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Abstract 
The non-fragile guaranteed controller design problem for an interval system and a given cost function is discussed. A 
sufficient condition is established such that the closed-loop system stability and cost function is guaranteed to be no 
more than a certain upper bound with all admissible uncertainties as well as a controller gain perturbation uncertainty. A 
modified interval system described by matrix factorization will lead to less conservative conclusions. An effective linear 
matrix inequality (LMI) approach is developed to solve the addressed problem. Furthermore, a convex optimization 
problem is formulated to design the optimal non-fragile guaranteed cost controller which minimizes the upper bound of 
the closed-loop system cost. The effectiveness of this approach has been verified on a missile launched underwater 
attitude control system design. Simulation results on a real example are presented to validate the proposed design 
approach. 
Keywords: Interval system, Non-Fragile, Guaranteed cost control, LMI, Missile launched underwater 
1. Introduction 
A missile launched underwater is an essential naval device because it can be used in deep water and control large areas 
of sea. Being propelled by a rocket engine, the moving body’s mass, weight center, moment of inertia, thrust and speed 
are all variable during the attacking process, so its motion dynamic model is time-variant. The motion of a moving body 
is a system with the property of model uncertainty. It has a control system that meets the requirements of large distance 
runs and little time high-precision tactics but is vulnerable to the impact of model uncertainty. The deviation between 
the moving body and the predicted ballistic trajectory is large, even if the direction is completely reversed and causes 
the instability of the control system. Kim and Yuh (2002, p.169–182) provided a neuro-fuzzy controller for autonomous 
underwater vehicles. Furthermore, Silvestre and Pascoal (2007, p. 883-895) adopted a LMI methodology for controller 
design in a frequency domain. More importantly, for the aforementioned controller design methods, not all have 
considered the model uncertainty problem. A non-fragile guaranteed cost control problem, resulting from uncertainty in 
an all system matrices, has not been studied. 
In order to avoid the instability of the control system, the most commonly used method of predicting the motion test 
data is to extrapolate trends of identifying hydrodynamic parameters. This gives a basis for boundary prediction of the 
uncertain moving body and provides seaworthiness conditions to achieve the precision strikes purpose. The controller 
designs objective is to solve the problem that exists because of errors between the practical measurements and 
observation data of the hydrodynamic parameters identification model, and ensure that the moving body motion test has 
a good steady maneuverability. This paper considers the missile launched underwater model for an interval system, 
provides a non-fragile guaranteed cost controller design approach, and applies to a missile launched underwater control 
test, which is validated by a moving body’s control trajectory numerical simulation. 
The interval dynamic system is a typical parameter uncertain linear system. See, for example, the electrical machinery 
and the navigational control systems that may describe the interval dynamic system. In order for the design methods to 
be more useful, practical considerations need to be taken into account in the control design, for example, the inevitable 
model uncertainties, interval system, guaranteed cost control and even possible fragility. These issues will make the 
design more challenging. Recently, stability analysis and control synthesis of the interval systems have been discussed 
extensively (Wang, Anthony and Liu, 1994, p.1251-1255. Hu and Wang, 2000, p. 2106 – 2111. Mao and Liu, 2005, 
p.177-188). Hu and Wang (2000, p. 2106 – 2111) proposed a design method for a specific structure of a single-input 
interval system. Mao and Liu (2005, p.177-188) study the guaranteed cost control of the interval system but do not 
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consider the fragility or the results presented by the proposed M−
 matrix conditions. The existing approaches are 

limited and conservative and furthermore, in application, the Riccati equation algorithm cannot be guaranteed to be 
convergent. Very little open literature covering the research guaranteed cost control of interval system has been 
published and the fragility problem has not been considered.  
Controller fragility problems have attracted considerable attention (Zhang, Zhou and Li, 2007. 5 p.118-5133). It is 
known that in most engineering systems, fragility is a common dynamic problem and is caused by many factors. 
Reduction in size and cost of digital control hardware result in limitations in available computer memory and word 
length capabilities of the digital processor. These further result in computational round off errors leading to controller 
implementation imprecision. The control system designers should consider that any controller that is part of a feedback 
system should be insensitive to some amount of error with respect to its gains.  
In this paper, the LMI approach is used to study the design problem of non-fragile guaranteed cost controller of an 
interval system. The designed controller will be able to guarantee the robust stability of the closed-loop system in the 
event of plant and controller gain perturbation uncertainty. Its application is given to illustrate the effectiveness and 
necessity for the control design. 
2. Model description and problem Statement 
Within the coordinate system for the bodies measured from the center of buoyancy (Zhang, 1999, p.42-96), the missile 
launched underwater vertically dynamics and kinematics equation in vertical plane movement is established: 
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Where (1 3,1 9)ijk i j≤ ≤ ≤ ≤ are the hydrodynamic parameters. α  is the angle of attack, θ  is the pitching angle,Θ is the 
angle of trajectory, zω is the pitching angular velocity, 

eδ is the elevator deflection angle, ,e ex y  are the center of 
buoyancy coordinates of the ground coordinate system. 
In a given speed and trim depth, the state-space equation of the vertical movement of small perturbation can be 
expressed as: 

( ) ( ) ( )x t Ax t Bu t= +&   0(0)x x=                                                    (1) 
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Where ( ) [ , , , , ]T n
zx t v y Rα ω θ= ∈ , pu R∈ denote the state vector and the control vector respectively, y is the trim 

depth. A is the state matrix and coefficients (1 5,1 5)ija i j≤ ≤ ≤ ≤  are hydrodynamic parameters. B is the input matrix 
and interval matrix n nA R ×∈  and n pB R ×∈  vary with the hydrodynamic parameters and can be shown as: 
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( )0 : / 2,M mB B B= + ( ): / 2 :M m
ij ijB B B b⎡ ⎤= − ⎣ ⎦  

Where ,m MA A , ,m MB B are known real matrices, ijA denotes that the ,i j th component is ija  with all other entries 
being zeros, and can be factorized into T

ij i ja e e× . A and B can be described as an equivalent form: 
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Where 

[ ]11 1 21 2 1, , , , , , , 1 1,1 ,A n n n nn ijF diag i j nλ λ λ λ λ λ λ= − ≤ ≤ ≤ ≤L L L  
11 1 21 2 1, , , , , , , 1 1,1 ,B p p n np ijF diag i j pβ β β β β β β⎡ ⎤= − ≤ ≤ ≤ ≤⎣ ⎦L L L  

are diagonal structured uncertainty matrices which satisfy 

2 ,T
A A n

F F I≤  ( ) ( ).
T

B B n p n pF F I × × ×≤                                                        (2) 
Let ie  denote standard basis column vector in nR  with zero entry except for the ,i j th component.  
The controller gains perturbations with uncertainties are considered and the actual control input implemented is 
assumed to be ˆ( ) ( ) ( ) ( )u t Kx t K K x t= = + Δ , K  is the nominal control matrix, k k kK D F EΔ =  is the controller gain 
matrix form, ,k kD E  are known constant dimension matrices ands ( )kF t  represents the control gain variation and 
satisfies  

T( ) ( )k kF t F t Iδ<                                                                   (3) 
Where 0δ >  is the controller gain perturbation bound. 
The cost function associated with this system is: 

0
ˆ ˆ( )( ) ( )T TJ x t Q K RK x t dt

∞
⎡ ⎤= +⎣ ⎦∫                                                            (4) 

Where Q  and R  are given weighting matrices.  
Substitute (1) into (5) and the resulting closed-loop system is: 

[ ]0 0 0 0 1 1( ) ( ( ) ) ( ( ) )( ( ) ) ( )A B k k kx t A D F t E B D F t E K D F t E x t= + + + +&                                               (5) 
Lemma 1(Khargonekar, Petersen and Zhou, 1990, p. 356-361) Let 1, ,Y M N  and ψ be matrices of appropriate 
dimensions and assume ψ is symmetric, satisfying T Iψ ψ ≤ , then  

T T T
1Y M N N Mψ ψ+ + < 0  

if and only if there exists a scalar 0ε > satisfying 
T 1 T

1Y MM N Nε ε −+ + < 0  
3. Main results 
The following theorem provides a sufficient condition for the existence of the non-fragile guaranteed cost controller and 
a design procedure for such controllers. 
Theorem 1. A control law ˆ( ) ( )u t Kx t=  is said to be a non-fragile guaranteed cost control associated with cost matrix 

0P >  for the system (1) and cost function (4) if the following matrix inequality 
T Tˆ ˆ ˆ ˆ( ) ( ) 0Q K RK P A BK A BK P+ + + + + <                                               (6) 

holds for all admissible uncertainties (2) and (3). The closed-loop cost function satisfies 
* 1

0 0 ( )TJ J x Px tr X −≤ = =                                                             (7)

 in which 0x  is the initial state. 
Proof: Choose a Lyapunov function as 

T( ) ( ) ( )V x x t Px t=  
Then the time derivative of ( )V ⋅  along any trajectory of the closed-loop system (5) is given by 

T Tˆ ˆ( ) ( ) ( ( ) ( ) ) ( )V x x t P A BK A BK P x t= + + +&  
According to inequality (6), it is possible to obtain 

T T( ) ( )( ) ( ) 0V x x t Q K RK x t< − − <&  
Therefore, the closed-loop system (5) is asymptotically stable. Furthermore, by integrating both sides of the above 
inequality from 0  to T , 
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T
0 0( (0))J V x x Px J ∗≤ = =  

can be obtained. Thus, the theorem 1 is true. 
Here, *

0 0
TJ x Px=  depends on the initial condition 0x . Assuming 0x is a zero mean random variable 

satisfying { }0 0
TE x x I= , the guaranteed cost then also leads to { } { }* *

0 0 ( )TJ E J E x Px tr P= = = . 
The objective of this paper is to develop a procedure for determining a state feedback gain matrix K̂  which contains 
controller gain perturbation such that the control law ˆu Kx=  is a non-fragile guaranteed cost control of the system (1) 
and cost function (4). 
Theorem 2. There exist non-fragile guaranteed cost controllers for the system (1) and the cost function (4), if there 
exists scalars 1 20, 0ε ε> > and 3 0ε > , symmetric positive definite matrices 0X >  and a matrix Y  such that 
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Furthermore, if ( , , )X Yε is a feasible solution to the inequality (8), then ˆu Kx=  is a non-fragile guaranteed cost 
controller of the system (1), where the feedback gain matrix K̂  is given by 1( ) ( )u t YX x t−=  and the corresponding 
closed-loop cost function satisfies (7). 
Proof: By manipulating the left-hand side in inequality (6), it follows that the inequality (6) is equivalent to   

T
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By applying lemma 1, the above inequality holds for all kF  satisfying T( ) ( )k kF t F t Iδ<  if and only if there exists a 
constant 1 0ε > such that 
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By manipulating the left-hand side in inequality (6) again and the above inequality (10) it follows from the Schur 
complement, that the above inequality is further equivalent to the following inequality 
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Applying lemma 1 again, the inequality (11) holds for all ,A BF F  satisfying T T( ) ( ) , ( ) ( )A A B BF t F t I F t F t I≤ ≤  if and only if 
there exists constants 
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It follows from the Schur complement again, that the above inequality is further equivalent to the following inequality 
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Defining the Matrixes 1X P−= , and considering the change of variable Y KX=  and by pre- and post-multiplying the 
left-hand side matrix in the above inequality by the matrix { }1diag P I I− L , respectively, it can be concluded that 
the above matrix inequality is equivalent to (8). Thus the proof is complete. 
Theorem 3. Consider system (1) with cost function (4). If the following optimization problem 

1 2 3, , ,
min tr(W)

X Yε ε ε ,
                                                                              (12) 

subject to      (i)  (8) 

(ii) W I
I X

⎡ ⎤
>⎢ ⎥

⎣ ⎦
0  

has a solution 1 2 3( , , , )X Yε ε ε , , then the control law 1( ) ( )u t YX x t−=  is an optimal state feedback non-fragile 
guaranteed cost controller which ensures the minimization of the guaranteed cost T 1

0 0 ( )J J x Px tr X∗ −≤ = =  for the 
uncertain system (1). 
Proof. If 1 2 3( , , , )X Yε ε ε ,  is a feasible solution to the optimization problem (12), then 1 2 3( , , , )X Yε ε ε ,  is also 
the feasible solution to the inequality (8), by theorem 2, 1( ) ( )u t YX x t−=  is a non-fragile guaranteed cost controller of 
the system (1).  
It follows from the Schur complement that (ii) in (12) is equivalent to 1 0W X −> > . Thus, the minimization of the trace 
of W  implies the minimization of the trace of the matrix 1X − , that is, the minimization of the guaranteed cost for the 
uncertain system (1). The optimality of the solution of the optimization problem (12) follows from the convexity of the 
objective function and of the constraints. Thus the proof is completed. 
4. Application to motion control testing 
Consider a certain missile launched underwater system model for interval system (1), given in a state space 
representation, where the system matrices are as follows:  

0

0.6725 1.1448 0 1.1448 0
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0 0 1 0 0
0 20 0 20 0

e
A

− −⎡ ⎤
⎢ ⎥− − −⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦  

0

0
0.5481

17.5204
0
0

B

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦   

0.21 0.33 0 0.33 0
0.003 0.96 0.006 2 4 0
0.003 15 1.8 0.003 0

0 0 0.3 0 0
0 0 0 0 0

ij

e
A

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 [ ]0 1.5 5 0 0 T
ijB =  

[ ]0.01 0 0.01 0 0.1kD =  5kE I=  
Given condition 0.4δ = , the weighted matrices of cost function (4) are

1 5,Q I R I= = .  
By applying theorem 2 and solving the corresponding optimization problem theorem 3, respectively, the optimal 
guaranteed cost controller is obtained 

[ ]-0.0082 -0.3522 1.9412 8.4362 1.0629K =   
and where 1 1ε = , 2 2ε = , 3 3ε =  

1.2644 -0.075922 0.13708 0.016271 -0.39485
-0.075922 1.0159 -2.0284 0.40753 1.3216
0.13708 -2.0284 16.993 -1.6134 -2.4166
0.016271 0.40753 -1.6134 0.43226 -0.34916
-0.39485 1.3216 -2.4166 -0.34916 7.6195

X

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, [ ] -1.0047e-006 0.5481 17.52 -1.566e-006 -4.636e-006Y =  
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The associated upper bound over the closed-loop cost function is 13.8775J ∗ = . 
Assuming  

1 sin(5.00 )dF F tπ= = 2 cos(2.00 )F tπ= − 0.5916sin(10.00 )kF tπ= (Shown as a dashed line);
1 2 1dF F F Fk= = = =  

(continuous line);
1 2 1dF F F Fk= = = = −  (line of stars), carry out the dynamic response test with the three sets of data 

aforementioned. The results are shown in Figures 1 to 5.  
Figures 1 to 5 show that the system is asymptotically stable for the all admissible uncertainties between the largest and 
smallest bound and it has a good dynamic performance.  
The robust non-fragile optimal guaranteed cost controller obtained guarantees the asymptotic stability and the upper 
bound of cost function *J . In this case, the matrices ijA  and ijB  perturbation range of parameters achieve 30%, 
showing that this method is effective, performs greater flexibility for the

1 2,D D ,
1 2,E E choice in practical applications and 

produces a less conservative conclusion in (Hu and Wang, 2000, p. 2106 – 2111) than was obtained from a square root 
in the interval matrix. It is also simpler than the algorithm in (Mao and Liu, 2005, p.177-188) 
5. Conclusion 
This paper provides a description about the dynamic interval system of missile launched underwater uncertainty model. 
The practice system model can be obtained through a series of tests and hydrodynamic parameter identifications. An 
effective LMI approach is developed to solve the problem of uncertainty and synthesis modeling error and simplify the 
controller design and calculation. The proposed design can guarantee the robust stability such that the cost function of 
the closed-loop system is guaranteed to be no more than a certain upper bound. It can be applied to a missile launched 
underwater motion control test to avoid other algorithms that are not always convergent and are more conservative. It 
also reduces the complexity of controller design and increases the control precision of attack target effectively. 
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Figure 1. Three class of velocity 



Vol. 3, No. 7                                                                  Modern Applied Science 

 134 

 
Figure 2. Three class of angle of attack 

   
Figure 3. Three class of pitching angular velocity 

 
Figure 4. Three class of pitching angle 

 
Figure 5. Three class of trim depth 

 

 


