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Abstract 

The aim of this research consists in the investigation of a random sample of companies which belong to five 
European emerging countries, respectively Hungary, Poland, Russia, Slovakia, and Ukraine, from the valuation 
perspective, by using multidimensional data analysis techniques. Thus, by employing the principal component 
analysis, after transforming the initial characteristics there resulted two principal components, also considering 
the restriction of minimizing the loss of information. Subsequently, by the instrumentality of factor analysis, 
there resulted two factors required to explain the correlations existing between variables. The usefulness of both 
multidimensional data analysis techniques emerges from the reduction of the significant number of variables in a 
lesser number of principal components, respectively factors. 
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1. Introduction 

Often, in order to establish the value of a given company we could own an exhaustive set of indicators from 
financial statements or which could be computed based on financial reports. However, the significant 
dimensionality of the employed measures with the purpose previously mentioned, frequently conduct to the 
impairment of the valuation process. On the other hand, the availability of more indicators in order to reflect firm 
value could support contradictory results. Besides, the task of the valuator could be more facile if the indicators 
used would be reduced to some components as linear combinations of the original variables. Thus, applying the 
principal component analysis could represent a proper technique in order to facilitate the evaluation process. 
Likewise, by employing the factor analysis we will identify the essential factors through which we could explain 
the interdependencies existing between the indicator variables represented by the valuation ratios. This paper 
aims at exploring a random sample of companies which belong to five European emerging countries, 
respectively Hungary, Poland, Russia, Slovakia, and Ukraine, in order to determine their value, by using the 
aforementioned multidimensional data analysis techniques. The novelty of current research consists in using 
SAS 9.2 by the valuators in order to establish the value of the companies. SAS (Statistical Analysis System)is a 
software suite which began at North Carolina State University as a project to analyze agricultural research. Since 
demand for such software grew, SAS was founded in 1976 to help all sorts of customers, from pharmaceutical 
companies and banks to academic and governmental entities. The utility of current paper consists inthe reduction 
of the significant number of variables in a lesser number of principal components, respectively factors. 

The rest of this paper proceeds as follows. In Section 2 we emphasize the numerous important applications of 
multidimensional data analysis techniques, while Section 3 describes the data and the research methodology, as 
well as the fundamentals of principal component analysis and factor analysis. The results of the empirical 
research are presented in Section 4, while Section 5 concludes the paper. 

2. The Applications of Multidimensional Data Analysis Techniques 

Principal component analysis (hereafter PCA) technique was developed by Pearson (1901), having a great 
usefulness in the exploratory data analysis and in the achievement of the prediction models. Depending on the 
field of application, this multidimensional data analysis technique is also named the discrete Karhunen-Loève 
transform (KLT), the Hotelling transform, or the proper orthogonal decomposition (POD). In fact, there are 
many fields such as ecology, chemometrics, or economy, where multivariate analyses are employed in order to 
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describe and summarize large data sets by removing any redundancy existing in the data (Dray, 2008; Zou, 
Hastie & Tibshirani, 2006). Likewise, PCA is the most popular multivariate statistical technique used by almost 
all scientific disciplines (Abdi & Williams, 2010) and the simplest multivariate method (Jackson, 1993). Thereby, 
we acknowledge numerous important applications such as human face recognition (Hancock, Burton & Bruce, 
1996) or handwritten zip code classification (Hastie, Tibshirani & Friedman, 2009). We emphasize that PCA was 
employed on facial images and bounded these to human performance on recognition of own and other-race facial 
images (O’Toole, Deffenbacher, Valentin & Abdi, 1994). Withal, PCA was used in gene expression data analysis 
(Alter, Brown & Botstein, 2000). Subsequently, the gene shaving method was employed to analyze gene 
expression measurements based on samples from patients with diffuse large B-cell lymphoma (Hastie et al., 
2000). Thus, the gene shaving technique using PCA identified a small cluster of genes whose expression was 
highly predictive of survival. In the financial field, PCA is widely used thanks to its multiple applications. Thus, 
this technique was employed in order to estimate the bankruptcy risk (Altman, 1968; Conan & Holder, 1979). 
Further, bankruptcy prediction models recorded a broader usage. Also, Meric, Leal, Ratner, & Meric (2001) 
examined the possibilities of international portfolio diversification through investment in the principal capital 
markets from Latin America. Leger and Leone (2008) analysed the economic variables which could help to 
explain the principal components in UK stock returns. 

Factor analysis (hereafter FA) was introduced by the American psychologist Thurstone (1931). Accordingly, 
exploratory factor analysis (EFA) is an important tool for organizational researchers (Conway & Huffcutt, 2003). 
Thus, Ford, MacCallum and Tait (1986) investigated the application of EFA as regards 152 studies published in 
the Journal of Applied Psychology, Personnel Psychology, and Organizational Behavior and Human Performance, 
over the period 1975-1984. The results showed the fact that the components model was the most popular factor 
model employed (N=64; 42.1 percent), in contrast to common factor model (N=52; 34.2 percent), whereas in 36 
papers (23.7 percent) was impossible to determine which factor model was used. As well, Fabrigar, Wegener, 
MacCallum and Strahan (1999) reported for Journal of Applied Psychology, over the period 1991-1995, that 
PCA was used in 48.3 percent of the cases in contrast to common factors (22.4 percent), whilst in 25.9 percent of 
the cases the factor extraction model was unknown. Park, Dailey, & Lemus (2002) reviewed the articles 
published in three major communication journals: Human Communication Research, Communication 
Monographs, and Communications Research, from 1990 to 2000, and found an usage of principal component 
analysis in 52.94 percent of cases, common factors in 11.76 percent of papers, while 31.93 percent did not 
specify the type of analysis. As regards financial investigations, since the research of FA pioneers (Pinches, 
Mingo,& Caruthers, 1972) which tried to realize a classification of financial ratios related to US industrial firms, 
FA is used as a way in order to remove the redundancy and to reduce the number of financial ratios required for 
empirical researches. Therefore, Ali and Charbaji (1994) used this technique within the international commercial 
airlines sector to reduce 42 financial ratios to five underlying factors. Tan, Koh and Low (1997) applied FA for 
the companies listed on the Stock Exchange of Singapore, thus reducing 29 financial ratios to eight underlying 
factors. De, Bandyopadhyay and Chakraborty (2011) employed FA for a set of 44 financial ratios corresponding 
to a sample of companies from the Indian iron and steel industry and derived eight underlying factors. 

Thus, compared with previous studies, our paper employs multidimensional data analysis techniques in order to 
determine the value of a random sample of companies out of European emerging countries. Firm value is very 
important for individual investors since it reflects the underlying value of their stake in an enterprise. As the 
estimated value is more accurate, the investors could take the proper investment decisions, respectively to sell, to 
buy, or to maintain their holdings. 

3. Data and Research Methodology 

The aim of this research consists in the valuation of a random sample of companies which belong to five 
European emerging countries. Thus, the randomly selected sample comprises 310 companies as follows: 11 
companies from Hungary, 125 companies from Poland, 89 companies from Russia, 5 companies from Slovakia, 
and 80 companies from Ukraine. Thereby, in order to evaluate the selected companies we will use ten financial 
ratios which were computed based on the data from financial statements of the companies, the values 
corresponding to 2009. The indicators employed and their computation method will be described below. The 
financial statement data was provided by ISI Emerging Markets. We will use the software instrument SAS 9.2 in 
order to apply the multidimensional data analysis techniques. We will employ the PRINCOMP procedure in 
order to perform principal component analysis, as well PROC FACTOR statement towards factor analysis 
(Delwiche & Slaughter, 2008; Fernandez, 2010). 
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I1: DE = the debt to equity ratio, calculated through dividing total liabilities by stockholders’ equity. Also known 
as global financial autonomy, this indicator assesses the size of external funds compared with the funds from 
shareholders; 

I2: DTA = the debt to total assets ratio. Also known as the general indebtednessratio, this indicator reflects the 
means in which the company’s assets are financed by debt; 

I3: LEV = the financial debt to equity ratio signifies financial leverage ratio, through which is reflected the 
financial managers’ ability to collect outside resources in order to stimulate the equity’ efficiency; 

I4: EPS = earnings per share or the internal return of a certain share in terms of the income which is generated 
by that share in a financial year, is computed through dividing net income by total number of capital stock shares. 
This ratio allows the investors to compare the results recorded by the company in order to decide if the owned 
capital stock shares will be kept, cleared, or raised;   

I5: PER = price/earnings ratio, computed by dividing the company’s current share price by its per-share earnings, 
is showing the market return of a certain share in terms of the amount which the investors are willing to pay per 
dollar of company’s earnings. Also, this ratio shows the period required to a shareholder in order to recover the 
invested capital; 

I6: ROS = return on sales is the ratio of net income before interest and tax divided by net sales, usually reported 
in percentage. On the one hand, ROS highlights the part of each dollar of sales that the company is able to turn 
into income. On the other hand, ROS shows the contribution of company’s income in order to strengthen the 
self-financing ability; 

I7: CR = current ratio is the ratio of current assets recorded in the balance sheet of a particular company for a 
given period of time divided by its current liabilities (short-term liabilities). This indicator reflects the possibility 
of current patrimonial elements to transform into liquidity in a short time in order to pay the current liabilities; 

I8: QR = quick ratio, also known the Acid-test ratio is calculated as the difference between current assets and 
inventory, divided by current liabilities. This indicator reflects the possibility of current assets represented by 
accounts receivable and short-term investments to cover the current liabilities; 

I9: ROA = return on assets is computed by dividing the company’s income after interest and tax by its total 
assets. This indicator shows the efficiency recorded in company’s assets utilization; 

I10: ROE = return on equity is equal to net income divided by shareholders’ equity. The contribution of 
shareholders in order to finance the company is measured through shareholders’ equity, thus return on equity 
reflecting the efficiency of the company at generating profits from every unit of shareholders’ equity. 

3.1 Principal Component Analysis Description 

By employing the multidimensional data analysis technique entitled principal component analysis, there will 
result the decomposition of total variability from the initial causal space through a reduced number of 
components. However, this decomposition will not contain informational redundancy. Thus, it is followed a 
collapse of the variables to a reduced number of composite variables. By the instrumentality of PCA our purpose 
is to synthesize the distinctions amongst the 310 selected companies, existing at the ten researched factors, 
through a reduced number of components which are uncorrelated. 

The principal components are abstract vector variables defined as linear combinations of the original variables, 
characterized by the following two fundamental properties: the principal components are uncorrelated two by 
two, and the sum of squares of the coefficients which define the linear combination corresponding to a principal 
component is equal to one. Peres-Neto, Jackson and Somers (2005) noticed that detecting certain relationships 
by generating linear combinations of variables showing common trends of variation exhibit a significant 
scientific contribution as regards the recognition of patterns in the data. Thus, the first principal component is a 
linear normalized combination whose variance is maximum. The second principal component is an uncorrelated 
linear combination with the first principal component, whose variance is as high as possible, but lesser than the 
variance of the first principal component. The initial causal space subject to our research is figured by ten 
explanatory variables x , x , …, x 	, x , thus signifying the fact that each of the 310 companies is evaluated 
by ten financial indicators, as defined previously. 

The principal components corresponding to the researched causal space are described through a vector with ten 
dimensions, labeled with w: 
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 w =	 ww…ww  (1) 

Each coordinate w  of this vector represents a principal component defined compared with the original 
variables through the following linear combination: 

 w  = α *x  + α *x  + … + α *x  + α *x   i =1, 2, …, 9, 10 (2) 

The coefficients α  are the coordinates of the eigenvectors corresponding to the covariance matrix of the 
original variables x , x , …, x 	, x , while the principal components’ variances are the eigenvalues of this 
matrix. 

Thereby, it is followed to solve the following extreme problem. Depending on the type of the function ϕ, the 
optimum criterion could be maximum or minimum. 

 
Opt	ϕ x,ww = A ∗ x  (3) 

We will consider the fact that the vectors α  are the columns of matrix A of dimensions 10×10, having the 
following form: 

 A = 
α…α α…α ………α…α α…α  (4) 

Besides, we will suppose the fact that x is the vector whose coordinates are the original variables x , x , …, x 	, x , whereas w is the vector whose coordinates are the principal components	w , w , …, w 	, w . 

Thus, the linear combinations which define the principal components could be represented as below: 

 

w =	∝ ∗ x +∝ ∗ x +⋯+∝ ∗ x +∝ ∗ xw =	∝ ∗ x +∝ ∗ x +⋯+∝ ∗ x +∝ ∗ x………………………………………………………………w =	∝ ∗ x +∝ ∗ x +⋯+∝ ∗ x +∝ ∗ xw =	∝ ∗ x +∝ ∗ x +⋯+∝ ∗ x +∝ ∗ x
 (5) 

Under matrix form, the linear combinations related to the principal components could be represented as follows: 

 

ww…ww 	=	
αα…αα

αα…αα
……………
αα…αα

αα…αα
*

xx…xx  (6) 

The mathematical model of principal component analysis is defined as follows: 

 
max	Var ww = A ∗ x  (7) 

3.2 Factor Analysis Description 

The multidimensional data analysis technique entitled factor analysis is employed in order to explain the 
correlations between several variables named indicators, by the instrumentality of a lower number of sorted and 
uncorellated factors, named common factors. However, the common factor represents a fundamental concept 
within factor analysis which could be considered as a random variable with a certain probability distribution. 
Likewise, with the aim of numerical valuations’ achievement we distinguish the variable entitled indicator, 
whose observations are known as scores. Additionally, the indicators have associated unique factors. The unique 
factor is exerting the influence in a one-sided manner on a single indicator (measured) variable. Besides, the 
unique factor could not be subject to a direct observation and measurement process. Outside the influence 
exerted by the common factor and by the unique factor, we distinguish in addition the influence of the 
measurement errors, considered negligible. 
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The factor model has the following mathematical form, considering the fact that the measured variables are 
marked with x , the common factors are marked with f , the unique factors are marked with u , while a  
represents the intensity of the common factor f 	compared with the measured variable x : 

 

x = a . ∗ f + a . ∗ f + ⋯+ a . ∗ f + a . ∗ f + a ∗ ux = a . ∗ f + a . ∗ f + ⋯+ a . ∗ f + a . ∗ f + a ∗ u………………………………………………………………x = a . ∗ f + a . ∗ f + ⋯+ a . ∗ f + a . ∗ f + a ∗ ux = a . ∗ f + a . ∗ f + ⋯+	a . ∗ f + a . ∗ f + a ∗ u  (8) 

Under matrix form, the factor model has the following representation:  

 x = F*f + D*u (9) 

 

xx…xx  =	 a .a .…a .a .

……………
a .a .…a .	a .

* ff…ff 	 +	 a0…00
……………
00…0a * uu…uu  (10) 

However, unlike principal component analysis in the context of which the variability that characterizes the initial 
causal space is undifferentiated considered, in factor analysis, the variability of the initial causal space is 
considered as a composition of variances which are constituted under the influence of the factors previously 
mentioned. The variance σ  related to the variable xj could be shared in three important components: the 
communality h  (that part of the total variance σ  that explains the information which is common to all the 
variables which define the causal space and which are forming under the influence of common factors), the 
uniqueness a  (that part of the total variance σ  that expresses significant information of specific type which 
characterizes the particular variable xj and which is constituted under the influence of the unique factor), and the 
residuality e  (that part of the total variance σ  which is formed under the influence of the residual factor that 
is associated with the considered variable and which shows insignificant information with specific feature related 
to the variable x ). 

4. Empirical Research Results 

4.1 The Results of the Principal Component Analysis  

The script related to the principal component analysis employed in SAS 9.2 is showed in Apendix . The 
covariance matrix of the original variables is presented in Table 1. However, the covariance matrix is very 
important within current empirical research due to the principal components’ properties. The total variance 
recorded is 26.4257. 

 

Table 1. Covariance matrix 

Variable DE DTA LEV EPS PER ROS CR QR ROA ROE 

DE 14.7157 0.3548 2.2354 -0.0288 -0.3265 -0.0118 -0.4418 -0.2174 -0.0529 -0.8544

DTA 0.3548 0.0628 0.1268 -0.0019 -0.0305 0.0028 -0.1907 -0.1579 -0.0085 -0.0190

LEV 2.2354 0.1268 3.6779 -0.0025 -0.0270 0.0712 -0.3715 -0.3432 -0.0018 -0.0614

EPS -0.0288 -0.0019 -0.0025 0.0041 0.0016 0.0055 -0.0051 -0.0037 0.0024 0.0051

PER -0.3265 -0.0305 -0.0270 0.0016 0.7399 0.1380 0.0065 -0.0051 0.0041 0.0189

ROS -0.0118 0.0028 0.0712 0.0055 0.1380 0.9886 0.0057 -0.0112 0.0262 0.0515

CR -0.4418 -0.1907 -0.3715 -0.0051 0.0065 0.0057 3.4419 2.8056 0.0327 0.0745

QR -0.2175 -0.1579 -0.3432 -0.0037 -0.0051 -0.0112 2.8056 2.5909 0.0249 0.0501

ROA -0.0529 -0.0085 -0.0018 0.0024 0.0041 0.0262 0.0327 0.0249 0.0102 0.0227

ROE -0.8544 -0.0190 -0.0614 0.0051 0.0189 0.0515 0.0745 0.0501 0.0227 0.1938

 

The principal components are sorted in Table 2 in a descending order of the retained information as percentage 
from the total variance. The column entitled Proportion highlights the percentage out of the initial information 
of each variable from the ten selected variables, which is synthesized in the extracted principal components. 
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Thereby, the first principal component explains about 57.72 percent out of the total variance, the second 
principal component explains about 22.29 percent out of the total variance, the third principal component 
explains about 12.06 percent out of the total variance, while the fourth principal component explains about 3.97 
percent out of the total variance. As well, the first four principal components record eigenvalues greater than one, 
values which could be noticed in the Eigenvalue column. However, the first four principal components cumulate 
96.05 percent out of total information, fact presented in the Cumulative column. Thus, if it is added a new 
principal component there would result 98.60 percent out of total information. 

 

Table 2. Eigenvalues of the covariance matrix  

 Eigenvalue Difference Proportion Cumulative

1 15.2523 9.3610 0.5772 0.5772 

2 5.8914 2.7033 0.2229 0.8001 

3 3.1881 2.1393 0.1206 0.9208 

4 1.0488 0.3748 0.0397 0.9605 

5 0.6740 0.4968 0.0255 0.9860 

6 0.1772 0.0366 0.0067 0.9927 

7 0.1406 0.0968 0.0053 0.9980 

8 0.0438 0.0373 0.0017 0.9996 

9 0.0065 0.0036 0.0002 0.9999 

10 0.0030  0.0001 1.0000 

 

The both of graphs showed in Figure 1, proposed by Cattell (1966), are used in order to establish the number of 
principal components. Thus, in the first graph is remarked that after the second point which symbolizes the 
second principal component, the slope decreases. However, we could retain two principal components. 

 

 
Figure 1. Eigenvalue plot 

 

The number of principal components which are retained in the analysis is determined based on a cut in the graph 
parallel with the ordinate. Thereby, the number of principal components is the first number from the left of the 
cut so the part of the graph from the right of the cut have a slope equal to zero. In the graph from the left side 
each point represents an eigenvalue, while in the graph from the right side each point represents the proportion 
(cumulative) out of the variance explained by each component. However, in order to express the ten variables 
there could be satisfactory only a single principal component, but this could not adequately cover the variability 
from the space of the ten variables because the proportion is only 57.72 percent. Thus, based on the slope 
criterion, there will be retained two principal components. Likewise, by considering the covering criterion, the 
first two principal components ensure a cover of 80.01 percent out of the variability from the space of the ten 
variables. On the other hand, according to the Kaiser criterion there should be retained only the eigenvalues 
greater than one. However, within current empirical research we could not employ the Kaiser criterion because 
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data standardization was not employed. We notice the fact that the data was not standardized because there were 
not recorded high standard deviation of the variables. The standard deviation of the ten variables employed in 
this analysis in order to evaluate the companies is presented in Table 3. 

 
Table 3. Standard deviation of the variables 

 DE DTA LEV EPS PER ROS CR QR ROA ROE 

StD 3.8361 0.2506 1.9178 0.0639 0.8602 0.9943 1.8552 1.6096 0.1009 0.4402

 

The eigenvectors of the covariance matrix are presented in Table 4. The importance of the eingenvectors is 
emphasized by the fact that they provide the coefficients of the original variables out of the linear equations 
related to the principal components. We underline that the technique of PCA represents a multidimensional 
method of analysis which has the aim of determining new variables entitled principal components expressed as 
linear combinations of the original variables. Thereby, these new resulted variables are characterized by a 
maximum variability. 

 

Table 4. Eigenvectors of the covariance matrix 

Variable Prin1 Prin2 Prin3 Prin4 Prin5 Prin6 Prin7 Prin8 Prin9 Prin10

DE 0.9772 0.0897 -0.1788 0.0195 0.0188 -0.0138 0.0606 -0.0194 -0.0069 0.0035

DTA 0.0255 -0.0394 0.0067 -0.0077 -0.0347 0.0165 0.0191 0.9834 0.1644 -0.0419

LEV 0.1920 -0.1369 0.9706 -0.0365 0.0044 0.0124 -0.0219 -0.0166 -0.0021 0.0005

EPS -0.0019 -0.0014 0.0007 0.0053 -0.0021 0.0037 0.0251 -0.0457 0.4915 0.8693

PER -0.0225 -0.0045 0.0154 0.3960 0.9170 0.0057 0.0164 0.0345 0.0049 -0.0017

ROS -0.0003 -0.0029 0.0341 0.9156 -0.3948 0.0167 -0.0633 -0.0026 -0.0197 0.0061

CR -0.0514 0.7459 0.1236 0.0067 0.0007 -0.6493 -0.0470 0.0423 0.0011 0.0067

QR -0.0339 0.6444 0.0885 -0.0123 0.0004 0.7578 0.0357 0.0119 0.0030 -0.0043

ROA -0.0037 0.0062 0.0049 0.0248 -0.0123 -0.0152 0.1292 -0.1644 0.8454 -0.4904

ROE -0.0567 0.0036 0.0364 0.0478 -0.0393 -0.0548 0.9851 0.0054 -0.1276 0.0437

 

Thus, the first and the second principal components could be represented as linear combinations out of the 
original variables, as follows: 

 Prin1 = 0.9772*DE + 0.0255*DTA + 0.1920*LEV + (-0.0019)*EPS + (-0.0225)*PER + (-0.0003)*ROS + 
 + (-0.0514)*CR + (-0.0339)*QR + (-0.0037)*ROA + (-0.0567)*ROE 

 Prin2 = 0.0897*DE + (-0.0394)*DTA + (-0.1369)*LEV + (-0.0014)*EPS + (-0.0045)*PER +  
 + (-0.0029)*ROS + 0.7459*CR + 0.6444*QR + 0.0062*ROA + 0.0036*ROE 

The financial ratios corresponding to the first ten companies from the sample are showed in Table 5. Therefore, 
the objects’ coordinates in the new space which is constituted, respectively the principal components’ scores for 
the first ten companies are presented in Table 6 being entitled ‘Prin1’ and ‘Prin2’. 

  



www.ccsenet.org/mas Modern Applied Science Vol. 8, No. 3; 2014 

209 
 

Table 5. Financial ratios for the first ten companies 

Company DE DTA LEV EPS PER ROS CR QR ROA ROE 

1 1.5508 0.6079 2.5512 0.0041 0.0779 0.0095 1.2606 0.7506 0.0400 0.1020

2 0.9232 0.4800 1.9232 0.0797 0.0242 0.8600 1.3944 1.1457 0.2474 0.4758

3 0.5437 0.3522 1.5437 0.0003 0.3649 0.0100 2.0413 1.8580 0.0321 0.0496

4 0.2581 0.2052 1.2581 0.0016 0.3393 0.0400 2.3969 2.3341 0.0266 0.0335

5 0.4952 0.3309 1.4967 0.0002 0.6569 0.0300 2.2580 1.6246 0.0282 0.0422

6 1.5727 0.6113 2.5727 -0.0224 -0.0284 -0.0700 0.4301 0.1483 -0.0912 -0.2345

7 1.2981 0.5273 2.4616 0.0005 0.3167 0.0100 1.7384 0.9651 0.0117 0.0289

8 1.8130 0.6010 3.0166 0.0025 0.1742 0.0081 1.2499 0.9884 0.0097 0.0291

9 -3.5705 1.3890 -2.5705 0.0617 0.0046 0.2900 0.2165 0.1638 0.0807 -0.2074

10 2.0612 0.6674 3.0886 0.0066 0.3043 0.0100 0.3821 0.3484 0.0332 0.1026

 

Table 6. Principal components’ scores matrix 

Company Prin1 Prin2 

1 0.0150 -1.1199

2 -0.7636 -0.7305

3 -1.2503 0.2321 

4 -1.6210 0.8234 

5 -1.3167 0.2449 

6 0.1258 -2.1299

7 -0.2842 -0.6341

8 0.3550 -1.0155

9 -5.8606 -2.0672

10 0.6722 -2.0656

 

We take into consideration the property that the sum of squares of the coefficients which define the linear 
combination corresponding to a principal component is equal to one. Thus, the examination of this property by 
the linear combinations’ coefficients which define the principal components, determine the fact that these 
coefficients under vectorial form compose an orthonormal system. 

Thereby, for the first principal component: 0.9772|0.0255|0	.1920| 0.0019| 0.0225| 0.0003| 0.0514| 0.0339| 0.0037| 0.0567∗ 0.9772|0.0255|0.1920| 0.0019| 0.0225| 0.0003| 0.0514| 0.0339| 0.0037| 0.0567  
= 0.9549 + 0.0007 + 0.0369 + 0.0000 + 0.0005 + 0.0000 + 0.0026 + 0.0011 + 0.0000 + 0.0032 = 1 

Additionally, for the second principal component: 0.0897| 0.0394| 0.1369| 0.0014| 0.0045| 0.0029|0.7459|0.6444|0.0062|0.0036 ∗∗ 0.0897| 0.0394| 0.1369| 0.0014| 0.0045| 0.0029|0.7459|0.6444|0.0062|0.0036 	
= 0.0080 + 0.0016 + 0.0187 + 0.0000 + 0.0000 + 0.0000 + 0.5564 + 0.4153 + 0.0000 + 0.0000 = 1 

Figure 2 shows the 310 companies’ scores in the first two principal axes plan. We notice a fairly compact group 
of companies which are inclined to be similarly valued, but also several companies which are detached from the 
rest of the companies.   
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Figure 2. Companies’ scores in the first two principal axes plan 

 

The principal components are orthogonal vectors which take as much from the original vector variables’ variance 
as follows: the first principal component take maximum possible out of the original variables’ variance, while the 
second principal component take maximum out of the remained variance after is removed the variance taken by 
the first principal component.  

<Eigenvector1; Eigenvector2> = 0.9772|0.0255|0	.1920| 0.0019| 0.0225| 0.0003| 0.0514| 0.0339| 0.0037| 0.0567  ∗ 0.0897| 0.0394| 0.1369| 0.0014| 0.0045| 0.0029|0.7459|0.6444|0.0062|0.0036  = 0.0001 ≈ 0 

From a geometrical point of view, the variables named principal components are defining a new objects’ space in 
the context of which the axes corresponding to the new created space are orthogonal two by two and ascertain 
the new variables. Moreover, the principal components own a feature which determines their adequacy from the 
informational point of view in order to substitute the original variables. Thus, this feature refers to the fact that 
through the principal components is ensured the variability’ preservation from the initial causal space. Besides, 
the diagonal elements of the covariance matrix (Table 1) corresponding to the observations performed to the ten 
variables are the variances related to the ten original variables, as follows: 

σ1
2  = 14.7157, σ2

2 = 0.0628, σ3
2 = 3.6779, σ4

2 = 0.0041, σ5
2 = 0.7399, σ6

2 = 0.9886, σ7
2 = 3.4419, σ8

2 = 2.5909, 
σ9

2 = 0.0102, σ10
2 = 0.1938 

The eigenvalues of the covariance matrix (Table 2) are presented below: 

λ1 = 15.2523, λ2 = 5.8914, λ3 = 3.1881, λ4 = 1.0488, λ5 = 0.6740, λ6 = 0.1772, λ7 = 0.1406, λ8 = 0.0438, λ9 = 
0.0065, λ10 = 0.0030 

Thus, the feature previously mentioned is demonstrated as follows: 

tr(Σ) = σ1
2 +σ2

2 +σ3
2 +σ4

2 + σ5
2 + σ6

2 +σ7
2 + σ8

2 +σ9
2 +σ10

2 = 26.4257 

= λ1 +λ2 +λ3 + λ4 + λ5 + λ6 + λ7 + λ8 + λ9 +λ10 = tr( ) 

Another noteworthy property of the principal components consists in the fact that these are ensuring the whole 
conservation of the generalized variance corresponding to the original variables. Thus, the determinant of the 
covariance matrix is equal with the multiplication of the ten eigenvalues, respectively it is equal with the 
covariance matrix’ determinant corresponding to the ten principal components: | | = 0.0000043 = 15.2523 * 5.8914 * 3.1881 * 1.0488 * 0.6740 * 0.1772 * 0.1406 * 0.0438 * 0.0065 * 0.0030 
      = 0.0000043 =| | 
  



www.ccsenet.org/mas Modern Applied Science Vol. 8, No. 3; 2014 

211 
 

4.2 The Results of the Factor Analysis  

The script related to the factor analysis employed in SAS 9.2 is showed in Apendix . The Pearson correlation 
coefficient matrix related to the original variables is showed in Table 7.  

 

Table 7. Pearson correlation coefficients 

Variable  DE DTA LEV EPS PER ROS CR QR ROA ROE 
DE 1.0000 0.3691 0.3039 -0.1174 -0.0990 -0.0031 -0.0621 -0.0352 -0.1366 -0.5060
DTA 0.3691 1.0000 0.2639 -0.1158 -0.1416 0.0114 -0.4102 -0.3915 -0.3358 -0.1725
LEV 0.3039 0.2639 1.0000 -0.0207 -0.0163 0.0373 -0.1044 -0.1112 -0.0094 -0.0727
EPS -0.1174 -0.1158 -0.0207 1.0000 0.0294 0.0870 -0.0434 -0.0362 0.3783 0.1820
PER -0.0990 -0.1416 -0.0163 0.0294 1.0000 0.1614 0.0041 -0.0037 0.0471 0.0499
ROS -0.0031 0.0114 0.0373 0.0870 0.1614 1.0000 0.0031 -0.0070 0.2610 0.1178
CR -0.0621 -0.4102 -0.1044 -0.0434 0.0041 0.0031 1.0000 0.9395 0.1745 0.0913
QR -0.0352 -0.3915 -0.1112 -0.0362 -0.0037 -0.0070 0.9395 1.0000 0.1534 0.0706
ROA -0.1366 -0.3358 -0.0094 0.3783 0.0471 0.2610 0.1745 0.1534 1.0000 0.5106
ROE -0.5060 -0.1725 -0.0727 0.1820 0.0499 0.1178 0.0913 0.0706 0.5106 1.0000
 

The correlation coefficient matrix have a particular importance in order to employ factor analysis because based 
on the correlations between variables will result a lower number of variables entitled factors. Besides, the factors 
will explain the variance related to observations.  

Table 8 reveals the eigenvalues of the correlation matrix. 

 

Table 8. Eigenvalues of the correlation matrix 
 Eigenvalue Difference Proportion Cumulative
1 2.6342 0.8243 0.2634 0.2634 
2 1.8099 0.5036 0.1810 0.4444 
3 1.3063 0.2289 0.1306 0.5750 
4 1.0774 0.1913 0.1077 0.6828 
5 0.8861 0.0605 0.0886 0.7714 
6 0.8256 0.2250 0.0826 0.8540 
7 0.6006 0.0434 0.0601 0.9140 
8 0.5572 0.3142 0.0557 0.9697 
9 0.2431 0.1835 0.0243 0.9940 

10 0.0595  0.0060 1.0000 
 

Table 9 shows the factor pattern matrix before rotation, thus being retained two factors. 

Table 9. Factor pattern  

Variable Factor1 Factor2 
DE -0.5154 -0.3850 
DTA -0.7219 0.0762 
LEV -0.3332 -0.0017 
EPS 0.2684 0.4714 
PER 0.1510 0.1703 
ROS 0.1507 0.3085 
CR 0.7029 -0.6376 
QR 0.6836 -0.6549 
ROA 0.5952 0.4369 
ROE 0.5507 0.5322 
Variance Explained 
by Each Factor 

2.6342 1.8098 
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However, the orthogonal rotation of factors using the Varimax rotation method determined the factor structure 
showed in Table 10. Besides, the Varimax rotation represents an orthogonal rotation method through which is 
minimized the number of variables with high loadings on each factor.  

 

Table 10. Rotated factor pattern  

Variable Factor1 Factor2 

DE -0.1913 -0.6142 

DTA -0.6292 -0.3621 

LEV -0.2688 -0.1969 

EPS -0.0594 0.5392 

PER 0.0223 0.2265 

ROS -0.0591 0.3382 

CR 0.9434 -0.1036 

QR 0.9378 -0.1289 

ROA 0.2254 0.7031 

ROE 0.1335 0.7541 

Variance Explained 
by Each Factor 

2.3501 2.0939 

 

Therefore, this fact simplifies the interpretation of factors. The first factor is compounded mainly of the variables 
CR and QR, while the second factor is compounded mainly of the variables ROA and ROE. The first factor 
explains 23.5 percent out of the variance, while the second factor explains 20.93 percent out of the variance. 

Hence, it is obtained the following form of the factor model: 

 Factor1 = -0.1913*DE - 0.6292*DTA - 0.2688*LEV - 0.0594*EPS + 0.0223*PER - 0.0591*ROS + 
0.9434*CR + 0.9378*QR + 0.2254*ROA + 0.1335*ROE 

 Factor2 = -0.6142*DE - 0.3621*DTA - 0.1969*LEV + 0.5392*EPS + 0.2265*PER + 0.3382*ROS - 
0.1036*CR - 0.1289*QR + 0.7031*ROA + 0.7541*ROE 

For the first indicator variable (the debt to equity ratio), the communality is obtained as follows: h  = a + a  → h 	= (-0.1913)2 + (-0.6142)2 = 0.0366 + 0.3772 = 0.4138 

Likewise, for the second indicator variable (the debt to total assets ratio), the communality is obtained as 
follows: h  = a + a  → h  = (-0.6292)2 + (-0.3621)2 = 0.3959 + 0.1311 = 0.5270 

The information regarding the specificity was determined by the difference between the variance of each 
variable and the communality related to both factors. 

Thus, for the first measured variable, the specificity is determined as follows: s  = σ h 	= 1 - 0.4138 = 0.5862 

Likewise, for the second measured variable, the specificity is determined as follows: s  = σ h 	= 1 - 0.5270 = 0.4730 

5. Concluding Remarks 

By employing the principal component analysis in order to evaluate a random sample consisting of 310 
companies which belong to five European emerging countries, there resulted the possibility of their evaluation 
based on two principal components, also considering a minimum loss of information. Thus, by the 
instrumentality of the first two principal components there is recorded a covering of 80.01 percent of the 
variability out of the space of the ten selected variables. In fact, the informational loss registered is 20 percent. 
The utility of the principal component analysis with the aim of companies’ valuation is remarkable because there 
is provided a decomposition of the total variability from the initial causal space expressed through a lower 
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number of components. Besides, the decomposition previously mentioned is not redundant. As well, by 
employing factor analysis there resulted two factors which explain 23.5 percent, respectively 20.93 percent out 
of the total variance. 

However, both principal component analysis and factor analysis have the aim of reduction of the significant 
number of considered variables. This reduction is made in order to evaluate the selected companies through a 
lower number of principal components, respectively factors. In case of the principal component analysis the 
components are identified in order to take as much from the variance existing in the data, whereas in case of the 
factor analysis the lower number of factors is identified in order to explain why the measured variables are 
correlated between them. 
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Apendix 1 

Principal component analysis script employed in SAS 9.2 

PROC IMPORT DATAFILE = 'E:\SAS\Database.xls' out = companies replace;  
getnames = yes; 
RUN;  
PROC PRINT DATA = companies; 
ID company; 
RUN; 
PROC SORT data = companies; 
by company; 
RUN; 
ods html;   
ods graphics on; 
PROC CORR data = companies outp = out1; 
var DE DTA LEV EPS PER ROS CR QR ROA ROE; 
RUN; 
PROC PRINCOMP data = companies cov out = Ratings n = 10 outstat = pca_results;      
var DE DTA LEV EPS PER ROS CR QR ROA ROE; 
title 'PCA Results'; 
RUN; 
PROC PLOT data = Ratings; 
plot prin2*prin1 = '+' $ company; 
RUN; 
DATA ratings_hq;  
set ratings;  
x = prin1;  
y = prin2; 
text = company;  
size = 1;  
xsys = '2'; 
ysys = '2'; 
label x = 'axis 1'; 
label y = 'axis 2';  
keep x y xsys ysys text size;  
RUN; 
title 'The first two principal components area';  
PROC GPLOT data = ratings_hq; 
plot y*x=1/ annotate = ratings_hq href = 0 vref = 0; 
RUN; 
QUIT; 
title 'Ratings matrix'; 
PROC PRINT data = ratings; 
RUN; 
title 'PCA Statistics'; 
PROC PRINT data = rez_ACP; 
RUN; 
ods graphics off; 
ods html close; 
 

Apendix 2 

Factor analysis script employed in SAS 9.2 

PROC IMPORT DATAFILE = 'E:\SAS\Database.xls' out = companies replace; 
getnames = yes; 
RUN; 
ods html; 
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ods graphics on; 
PROC FACTOR data = companies method = principal scree mineigen = 0 score priors = smc;  
outstat = facto_results; 
var DE DTA LEV EPS PER ROS CR QR ROA ROE; 
RUN; 
PROC FACTOR data = facto_results method = principal n = 2 rotate = varimax score outstat = facto_results_2f; 
RUN; 
PROC SCORE data = companies score = facto_results_2f out = ratings; 
RUN; 
PROC PLOT; 
plot factor2*factor1; 
RUN; 
ods graphics off; 
ods html close; 
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