functions and terminals
(computer programs).

(2) Execution of the programs in the population separately and calculate fitness values of each programs to
find out how well they solve the problem.

(3) Creation of a new population of programs.
o Copying the best existing programs (reproduction).
¢ Creating new computer programs by the crossover and mutation operations.

(4) The best program that can be found in any generation defines the output of the GP algorithm (Koza, 1992).
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Figure 5. Flowchart of genetic programming (Koza, 1992)

2.1 Unique Aspects of GP

The main benefit of GP in over the other artificial intelligence and traditional approaches (such as NN and
Regression), is that GP does not need any definition of functional form of solutions to start optimization. GP
creates many randomly functions and selects the one with the best fitness value. The benefit of GP over the

47



www.ccsenet.org/mas Modern Applied Science Vol. 8, No. 3; 2014

conventional regression methods is that conventional regression need to specify the model structure in advance,
which is mostly suboptimal. ANNS require the identification of the network structure and then the coefficients
(weights) are calculated during the learning process. In GP, the terminal and function sets are defined initially,
and then both the optimal form of the model and the coefficients are calculated by GP algorithm (Muttil & Lee,
2005). The GP models can provide additional information about the problem by finding the best fit analytic
function. In contrast, ANNs can’t provide any analytical function besides the interpretation of the network
weights is not generally possible. Opposing to ANNS, GP have a good ability to distinguish among the effective
input data and inputs that have no effect on a solution. Therefore, GP can reduce the dimension of the model, and
better model interpretation will be achieved (Muttil & Lee, 2005).

3. Methodology

In the present study, a GP-based algorithm is introduced to measure Iran’s main electricity power plants
efficiency during a specific period. The presented model is input oriented because of the selected power plants
have particular demand to fulfill. Thus, the input quantities are the main decision parameters. By finding cost
function instead of production function the GP method can be extend as an output oriented model. In this study
one output is considered for simplicity. The proposed algorithm is as follows:

(1) Divide the data to input (S) and output (P) sets. Assume that “n” power plants have to be assessed.
(2) Form S as inputs contain all data from input variables of the previous periods.
(3) Divide S to two sub sets: learning (S caming) and validation (Syaiigation) S€ts.

The learning data are used for learning process. A validation data are also used to test the capability of the model
on new data. During the learning process the performance of the evolved models on the validation set is
monitored.

The learning and validation data sets used to select the best evolved models and included in the training process.
Since better extrapolate of GP is preferred the validation data are chosen from closer data periods Srteging.

(4) Use GP method to find best program function.

(A) Choose training variables.

(B) Train GP using the learning data (Sicaming)-

(C) Evaluate the model using the validation data Svajigation-
Calculate the GP best fit function with the desired precision on the validation data.
(5) Calculate fitness value for Sreging using the GP best fit function.

(6) Calculate the absolute error between the real output (P.q;(i)) and GP best fit function (Pgp (1)) in the
current period:

D; = |Preal(i) - PGP(D|, i=12,..,n (1)
(7) Calculate the error weight for each predicted value of power plants (Eyeigns (i)):

D4
Epeightn = =, i =1,2,...,n 2
weight ;) Z?:lDi ( )

(8) Calculate Raw Efficiency Scores: For obtaining Raw Efficiency Scores real value is divided to the
summation of effects of the each absolute error ratio (Eweight(i)) and predicted value.

Preal(i)

REqcoreq, = ,i=12,..,n 3)

PGP(i)+Eweight(i)

(9) Final efficiency scores calculation. The efficiency scores are between 0 and 1. The power pant with
maximum score takes the highest rank.

RESCOTe(i)

W())X 100, i =1,2,..,n @

Escore(i) =

The steps of proposed algorithm are illustrated in Figure 6.
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Figure 6. Steps of proposed methodology

4. Case Study

The conventional thermal steam-electric production plan is defined by engineering framework. In such
framework, appropriate input parameters are the consumed fuel quantity and installed power. The installed
power is the maximum nominal power for that the plants are originally designed. Labor input variables are for
controlling and maintenance services, which also require funds (Azadeh et al., 2007). Electrical energy
production is the output. According to some researches on the performance evaluation of Iran’s thermal power
plants (e.g., Emami Meibodi, 1998), labor is not a major factor. Consequently, GP-based formulation of the
electric power (MWh) generated from thermal power plants in each power plants (P) is considered to be as
follows:

P = f(IC,IP,FC) (5)
Where,
IC (MW): Capital (install capacity)
IP (MWh): Internal power (Internal consumption)
FC (TJ): Fuel consumption

IC is measured in terms of installed thermal generating capacity (Hawdon, 1997; Fare et al., 1983). IP is the
energy consumption of plant (e.g. powered equipments, etc.). Various fossil fuels such as natural gas, gasoline
and mazut have been used as fuel in the production procedure. The type of fuel is depended on availability; cost
and environmental issues (Azadeh et al., 2010). FC measurement scale is Tera Joule (TJ). One hundred
forty-eight data sets collected from 1997 to 2004 by Azadeh et al. (2010) were used for applying the proposed
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performance evaluation and estimation model. The basic descriptive statistics of model parameters is calculated
in Table 1. For more detailed information about Iran’s thermal power plants, such as total output, generation
capacity and fuel consumption can be found in TAVANIR management organization (1997-2004). To start
analysis, the main data sets in several periods were separated to training and testing subsets. The training data
were used for the learning process and the testing data were employed to evaluate the capability of the model on
data sets that were not included in the analysis.

For analysis data sets from 1997 to 2002, 117 sets were used as the training data (100 sets for learning and 17
sets for validation). Also, 31 data sets from 2003 to 2004 were taken for the testing of the models.

Table 1. The basic descriptive statistics of model parameters

Parameter IC (MW) IP (MWh) FC (TJ) P (MWh)
Mean 731.4 273767.8142 1084398.382 4148901.203
Standard Deviation 557.4 200881.381 832885.7401 3282302.083
Sample Variance 310687.2 4.0E+10 6.9E+11 1.1E+13
Minimum 50 3215 22023 56254
Maximum 1890 823033 3298201 11640505
Confidence Level (95.0%) 90.5 32632.3 135298.4 533194.8

In the computerized GP predictive algorithm several parameters should be considered. These parameters should
be set properly in order to get the best GP prediction model for the Electricity production in steam power plants.
Table 2 shows the GP model parameters. Four basic mathematics operators were sets in the procedure in order to
maintain the simplicity of the model. Population size sets the number of programs in the population that GP will
evolve. The generation number sets the number of levels the algorithm will use before the run terminates. Based
on the complexity of model the appropriate values of these parameters should be selected. Herein, a reasonably
large value of initial population and generations were tested to find production function with minimum
inaccuracy. The rates of the mutation and crossover operations for the optimal models were 50%. The maximum
tree depth was also set to an optimal value of 12.

The other values of effective parameters are selected based on trial and error experiments (Gandomi et al., 2010).
In this study tree-based GP software, GPLAB (Silva, 2007) in addition with subroutines coded in MATLAB was
used.

Table 2. The GP parameter settings

Parameter Settings

Function set +, - %,/

Population size 100-1000

Maximum tree depth 12

Total generations 4000

Initial population Ramped half-and-half
Sampling Tournament

Expected no. of offspring method Rank 89

Fitness function error type linear error function

Termination Generation 40
Minimum probability of crossover 0.1

Minimum probability of mutation 0.1

Real max level 30

Survival mechanism Keep best
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4.1 Performance Measures

Correlation coefficient (R) and mean absolute percent error (MAPE) were used to evaluate the performance of
the GP models. R and MAPE are calculated using the following relations:

R = iz s (hi—h)(ti—ty)
\/Z?=1(hi_ﬁi)2 Y ti—t)?

(6)

hi—t;

1
MAPE =237, | -

| x 100 (7)

where /; and 1, are respectively the actual and predicted output values for the i output, fll is the average of the
actual outputs, and # is the number of sample.

4.2 GP-Based Formulation of Electricity Production and Analysis

The GP-based formulation of the electric power generated from thermal power plants (P) is as given below:

(9+IC)(IC(%+IP)+1377IC2)>

®)

P (mwn) = (IP + 3FC— IP—IC—FC—IC2

Comparisons of the measured versus predicted P values using GP are shown in Figure 7. As it is seen, the
prediction accuracy of the GP model is very good for both of the training and testing data sets. The contribution
of each input parameter in the model was evaluated through a sensitivity analysis. For this purpose, frequency
values of the variables were obtained. A frequency value equal to 1.00 for an input indicates that this variable
was appeared in 100% of the best thirty programs evolved by GP. This methodology is a common approach for
the GP-based sensitivity analysis (Alavi et al., 2010). The frequency values of the variables are shown in Figure
8. As can be seen in this figure, the electricity production significantly influenced by all the parameters. However,
the results indicate that it is more sensitive to the fuel consumption (FC) and install capacity (IC) than the
internal consumption (IP).

2.E+07

2.8+07 (@) Predicted = Measured - (b) Predicted = Measured -
= N = ™
= e .- = Nz
2 % 2 S
£ LE+07 = <£,8’ £ LE+07 o
4; & 7z : //
£ Q- g Q .-
2 = o
~ & o
§ 5.E+06 § 5.E+06 /&9
S S 098
3 » R=0.995 2 5 R=0.997
% y MAPE =0.101 % & MAPE = 0.069
P ]
£ 0.6+00 L oE+00 &
0.E+00 5.E+06 1.E+07 2.E+07 0.E+00 5.E+06 1.E+07 2.E+07
Measured Gross Production (MWh) Measured Gross Production (MWh)

Figure 7. Measured versus predicted electricity production using GP: (a) training data, (b) testing data

To further verification of the model, a parametric study was performed in this study. The main goal is to find the
effect of each parameter on the electricity production. The methodology is based on the change of one predictor
variable at a time while the other predictor variables are kept constant at the average values of their entire data
sets. Figure 9 presents the predicted values of the electricity production as a function of IC, FC, and IP. The
results of parametric analysis indicate that the electricity production continuously increases due to increasing IC
and IP.As shown in Figure 9(c), the electricity production initially decreases with increasing FC up to about
5.4E+05TJ, and afterwards it starts increasing.
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Figure 8. Sensitivity analysis of the predictor variables in the GP model
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Figure 9. Parametric analysis of the electricity production in the GP model
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5. Validity Verification

Based on the estimated results for outputs of power plants calculated by the GP model, the plant efficiencies are
quantified. The results are shown in Table 3 through Table 5. In Table 3 the rankings of the power plants based
on Athanassopoulos and Curram (1996) study which is called “standardized efficiency” is shown (Costa &
Markellos, 1997; Delgado, 2005; Azadeh et al., 2007). Also Table 4 shows the calculation results according to
Azadeh et al. (2007) approach. Finally Table 5 summarized the main results of efficiency scores based on the

proposed GP estimation model, which can be seen in Figure 6.

Table 3. Efficiency scores estimation by the standardized efficiency algorithm

Power Plants Prcarts Py Ei= Py~ Popyy  Fi=100X(Py iy / (Poniy + max E, | E, 20)) Rank
Montazerghaem 3297100 3335966.289 -38866.289 89.21 10
Besat 1500253 1682872.54 -182619.536 73.45 15
Firoozi 212403 310681.88 -98278.884 31.68 19
Salimi 11310817 11000250.67  310566.328 99.57 2
Shazand 7438002 7128665.43 309336.573 99.33
Rajaei 6342203 5982403.61 359799.388 100 1
Beheshti 1435991 1366089.86 69901.139 83.2 13
Tabriz 4341330 4594212.58 -252882.575 87.63 11
Mofatteh 5134547 5314179.90 -179632.900 90.49
Bistoon 4210280 4095904.47 114375.526 94.49
Ramin 10861867 10764449.95 97417.052 97.64
Madhayj 922587 944762.00 -22175.003 70.72 16
Bandarabbas 7196540 8144942.68 -948402.683 84.62 12
Zarand 341402 407945.86 -66543.857 44.47 18
Esfahan 5621431 5600168.68 21262.323 94.32 7
Montazeri 11137177 1128322442  -146047.415 95.66
Toos 3831065 3851999.95 -20934.945 90.96 8
Mashhad 665887 770047.05 -104160.047 58.94 17
Iranshahr 1492847 1591231.36 -98384.360 76.52 14
Table 4. Estimation of efficiency scores by the Azadeh et al. (2007) algorithm
Power Plants Prcarts Py E, E, Sh Fi Rank
Montazerghaem 3297100 3628549.66  -331449.66 -0.0913 1390450.97 65.69 12
Besat 1500253 2053443.7 -553190.7  -0.2694 786,874.38 52.82 14
Firoozi 212403 782995.79 -570592.79  -0.7287 300,041.99 19.61 19
Salimi 1.1*¥10’ 8177297.48  3133519.52 0.3832 3133519.52 100 1
Shazand 7438002 7164642.93 273359.07  0.0382 2745472.89 75.05 6
Rajaei 6342203 5701384.48 640818.52  0.1124 2184755.98 80.42 4
Beheshti 1435991 1757228.32  -321237.32 -0.1828 673365.41 59.08 13
Tabriz 4341330 4617026.03  -275696.03  -0.0597 1769232.59 67.98 11
Mofatteh 5134547 5378608.18  -244061.18 -0.0454 2061068.93 69.02 10
Bistoon 4210280 4249969.03 -39689.03  -0.0093 1628577.29 71.62
Ramin 1.1*¥107 9195861.73  1666005.27 0.1812 3523830.75 85.39
Madhaj 922587 1685681.91  -763094.91 -0.4527 645949.01 39.57 16
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Bandarabbas 7196540 7340823.66  -144283.66 -0.0197 2812984.89 70.88 9
Zarand 341402 891289.53 -549887.53  -0.617 341539.87 27.69 18
Esfahan 5621431 5310960.15 310470.85  0.0585 2035146.38 76.52 5
Montazeri 1.1¥107 9370519.03 1766657.97 0.1885 3590758.98 85.93
Toos 3831065 3858784.97 -27719.97  -0.0072 1478676.55 71.78
Mashhad 665887 1245295.4 -579408.4  -0.4653 477194.02 38.66 17
Iranshahr 1492847 2043592.09  -550745.09 -0.2695 783099.28 52.81 15
Table 5. Efficiency scores estimation based on the proposed approach
Power Plants P P, D, By REgerey E.., Rank
Montazerghaem 3297100 3335966.289  38866.28949 0.0113 0.98835 93.23 9
Besat 1500253 1682872.54 182619.5355 0.0531 0.89148  84.09 15
Firoozi 212403 310681.88 98278.88412  0.0286 0.68367  64.49 19
Salimi 11310817 11000250.67  310566.3283 0.0902 1.02823  96.99 4
Shazand 7438002 7128665.43 309336.573  0.0899 1.04339 98.42
Rajaei 6342203 5982403.61 359799.3877 0.1045 1.06014 100 1
Beheshti 1435991 1366089.86 69901.13884 0.0203 1.05117  99.15 2
Tabriz 4341330 4594212.58 252882.5752 0.0735 0.94496 8§89.14 13
Mofatteh 5134547 5314179.90 179632.9004 0.0522 0.9662  91.14 12
Bistoon 4210280 4095904.47 114375.5264 0.0332 1.02792  96.96 5
Ramin 10861867 10764449.95  97417.05159 0.0283 1.00905  95.18 6
Madhaj 922587 944762.00 22175.00268 0.0064 0.97653  92.11 11
Bandarabbas 7196540 8144942.68 948402.6831 0.2756 0.88356  83.34 16
Zarand 341402 407945.86 66543.85697 0.0193 0.83688  78.94 18
Esfahan 5621431 5600168.68 21262.32276 0.0062  1.0038 94.69 7
Montazeri 11137177 11283224.42 146047.4151 0.0424 0.98706  93.11 10
Toos 3831065 3851999.95 20934.94534 0.0061 0.99457  93.81 8
Mashhad 665887 770047.05 104160.0469 0.0303 0.86474  81.57 17
Iranshahr 1492847 1591231.36 98384.36003 0.0286 0.93817  88.49 14

To compare results and check the accuracy of the proposed method, a non-parametric inference method-
Spearman rank correlation test- is used. To be more specific for each Power Plant, the statistical significances of
the difference between the ranking obtained by proposed methodology, conventional and Azadeh et al. (2007)
algorithm are determined using Spearman’s rank correlation test. Spearman test evaluates the similarity of the
rankings of the different DMUs. In the Spearman test, to examine the null hypothesis a test statistic, Z, is
calculated using Equations (9) and (10) and compared with a pre-determined level of significance, « value.
The null hypothesis is “The rankings of two methods are not similar”. By considering level of significance «
equal to 0.05, critical Z value will be 1.645. If the test statistic computed by Equation (10) exceeds 1.645, the
null hypothesis is rejected and we can conclude that alternate hypothesis which is “The two rankings are similar”
is true (IC &Yurdakul, 2010).

k()
n=1- [ 2] ©)
Z=rJK -1 (10)
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In Equation (9), d; is the ranking difference of Power Plants j in different methods and K is the number of
Power Plants. r; represents the Spearman rank correlation coefficient. Table 6 shows the calculated values of d;,
7, and Z.

Table 6. Determination of the significance of the difference between the proposed method and conventional
methods

. . Efficiency
Efficiency ranking Efficiency ra.lnklng ranking of d; (proposed vs. 4 roposea vs
Power Plants of conventional Azadeh ot al.
of proposed method method Azadeh et al. conventional method)
(2007) method (2007) method)
Montazerghaem 9 10 12 -1 1
Besat 15 15 14 0 0
Firoozi 19 19 19 0
Salimi 4 2 1 2 -3
Shazand 0 -3
Rajaei 1 1 4 0 -11
Beheshti 2 13 13 -11 2
Tabriz 13 11 11 2 2
Mofatteh 12 9 10 3 -3
Bistoon 5 6 8 -1 3
Ramin 6 4 3 2 -5
Madhaj 11 16 16 -5 7
Bandarabbas 16 12 9 4 0
Zarand 18 18 18 0 2
Esfahan 7 7 5 0 8
Montazeri 10 5 2 5 1
Toos 8 8 0 0
Mashhad 17 17 17 0 -1
Iranshahr 14 14 15 0 1
- r, = 0.8158 proposed vs. 1. — (7123
proposed r\rfli.ﬂclggvennonal : Azadeh etal
7 =3.4611 (2007) method 7 =3.022

The calculated Z-values, 3.4611 and 3.022, are higher than 1.645, which indicates that the difference in ranking
results of the proposed vs. conventional method and the proposed vs. Azadeh et al. (2007) method, by
considering level of significance ¢ equal to 0.05 is statistically insignificant. Based on the test results, it can be
concluded that the ranking of Power Plants, obtained by proposed method is reliable.

Table 7 shows the summarized main results in presenting the efficiency scores of the conventional and proposed
algorithm and PCA (ZPCA). Based on the results in Table 7, it can be seen that the mean efficiency scores of the
conventional algorithm is smaller than mean technical efficiency for the Power Plants based on the proposed
algorithm. Statistical t-test has been conducted In order to test significantly difference of the two technical
efficiencies obtained from the two algorithms.
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Table 7. Efficiency scores results

Power Plants Efficiency sf:;;i llt)z I:lhe proposed Efficiency scor«;sl gboyr ﬁi?;leh et al. (2007)
Bandarabbas 93.23 65.69
Beheshti 84.09 52.82
Besat 64.49 19.61
Bistoon 96.99 100
Esfahan 98.42 75.05
Firoozi 100 80.42
Iranshahr 99.15 59.08
Madhaj 89.14 67.98
Mashhad 91.14 69.02
Mofatteh 96.96 71.62
Montazerghaem 95.18 85.39
Montazeri 92.11 39.57
Rajaei 83.34 70.88
Ramin 78.94 27.69
Salimi 94.69 76.52
Shazand 93.11 85.93
Tabriz 93.81 71.78
Toos 81.57 38.66
Zarand 88.49 52.81
Mean 90.255 63.711

The results of t-test are illustrated in Table 8.

Table 8. Hypothesis testing of the mean efficiencies (ME) of the proposed and Azadeh et al. (2007) algorithms

Hypothesis
Hy ug(proposed algorithm) - up (Azadeh et al. (2007) > 25
H, ug (proposed algorithm) - pp (Azadeh et al. (2007) algorithm) <25
Calculated t-statistic ~ 0.30
P-Value 0.616

.. Since the p-value is greater than a-level (0.01), there is no evidence to
Decision .

Reject H,,.

Base on Table 8 The null hypothesis cannot be rejected, that means technical efficiencies of the proposed
algorithm is 25 percent larger than mean technical efficiencies of the Azadeh et al (2007) algorithm at the 1%
level of significance.

6. Conclusion

In this paper a nine-step algorithm was proposed to measure and rank the efficiency of electricity production
units (Power Plants) in Iran. The unique feature of proposed algorithm is using the result of GP model to
calculate efficiency. Using GP can help to better estimate the performance patterns of Power Plants. GP doesn’t
require explicit assumption about the function structure of the dependent (output) and independent (input)
variables and this can lead to better estimation and results than conventional method such as regression or neural

56



www.ccsenet.org/mas Modern Applied Science Vol. 8, No. 3; 2014

network. The proposed algorithm was applied to a set of steam power plants in 2004. The efficiency results and
rankings were compared with the two other methods, conventional and Azadeh et al. (2007) approach. To
validate our proposed algorithm and ensure that the proposed algorithm calculates the efficiency scores
statistically similar to conventional method the Spearman rank correlation test is used. The results indicate that
the efficiency scores are closer to the ideal efficiency with considering the fact that the rankings of Power Plants
statistically remain the same. Because of better performance patterns recognition of GP method, the proposed
algorithm calculates more precise and realistic results than the conventional approach. When the production
function is unknown, The GP based algorithm for measuring technical efficiency can lead to better results than
other techniques.

Because of lack of both theoretical and empirical works in efficiency analysis more research in this field is
needed. For the future studies, utilization of other prediction techniques such as neural network in combination
of GP method to better pattern recognition of production function is advised. Also to obtain more realistic results
and to reduce the estimation error of results considering more output and input indicators is useful.
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