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Abstract 

In data mining, classification problems are among the most frequently discussed issues. Feature selection is a 
very important pre-processing function in the vast majority of classification cases. Its aim is to delete irrelevant 
or redundant features in order to reduce the feature dimension and computing complexity and increase the 
accuracy of classification. Current feature selection methods can be roughly divided into the filter method and 
the wrapper method. The former chooses the feature subset before classifying, whereas the latter chooses the 
feature subset during the classification procedure. In general, wrapper methods result in better performance than 
filter methods, but they are time-consuming. This paper therefore proposes a wrapper method called OA-SVM 
that uses an orthogonal array (OA) to make systemic rules of feature selection and uses support vector machine 
(SVM) as the classifier. The proposed OA-SVM is employed to test eight UCI databases for the classification 
problem. The results of these experiments verify that the proposed OA-SVM for feature selection can effectively 
delete irrelevant or redundant features, thereby increasing classification accuracy. 

Keywords: classification, feature selection, orthogonal array, support vector machine 

1. Introduction 

With the rapid progress of technology development, access to huge databases and their management is an issue 
that many enterprises are likely to face. Data mining techniques have consequently become some of the most 
important applications in recent years for solving this issue. The main purpose of data mining is to discover and 
analyze the useful information from large databases, to provide a reference for managers or decision makers. In 
general, data mining’s more commonly used capabilities are classification, clustering, affinity grouping, and 
prediction. Among those, classification problems are widely encountered in many fields. Classification, which is 
a type of supervised learning, uses a known training set to establish a prediction model for the categorization of 
data of an unknown class. 

In practical applications, data is usually pre-processed before establishing a prediction model, and this process is 
often referred to as feature selection. Data usually contains a large amount of features, but not every feature is a 
useful classification target. The removal of irrelevant or redundant features while ensuring that classification 
does not affect the accuracy of the target concept and the desired information may significantly improve a 
complex operation and increase efficiency (John, Kohavi, & Pfleger, 1994). Thus, feature selection technique is 
our focus in this paper.  

In order to increase accuracy and reduce the computing time, feature selection methods and data classification 
technology constitute the two major steps for classification problems. Many scholars have proposed different 
algorithms to improve the accuracy of classification in the feature selection methods, but the use of different 
methods on the same problem might produce different degrees of accuracy and efficiency. Thus, the choice of 
method is an important issue when determining how to address a particular problem. This study proposes a 
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wrapper method that uses an orthogonal array (OA, statistical methods) as a feature selection technique and 
support vector machine (SVM) for classification. The proposed method establishes a systematic rule for the 
selection of the feature subset to significantly reduce the computing time and increase classification accuracy. 

This paper is organized as follows. Section 2 introduces the concept of feature selection and briefly reviews 
some feature selection methods. In Section 3, the basic concepts of SVM and the OA are presented. The 
ROA-SVA is proposed to solve the feature selection problem for classification in Section 4. In Section 5, the 
wine (recognition) dataset adapted from UCI is used to show how to implement the proposed ROA-SVM. 
Comparisons based on benchmark data listed in the UCI demonstrate the effectiveness of the proposed 
ROA-SVM in Section 6. Finally the conclusion and suggestions for future research are presented in Section 7. 

2. Feature Selection Methods 

The main purpose of feature selection is to delete irrelevant or redundant variables and reduce space dimensions. 
Although an exhaustive search method is able to find the best feature subset, it is usually unrealistic and costly. 
Many heuristic or random methods, called feature selection methods, have been proposed by scholars to solve 
the above issues. Dash and Liu (1997) summarized a typical feature selection method in four steps, as shown in 
Figure 1. 

 Generation procedure: A procedure generates the feature subset which is evaluated in the next step. 

 Evaluation function: Evaluate the feature subset and generate a goodness (such as accuracy) to determine 
the candidate feature.  

 Stopping criterion: A criterion is used to decide when to stop the process to prevent an exhaustive search 
from taking place. 

 Validation process: The stopping criterion is usually the last step of a feature selection process; however, a 
validation procedure is necessary to compare the result of other feature selection methods to prove that the 
proposed method is valid. 

 
 

Figure 1. Feature selection process with validation (Dash & Liu, 1997) 

 

In generally, there are two kinds of feature selection methods: filter and wrapper methods (Blum & Langley, 
1997). Filter methods select the features subsets by analyzing the distance, information and other measures of the 
intrinsic data. Because filter methods do not rely on classification technology, the advantage of these methods is 
that calculation is simple and fast. The main disadvantage is that the mutual relations of the selecting subsets of 
features and classifier are ignored. Rokach et al. (2007) divided the filter method into ranker method and 
non-ranker method. The ranker method evaluates the features by a given measure and sorts the ranks; however, 
the non-ranker method only generates the feature subset and no ranks. The filter method is illustrated in Figure 2. 
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Figure 2. Filter method flow chart (Mladenić, 2006) 

 

The wrapper method uses the classifier directly to select features. This method therefore combines the feature 
selection method and classification technology. The pros and cons of the wrapper methods are opposite to those 
of the filter methods. Wrapper methods are usually computationally expensive and costly, but they demonstrate 
better performance than the filter methods (Zhu, Ong, & Dash, 2007). The wrapper method is illustrated in 
Figure 3. 

 
 

Figure 3. The flow chart of wrapper method (Mladenić, 2006) 

 

3. Introduction of SVM and OA 

The proposed ROA-SVM is based on the OA and SVM. Section 3.1 introduces the SVM for the classification 
method by illustrating the basic idea behind SVMs based on the linear model. The concept of OA will be 
introduced in Section 3.2.  
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3.1 SVM 

SVMs (Vapnik, 1995, 1998) have been proven to give excellent performance in binary classification cases. Let 
Xi=(xi1, xi2,…, xid)Rd be the ith training data, and yi{1,1} denote its class label for i=1,2,…,n. A hyper-plane 
can be written in the following form: 

 F(X)=WTX+b=0, (1) 

such that (as shown in Figure 4) 

 WTXi+b≥ 1, for yi= 1 (2) 

 WTXi+b≤−1, for yi=−1 (3) 

where W is normal to the hyper-plane, |b|/||W|| is the perpendicular distance from the hyper-plane to the origin, 
and ||W|| is the Euclidean norm of W. 

The above two equations can be combined and rewritten as 

 yi(W
TXi+b)≥1 (4) 

 

 
Figure4. Illustration of SVM 

 

The purpose of SVM is to find W and b in Equation (1) to maximize the margin  between two support 
hyper-planes 

 H1: W
TXi+b=1 (5) 

 H2: W
TXi+b=−1 (6) 

to separate two classes of data. Notice that =2d, where d is the distance between the hyper-plane and any one of 
the support hyper-planes and defined as 

 d=  (7) 

By above Equations (4) and (7), the SVMs problem can be summarized as a quadratic programming problem: 

  (8) 

such that Equation (4) is held. The above quadratic programming problem is also a convex optimization problem 
which can be solved using the Lagrange multiplier method after translating the quadratic programming problem 
using the Lagrange multipliers i ≥ 0, we have  

 L(W, b,)=  (9) 

To find the extreme point to minimize Equation (9), the partial differentiations are taken to Equation (9) with 
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respect to W and b and set to zero: 

  (10) 

  (11) 

The above two equations can be rewritten as follow: 

  (12) 

  (13) 

Substitute Equations (12) and (13) into Equation (9), we have  

 Maximize  (14) 

 s.t.  for all i ≥ 0. (15) 

For a convex problem, KKT conditions are necessary and sufficient to solve W, b and αi. Therefore, solving the 
SVMs problem is equal to solving the KKT conditions. The related KKT conditions are included Equations (4), 
(12), and (13), and the rest are listed below: 

 (Dual feasibility) αi≥0 (16) 

 (Complementary slackness) i[yi(W
TXi+b)−1]=0. (17) 

Notice that αi can be obtained by solving the quadratic programming problem listed in Equations (14) and (15). 
Next, Equation (12) is used to obtain W. Finally, b can be solved using Equation (17).  

Even in high dimensional feature space or nonlinear classification problems, SVMs can translate these problems 
to linear separable problems by convert function. Therefore SVMs have been widely used in various fields for 
feature selection problems in recent years (Tong & Koller, 2001; Lodhi, Shawe-Taylor, Christianini, & Watkins, 
2001; Burges, 1998; Papageorgiou, Evgeniou, & Poggio, 1998; Osuna, Freund, & Girosi, 1997; Viola & Jones, 
2001; Byvatov & Schneider, 2003; Furey, Cristianini, Duffy, Bednarski, Schummer, & Haussler, 2000). In this 
paper, we will use SVM as our classification method.  

3.2 OA 

An OA is an array of positive integers (called levels) arranged in rows (denoted experiments) and columns 
(denoted factors). The ith column denotes the ith feature, and the 0 in any combination is set to select the feature, 
1 as a waiver of the features. For example, only feature A is selected in Experiment 2 since A=0 and B=C=1 in 
Table 1. All columns exhibit the following properties of statistically independence in any OA: 

 Self-balanced: The number of each level is the same in each column. For example, Table 1 is a 2-level 
3-factor OA and level 0 appears the same number of times as level 1, i.e., twice in each column (factor). 

 

Table 1. Two levels and three factors OA 
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 Mutual-balanced: The number of any level is the same in each column. For example, level 1 appears the 
same number of times, i.e., twice in any column of Table 1. 

The above two properties are called the orthogonality. Algorithms for constructing OAs with various levels are 
found in (Rokach, Chizi, & Maimon, 2007). The details of OA are as follows. Let Ln(s

m) be an OA for n 
experiments, m factors and s levels per factor, where L denotes a Latin square. Eighteen standard basic OAs are 
listed as in Table 2. 

 

Table 2. The standard OA 

OA Row  Factor Maximum column number at these levels 

 Number Number ଵ଺ᇱܮ    ଵ଺ 16 15 15ܮ    ଵଶ 12 11 11ܮ   ଽ 9 4  4ܮ    7 7 8 ଼ܮ    ସ 4 3 3ܮ 5 4 3 2 ଷଶᇱܮ    ଷଶ 32 31 31ܮ   ଶ଻ 27 13  13ܮ ଶହ 25 6    6ܮ   ଵ଼ 18 8 1 7ܮ  5   5 16  ଷ଺ᇱܮ   ଷ଺ 36 23 11 12ܮ  9  1 10 32  ଺ସᇱܮ    ଺ସ 64 63 63ܮ   ହସ 54 26 1 25ܮ ହ଴ 50 12 1   11ܮ   13 3 16 36     ଵ 81 40  40଼ܮ  21   21 64 

 

Note that an additional experiment will be tested by the factor weighted analysis (FWA) based on the 
self-balanced property. The FWA can evaluate the effects of respective factors (hereafter called ‘features’ in this 
research) and determine whether a feature is needed after the result (which is defined as and called the ‘accuracy 
of classification’ in this research hereafter) of each experiment is given. Let wi denote the accuracy of experiment 
i, xij{0,1} denote the level of experiment i of feature j, and the effect of feature j be defined as 

 ej=  (18) 

If  

 ej  (19) 

then the feature j is selected in the additional experiment. For convenience in interpreting the FWA, some 
assumed values are added to Table 3. For example, feature A is obtained in experiments 3 and 4, but it is 
neglected in experiments 1 and 2. The effect of feature A (feature 1) can be computed as followed: 
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 ej=  (20) 

   (21) 

Therefore, feature A is selected in the additional experiment. We determine whether features B and C are 
likewise selected. We set A=0, B=0, and C=1 in the fifth experiment which means that the features A and B are 
obtained in the fifth experiment. Finally SVM is used to compute the accuracy of the classification. The best 
feature subset for feature selection is selected by ranking the accuracy of each experiment and choosing the 
highest one. 

 

Table 3. The additional experiment in Table 1 

Number of 
Experiment 

Features Accuracy 
(%) A B C 

1 

2 

3 
4 

0 

0 

1 
1 

0 

1 

0 
1 

0 

1 

1 
0 

75 

80 

85 

60 

5 0 0 1 unknown 

 

The OA is a special statistical design of experiments that studies the effects of several factors simultaneously to 
use the least number of experiments to explore the maximum number of factors and estimate the interaction 
between factors efficiently, rather than exploring all the possible combinations of assignments. Therefore, OA 
has the advantage of significantly reducing the number of experiments and simplifying the data analysis.  

4. The Proposed ROA-SVM  

This section discusses the details of how the proposed ROA-SVM combines recursive OA and SVM to conduct 
feature selection for classification problems. The proposed ROA-SVM is mainly based on the standard OA for 
two levels, such as L4(2

3), L8(2
7), L12(2

11), L16(2
15), L32(2

31), and L64(2
63). Let Zk=0, 3, 7, 11, 15, 31, and 63, where 

k=0,1,2,…,6. When the number of features are m and Zk<mZk+1, the OA denoted by	ܮ௓ೖశభሺ2௓ೖሻ is proposed. 
The procedure is recursive until no better accuracy can be found in each experiment.  

The proposed ROA-SVM is essentially the same for any number of features and experiments, but we will 
describe it in detail only for L4(2

3) shown in Table 1. SVM is used as the evaluation tools and classification 
method. We set 10-fold cross-validation in SVMs. In 10-fold cross-validation, the input data is randomly 
partitioned into 10 equal parts and a single part of the 10 parts is retained as the testing data for the model. The 
other 9 parts are used as training data. The cross-validation process is repeated 10 times, with each of the 10 
parts being used exactly once as the testing data.  

Finally, the 10 results can be averaged to produce a single accuracy. In experiment 1, the data with all features A, 
B and C are selected for SVM with 10-fold cross-validation to compute the accuracy of classification. In 
experiment 2, only feature B is obtained to compute the classification accuracy. Experiments 3 and 4 are proven 
likewise. In this way, we obtain the respective accuracy of each experiment. Note that, as mentioned in Section 
3.2, an additional experiment will be conducted with the FWA, in addition to the original experiments. Those 
features in the experiment that have the best accuracy will be selected and the remainder will be discarded in the 
next run. This procedure is repeated until there is no further improvement in accuracy. Figure 5 illustrates the 
flow chart of ROA-SVM. 
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Figure 5. The flow chart of recursive orthogonal array 

 

5. A Numerical Example: Wine Recognition Dataset 

In this section, the wine (recognition) dataset adapted from UCI is used to show the procedure of ROA-SVM. 
Wine dataset has 178 data patterns and 13 features. For a complete test and comparisons, 10-fold 
cross-validation is used; therefore, there are always 90% data in the training set and 10% data as the testing data. 
Because 121316, the L16(2

15) OA is used. The result of the first run in feature selection using the proposed 
ROA-SVM is shown in Table 4.  
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Table 4. The first OA results of wine dataset 

experiment 1 2 3 4 5 6 7 8 9 10 11 12 13 null null accuracy 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 45.51% 

2 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 83.15% 

3 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 91.01% 

4 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 65.17% 

5 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 47.19% 

6 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 83.15% 

7 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 91.57% 

8 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 66.29% 

9 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 91.57% 

10 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 61.24% 

11 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 48.31% 

12 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 80.34% 

13 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 88.76% 

14 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 59.55% 

15 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 47.19% 

16 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 86.52% 

17 0 1 1 1 1 0 1 1 1 0 1 0 1 1 0 93.82% 

 

In Table 4, the accuracy obtained by ROA-SVM is the percentage of correctly classified testing data. Table 4 
shows that Experiment 17, which has zeros in rows 1, 6, 10, 12, has the highest accuracy. Hence, features 1, 6, 
10 and 12 are selected for the next run.  

 

Table 5. The second round results of wine database 

experiment 1 6 10 12 null null null accuracy

1 0 0 0 0 0 0 0 93.82%

2 0 0 0 1 1 1 1 90.45%

3 0 1 1 0 0 1 1 88.76%

4 0 1 1 1 1 0 0 69.10%

5 1 0 1 0 1 0 1 76.97%

6 1 0 1 1 0 1 0 65.73%

7 1 1 0 0 1 1 0 88.20%

8 1 1 0 1 0 0 1 73.60%

9 0 0 0 0 1 1 1 93.82%

 

The results of the second run are presented in Table 5. The best accuracy is still 93.82% as found in the first run. 
Therefore, the features 1, 6, 10 and 12 are the best subset features in our proposed ROA-SVM with the best 
accuracy being 93.82%.  

6. Computational Experiments 

To evaluate its quality and performance for data mining, the proposed ROA-SVM is applied to and compared 
with the original SVM in eight widely referenced real-world datasets (including the wine dataset discussed in 
Section 4) which are adopted from the UCI Machine Learning Repository (Asuncion & Newman, 2007).  

These eight benchmark datasets are Balance scale weight & distance dataset (Balance), Iris plants dataset (Iris), 
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General description of thyroid disease dataset (Thyroid), Pima Indians diabetes dataset (Diabetes), Breast cancer 
dataset, Glass identification dataset (Glass), Wine recognition dataset (Wine), Australian credit approval dataset 
(Credit). The number of instances, classes, and features of these datasets are shown in Table 6. 

 

Table 6. Summary of eight adapted UCI dataset  

Dataset class feature instances

Balance 3 4 625 

Iris 3 4 150 

Thyroid 3 5 215 

Diabetes  2 8 768 

Breast Cancer 2 10 684 

Glass 7 10 214 

Wine 3 13 178 

Credit 2 14 690 

 

For a fair comparison, all tests and methods are based on the 10-fold cross-validation method. 

 

Table 7. Training and testing data number of dataset  

Dataset Number of Training Data Number of Testing Data 

Balance 562 63 

Iris 135 15 

Thyroid 193 22 

Diabetes 691 77 

Breast Cancer 615 69 

Glass 192 22 

Wine 160 18 

Credit 621 69 

 

To fully exploit the benefit and demonstrate the performance of the proposed ROA-SVM, two tests are used 
(Test1 and Test2). In Test1, the computational result provides a comparison between the proposed ROA-SVM 
and the conventional SVM. The datasets in Test1 for which the proposed ROA-SVM has failed to reduce the 
number of features are tested further in Test2. In Test2, the exhaustive method is implemented to remove all 
possible combinations of features to prove that all features are significant and none are removable in those 
datasets which were impossible to reduce in Test1. 

6.1 Test1 

Two SVM-based classifiers, ROA-SVM and traditional SVM, are implemented. The accuracy and the number of 
feature subsets on the eight UCI datasets based on SVM and ROA-SVM are summarized in Table 8. 
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Table 8. The result of feature selection on UCI data 

Data Features 
Selected Number of Features after using 

ROA-SVM 
SVM ROA-SVM

Balance 4 4 90.08% 90.08% 

Iris 4 4 98.00% 98.00% 

Thyroid 5 2 75.81% 95.81% 

Diabetes 8 2 65.10% 72.40% 

Breast 
Cancer 

10 4 65.79% 96.49% 

Glass 10 2 98.13% 99.07% 

Wine 13 4 45.51% 93.82% 

Credit 14 1 55.65% 85.51% 

 

The results of the above experiments (with the exception of the first two) show that the proposed ROA-SVM is 
superior to the conventional SVM in terms of both prediction accuracy and number of features.  

6.2 Test2 Based on the Exhaustive Method 

Excluding the balance and iris datasets, the accuracy of the other six datasets is increased with fewer selected 
features in the classification. To further test whether there are irrelevant or redundant features in the balance and 
iris datasets, the exhaustive method is used to test them. Since both datasets include only four features, a 154 
OA is used that only has two possible values, that is, 0 and 1; 0 in any combination is set to select the feature, 
and 1 is set as a waiver of the features as shown in Section 3. All the possible combinations of feature subsets 
and accuracies estimated by SVM for the balance dataset and iris dataset are listed in Tables 9 and 10, 
respectively. 

 

Table 9. The result of balance dataset using the exhaustive method 

Experiment 1 2 3 4 Accuracy

1 0 0 0 0 90.08%

2 0 0 0 1 75.52% 

3 0 0 1 0 75.52% 

4 0 1 0 0 75.36% 

5 1 0 0 0 75.68% 

6 0 0 1 1 70.08% 

7 0 1 0 1 66.56% 

8 1 0 0 1 67.36% 

9 0 1 1 0 67.04% 

10 1 0 1 0 67.20% 

11 1 1 0 0 71.04% 

12 0 1 1 1 63.52% 

13 1 0 1 1 63.52% 

14 1 1 0 1 63.52% 

15 1 1 1 0 63.52% 
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Table 10. The result of iris dataset using the exhaustive method 

Experiment 1 2 3 4 Accuracy

1 0 0 0 0 98.00%

2 0 0 0 1 95.33% 

3 0 0 1 0 95.33% 

4 0 1 0 0 96.67% 

5 1 0 0 0 96.67% 

6 0 0 1 1 80.00% 

7 0 1 0 1 95.33% 

8 1 0 0 1 95.33% 

9 0 1 1 0 96.00% 

10 1 0 1 0 96.00% 

11 1 1 0 0 95.33% 

12 0 1 1 1 73.33% 

13 1 0 1 1 54.00% 

14 1 1 0 1 95.33% 

15 1 1 1 0 96.00% 

 

No better accuracy can be found in either Table 9 or 10, which means that there are no irrelevant or redundant 
features in either the balance dataset or the iris dataset. Thus, either the proposed ROA-SVM can effectively 
reduce the number of features and efficiently increase the accuracy, or all features are important and cannot be 
removed, such as in the balance and iris datasets. 

7. Conclusions and Future Research 

Classification is an important task in data mining. Feature selection is always an important issue in classification. 
This work describes a new classifier design method called ROA-SVM to provide a systematic method for the 
effective deletion of irrelevant or redundant features. According to the testing result from Table 8, the 
classification result in 5th column using the proposed ROA-SVM method is better than the 4th column using 
SVM to classify the eight UCI dataset which includes: Balance, Iris, Thyroid, Diabetes, Breast Cancer, Glass, 
Wine, Credit. 

The comparisons based on eight common UCI benchmark datasets demonstrate the effectiveness of the proposed 
ROA-SVM method in deleting the irrelevant or redundant features and reducing the number of experiments, 
thereby increasing the accuracy of classification and computation time significantly. 

Our experimental results had shown a good achievement with the default SVM parameter settings. However, the 
parameter settings have a deep impact on classification performance, so how to adjust the parameters to achieve 
better performance is still worth researching. 
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