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Abstract

This paper examined a new model for solving mechanical problems of second-order linear Lagrangian systems,
using the Hamilton-Jacobi formalism. Lagrangians linear in accelerations with coefficients given by functions of
coordinates alone yield primary constraints. It is shown that the equations of motion can be obtained from the
action integral and these equations are equivalent to the canonical method.
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1. Introduction

The canonical formalism for investigating singular systems has been developed by (Rabei & Guler, 1992;
Pimentel & Teixeiria, 1996, 1998). A set of Hamilton-Jacobi partial differential equations was obtained and the
equations of motion were written as total differential equations.

The Hamilton-Jacobi treatment has been studied for singular Lagrangians (Rabei et al., 2004). The
Hamilton-Jacobi functions in configuration space have been obtained by solving the HIPDEs. This has led to
another approach for solving mechanical problems for these singular systems.

Singular Lagrangians with linear velocities have been studied (Rabei et al., 2003) by using the canonical method.
In this method, the integrable action was obtained directly without considering the total variation of constraints.
In this paper, we wish to extend the model for second-order linear Lagrangian.

More recently, the path integral quantization of Lagrangians with linear accelerations has been investigated
(Hasan, 2014) by using the canonical method. It is shown that by calculating the integrable action and
constructing the wave function, the quantization has been carried out.

This paper is organized as follow. In Section 2, a new model of singular Lagrangian with linear acceleration is
proposed. In Section 3, several illustrative examples are examined. The work closes with some concluding
remarks in Section 4.

2. The Model of Hamilton-Jacobi Formalism for Lagrangian with Linear Acceleration

The general form of a second-order linear Lagrangian is

L(qisq.isqi):ai(qj’qj-)tji_V(qj"qj-) 2.1
The associated Euler-Lagrange equations
2
oL _dfoL 4 9L 2.2)
dq, dt\oq, ) dt’\dg,

Have at most order three. Lagrangians linear in accelerations with coefficients given by functions of coordinates
alone yield primary constraints. If a,(¢,4)=a;(q), and let V(q,4)=V(q). then the general form of a
second-order linear Lagrangian becomes

L(g:.4,.4G,) :ai(qj)‘.ji _V(qj) (2.3)

The generalized momenta p;, 7, conjugate to the generalized coordinatesg,, ¢,, respectively:

i
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a_afa),
Pi=g, " ar\ ag,

da

=——L=p(g.)=—-H" 24)
p; o .(4;) ;
”i=ai%=ai(Q')=_Hiﬂ 2.5)
94, ’

Equations (2.4) and (2.5) become
H" (4,4, p» )=, + H =0;
H" (4,54, 7)==, =0 (2.6)
H” (ql.,q,.,p,.,iz'[) =p,+H =0
H{"(q;,4;>p1>7) = p,=b, =0 2.7
Equations (2.6) and (2.7) are called primary constraints (Dirac, 1950).

The canonical Hamiltonian F# is given by:

Hy=pq,+7q, —L =bi(q.j)qi+V(qj) 28)
The corresponding HIPDEs
H’ =%‘j+b[q[ +V(g,)=0 (2.92)
H” = 9 _ a, = (2.9b)
oq
H" = E)—S—bi =0 (2.9¢)
9q

The equations of motion are obtained as total differential equations follows:
oH| oH’? oH’"

dq. = dit+—L-dg. +—L-dg. =dg. (2.10a)
"o, op, 17 gp, T
. OH, , OHY H'” ,
T e T (2100
’ ’p '
dp.:—aHO dt—aH’ dq.—aHf dq.:—a—th+%dq'. (2.10c)
" 0 dg; ' 9dq, ' 9dq, g, '
’ ’p /4
dﬂ'.:—a[—.[() d;_af{w dq —aH_a dg, =—-b,(q,)dt (2.10d)
i a a o o i J
q; q; 94,

The set of Equations (2.10) are integrable (Muslih & Guler, 1998), the total variation of Equation (2.6) and
Equation (2.7) can be written as:

dH" = dz,—da, =0

= ~b,(¢,)di ~day(q,) 1D
4 a /
dH!" =dp,—db, =0 =—a—th+idq'- —-db,(q;)
aq,’ aqz’ ! '
oV . da,
=——di+—Ldg,—db/(q, 2.12)
3, g, )

So, we have
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) 4o 94D 4 _ 2.13)
ag, ' dg, ' 9
which is equivalent to
9(9) gy, 0D gy 2.14)
dg, ' dq, ' g
.. aV(q)
Or :
=1 ”
Defining the symmetric matrix fy as
, da,
/, :36;(61) N Cg(q) (2.15)
q; q;

If the inverse of the matrix f; exist, then we can solve all the dynamics g, while if the rank of the matrix f is
n-R, then we can solve the dynamics ¢, in terms of independent parameters (¢,4,,4, ), a=1,2,..

The total derivative of the Hamilton-Jacobi function can be obtained as:

as  as .. oS
dS =—dq, +—dq, +—dt (2.16)
o ‘T o YT,

1 L

Using the HIPDEs Equations (2.9), we get
dS = adq, - Vdt (2.17)

One can integrate the above Equation (2.17) to give
S =[adg,~[vat (2.18)

We can use the fact that
[dadq)=ag, =[adg+]dda,
Equation (2.18) reduces to
1
= Tad s [ - 2.19

S 5 [a,q; +J.aidqi J‘qjdaj] .[th (2.19)
By some rearragment, Equation (2.19) becomes

S =la,c}[ —lj‘[q/.daj —a,dq, +2Vdt] (2.20)

2 2970

And using the fact that

d .
E(qjda/) =—q,db; +q,da,

1 lcd .
S=-ad - jdt( da)~ j[qjdbj —a,dg, +2Vdt]
1 1d 1
=—a.g - ; 2.21
2a,.qi % J-q da; 2.[[q/.a’bj a,dq, + 2Vdt) (2.21)
Assuming that the function ¢,(q) and V(g) satisfy the following conditions
/ga —a: alquzy
g, dg,
Equation (2.21) becomes
1 oa av
-z i i 7 2.22
§=-ad, quda jqj[db . dg, Gt dt] (222

J

The action S to be an integrable function, the terms in the brackets must be zero, i.e.
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9 4a + 3 dr =0
aqj aqj

db. —

J

Equation (2.23) gives the equation of motion for the coordinates g, .
3. Examples
3.1 The First Example
Consider the following singular Lagrangian:
.. .1
L=-q4,+q9,9, _5(6]22 + qzz)
The potential of this Lagrangian is given by
1 2 2
V==(q; +
> (g; +9>)
and the coefficients a, and a, are
a==q a,=q,

The generalized momenta by using Equation (2.4) and Equation (2.5) are:

_oL d(mj:qlz_Hlp;

P70 il %
py= b AL g —_hy
9q, dt\ dq,
oL 7
T=——-=—q, =-H>
9q,
oL z
= =q9, :_Hz ’
94,
From Equation (2.6) and Equation (2.7) the primary constraints are given as
H" =7 +q,;
HY =7,-¢,;
H{" = p, =43
H) =p,+q,-

The canonical Hamiltonian F is given by
. 1
H.=¢i~d;+ (@ +42)-
Making use of (2.23), we can obtain the equation of motion for ¢, and ¢,
dg, +q,dt+dq, =0,
-dq, +q,dt —dq, =0.

These equations are given by

24,+q,=0;

24,-q,=0.
Equations (3.6) have the following solutions

t .ot
q, = Acos—+ Bsin—>:

V2 V2

/N2 -2

q,=Ae"™" +Be
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3.1)
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(3.2b)
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(3.3b)

(3.3¢)
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3.2 The Second Example

Let consider the singular Lagrangian:

.. .. .1
L= b = 0 = sdis =5 (@ +4: +43)- (-8)
The potential of this Lagrangian is given by
1
V=2 a4 3.9)
and the coefficients a;, a, and a, are
a4 =4q,> 4y =—q,> a3 =—q;
The generalized momenta by using Equation (2.4) and Equation (2.5) are:
p= Ok Aol ——hy (3.10a)
oq, dt\ g,
p, =L Aol ;i _py (3.10b)
q, q,
» :M_d[aLJ:q} —-H!; (3.10c)
3 . ..
0q, dt\ 94,
2=k —_ur: (3.10d)
G,
S 5100
94,
LN (3.100)
04,
By Equation (2.6) and Equation (2.7) the primary constraints are given as
H” =7,-q,; (3.11a)
HY =7, +q;; (3.11b)
H" =7, +4q5; (3.11¢)
H" =p, +¢,; (3.11d)
H;p:pz_ql; (3116)
Hi" =p,— g, (3.11f)
The canonical Hamiltonian F# is given by
oo 1
H.=q5+ (40 +4: +45)- (3.12)
Making use of (2.23), we can obtain the equation of motion for g,
dq; +q,dt +dg; = 0. (3.13)
This equation can be written as
2§, +q,=0, (3.14)
Which have the following solution
q, =AcosL+BsinL~ (3.15)

V2 V2
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4. Conclusion

This paper investigated the Hamilton-Jacobi formalism for singular Lagrangian with linear acceleration.
Lagrangians linear in accelerations with coefficients given by functions of coordinates alone yield primary
constraints. It is proven that the total derivative of the Hamilton-Jacobi function has been constructed using the
HIJPDEs and Hamilton-Jacobi function is integrable. It is shown that both the equations of motion and the
integrable action are obtained from the integrability conditions and the number of independent parameters are
determined from the rank of matrix 1y -
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