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Abstract 

An Ising effective field theory (EFT) is presented to calculate the characteristic magnetic properties of a 2D 
nano-island presenting an out-of-plane magnetization, and subject to an applied in-plane transverse magnetic 
field. A non-diagonal Ising Hamiltonian with nearest neighbor exchange, single-atom magnetic anisotropy, and a 
transverse Zeeman term, defines the ground state of the system. We investigate the effects due to the transverse 
field acting on the magnetic order, in conjunction with those due to the reduced dimensionalities of the core and 
periphery domains of the nano-island. The choice of a model spin S ≥ 1 for the atoms permits the analysis of spin 
fluctuations via the single-atom spin correlations. A numerical method is developed to avoid approximations 
inherent to analytical treatments of the non-diagonal Hamiltonian for spin S ≥ 1 systems. It is applied 
successfully for nano-island spin S = 1 and 2 systems, generating accurate EFT results. Detailed computations 
are made for the characteristic magnetic properties of the nano-island over its hexagonal lattice, and applied 
numerically to calculate the properties of the 2D Co nano-island on an fcc(111) surface. It is shown how the 
transverse magnetic field perturbs the magnetic order, generating spin correlations and magnetizations for the 
core and periphery domains that are fundamentally different along the longitudinal and transverse directions. The 
transverse field drives the system Curie temperature to lower values with increasing strength. The isothermal 
susceptibilities are shown to be exchange dominated along the out-of-plane direction and quasi-paramagnetic in 
the inplane. A characteristic thermodynamic function that scales directly with the spin and the transverse field is 
derived for the correlations of the longitudinal and transverse spin components on the nano-island atomic sites. 

Keywords: properties of magnetic nano-islands, Ising spin model, nano-islands subject to transverse magnetic 
fields 

1. Introduction 

The study of the magnetic properties of nanostructures on surfaces is of current interest because of the potential 
use of these structures as basic elements in information storage technology. The 2D magnetically ordered 
nano-islands on metallic and buffer layer substrates, as Co nano islands on Pt, Au, and Ag (Rasponi et al., 2003; 
Gambardella et al., 2005; Weiss, 2004; Sessi et al., 2010), constitute a promising class. These nano-island 
systems present out-of-plane magnetic order.  

Previously, we gave the Ising spin effective field theory (EFT) for the characteristic magnetic properties of the 
2D nano-islands free from externally applied magnetic fields (Khater & Abou Ghantous, 2011), and also model 
calculations for such nano-island systems when subject to magnetic fields applied out-of-plane (Abou Ghantous 
& Khater, 2011).  

The purpose of the present paper is to extend the EFT theory to investigate the consequences to the nano-island 
systems of magnetic fields applied in-plane. The present Ising spin model calculations, furthermore, are given 
for spins S ≥ 1. These model calculations are applied in particular to compute the characteristic magnetic 
properties of 2D Co nano-islands on Pt(111) surface. 

The influence of an in-plane or transverse field may be traced back to the work of de Gennes (1963) who 
introduced this term to take into account the tunneling between two potential wells in ferroelectric crystals. Blinc 
(1960) introduced the notion of a pseudo-spin 1/2, and Stinchcombe (1973) is the first to use the field theoretical 
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approach to treat the transverse field in an Ising spin 1/2 model. Kaneyoshi et al. (1993) have considered this 
transverse field for some cases of higher spin in bulk systems, but neglected the anisotropy. 

In more recent years theoretical results have been published which combine the single-atom magnetic 
anisotropies and transverse magnetic fields (Jiang et al., 1993, 1994; Elkouraychi et al., 1993; Htoutou et al., 
2004, 2005; Yüksel, 2010). These are computed using the EFT approach (Kaneyoshi et al., 1979; Sá Barretto et 
al., 1985; Kaneyoshi et al., 1992; Khater et al., 1992; Fittipaldi, 1992; Tucker, 1994; Kaneyoshi, 2002, 2003). 
The more recent works consider in particular bulk systems, and honeycomb and square lattice symmetries, with 
spin S = 1. Despite these developments, theoretical results are still lacking for magnetic properties of interest for 
confined nanostructures, and for spin S > 1 systems. 

In the present paper we develop a novel approach which avoids analytical approximations inherent to previous 
theoretical treatments of Ising spin Hamiltonians which present both diagonal and off-diagonal terms (Kaneyoshi 
et al., 1993; Htoutou et al., 2004, 2005; Yüksel, 2010). This novel approach is general for any spin system. 
Significantly, our results go to the appropriate limits when we suppress selectively the single-atom magnetic 
anisotropy or the transverse magnetic field. The model computations are carried out in particular for the 
hexagonal lattice symmetry, and for the spin S = 1 system, as this is the symmetry of Co nano-islands on fcc(111) 
metallic surfaces, and for the spin S = 2 system to illustrate the robustness of the approach. Lower lattice 
symmetries such as square or honeycomb are treated in a straightforward manner within the present model. 

The characteristic magnetic properties are then calculated using the nondiagonal Ising spin Hamiltonian which 
contains the nearest neighbors exchange, single-atom magnetic anisotropies, and transverse applied magnetic 
fields. The choice of the spin S = 1 for the system corresponds to the Co spin, and permits the analysis of local 
spin fluctuations via the single site spin correlations, which are responsible for many of the magnetic properties 
of the nano-island systems (Khater & Abou Ghantous, 2011; Abou Ghantous & Khater, 2011). 

Our present computations yield in particular the longitudinal and transverse components of the single-atom spin 
correlations, and the domain magnetizations and isothermal susceptibilities, for both the core and periphery 
domains. The distinction between these domains on the nano-islands is based on their structural differences due 
to different dimensionalities underlined by an order of magnitude ratio between their corresponding local 
anisotropies. The magnetic exchange in contrast is the same throughout the system. 

The paper is organized as follows. The Ising spin Hamiltonian and required information related to our new EFT 
theoretical and numerical model approach are presented in section 2. In the following section 3, we apply this 
model to obtain numerical results for the characteristic magnetic properties for the core and the periphery 
domains of the nano-island spin S = 1 system on a hexagonal lattice, subject to an applied transverse magnetic 
field. Since higher spin systems can also be treated within the framework of this model, we give elements related 
to the nano-island spin S = 2 system as an example of the new numerical approach validity range. Finally, the 
conclusions and discussion are presented in section 4. 

2. Numerically Generated Ising EFT Model 

The general Ising spin Hamiltonian H for a spin S, of an ordered magnetic nano-island system which contains 
exchange, local magnetic anisotropy, and applied transverse magnetic fields, may be expressed as 

2

,
iz jz i iz ix i

i j i i i

H J S S D S S H                                (1) 

The local Hamiltonian may then be written as  
2

i iz ix i izH xS S D S                                     (2) ⟨i, j⟩ denotes the sum over all nearest neighbours. J is the magnetic exchange, Di the single-atom anisotropy, 
different for core atoms, Dc, and periphery atoms, Dp, and Ω the transverse magnetic field, all in meV energy 
units. The parametric variables for the core atoms will not carry a subscript in general, whereas those for the 
periphery atoms shall carry systematically the subscript p. Note that the core and periphery atoms of a 
nano-island have different coordination numbers zc > zp, for any considered lattice, and hence different 
dimensionalities. Note also that the core domain of a nanoisland has a much greater number of atoms than the 
periphery domain on the nano-island outer boundary; for example, the number of Co periphery atoms does not 
exceed 15% of the total Co nano-island atoms, as has been experimentally verified (Weiss, 2004). 

The exchange energy J induces the spin alignment along the z-direction. In contrast, the off-diagonal applied 
magnetic Ω field tends to perturb this magnetic order, generating a thermodynamic average for the spin 
component along the x-direction, and may also induce quantum-mechanical tunneling, flipping spin orientations. 
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The local Hamiltonian in Equation (3) remains however invariant when Sz goes to −Sz on a site, leaving Sx 
unchanged under a Z2 symmetry. 

The spin operators of the local Hamiltonians may be correlated in principle for neighboring sites. This problem 
is considered for the spin S = 1/2 system by Sá Barretto et al. (1985) using the EFT approach. However, for 
higher spin values, as those considered in the present investigation, the approach in the cited reference does not 
apply. To be able to reach a point where numerical calculations become useful, a decoupling approximation is 
hence considered in the present work which neglects neighboring site correlations but retains single-site 
correlations. This maintains the invariance of the thermodynamic magnetic properties under spatial translation 
for each domain over its dimensionality. It permits the computation of the magnetic properties of the nano-island 
system for arbitrary temperatures except in the neighborhood of the order-disorder transition temperature Tc 
when critical fluctuations render inapplicable the EFT approach. 

In the mixed Hamiltonian of Equation (1), the single-atom magnetic anisotropy term is diagonal but the 
transverse magnetic field term is off-diagonal, in the spin states. Kaneyoshi et al. (1993) considered the problem 
of a bulk system with arbitrary spin subject to a transverse field but neglected the magnetic anisotropy. In recent 
work (Jiang et al., 1993, 1994; Elkouraychi et al., 1993; Htoutou et al., 2004, 2005; Yüksel, 2010), attempts are 
made to elaborate analytical approximations towards the diagonalization of the mixed Hamiltonian of Equation 
(1) for bulk spin S = 1 systems. Despite their usefulness these treatments are limited and inapplicable for higher 
spins. 

In contrast in the present model calculations, we fully treat both the diagonal and off-diagonal terms of the mixed 
Hamiltonian for the nano-island spin S = 1 and 2 systems, using a numerically generated EFT method to obtain 
results directly. This approach avoids the previous analytical approximations, which is a necessary condition 
because the magnetic properties of the nano-island systems depend in a sensitive manner on the domain and 
periphery dimensionalities and on their spin correlations (Khater & Abou Ghantous, 2011; Abou Ghantous & 
Khater, 2011). This numerical approach yields accurate EFT results valid for a wide range of Di and Ω values. 

Using quantum mechanics, the EFT generating functions fOp(x, Di, Ω) are evaluated. These are necessary to 
formulate the thermodynamic averages for the spin operators Op on the domain sites. For example, the matrix 
representations for Siz and Six for spin S = 1 yield following Equation (2) a local spin Hamiltonian matrix in the 
form 

2

2 2

0

( , ,

2

) 0

0

i

i i

i

D x

H x D

D x

  
 

     
 





 


  
 

                               (3) 

The thermodynamic average for a given spin operator Op is calculated as the trace of the product of this operator 
with the density matrix. Since Hi(x, Di, Ω) of Equation (3) is not diagonal, it is necessary to develop an 
appropriate product. We have consequently developed a symbolic and numerical procedure to treat the matrix 
function Exp[−βHi] without analytical approximations. We have extensively checked this symbolic and 
numerical approach, retrieving exact well known results when the transverse field or the anisotropy are 
selectively suppressed. This numerical formulation can be applied successfully to higher spin values provided 
the appropriate decoupling approximations for higher order single site spin operators are adopted. 

We present below the general expression, written in the Mathematica code, for the characteristic generating 
functions fOp, as used in our manipulations of the symbolic and numerical package, where β = 1/kT with 
temperature kT in units of meV 

 
 Op

Tr Op.MatrixExp ( , , )
( , , )

Tr MatrixExp ( , , )

i c

i

i c

H x D
f x D

H x D

    
   

                      (4) 

In the limit 0 , Equation (4) reduces appropriately to the generating functions derived in previous work for 
the corresponding systems (Kaneyoshi et al., 1993; Khater & Abou Ghantous, 2011; Abou Ghantous & Khater, 
2011). The operation of Exp in Equation (4) is defined in the Mathematica package as the code MatrixExp. To 
illustrate these generating functions, we give in the appendix the exact Van der Wearden identity for S = 2 and its 
characteristic functions as deduced from Equation (4), omitting the anisotropy therein for simplicity. 

The thermodynamic canonical averages in EFT concern the appropriate set of spin operators in the system. For 
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the present calculation, these are the longitudinal and transverse magnetizations, namely mz = <Szi> and mx = 

<Sxi>, the single site component correlations 2
zz ziq S  and 2

xx xiq S , and the single site cross correlations 

zx zi xi zz xi ziq S S q S S   , where i denotes a given site on the core and periphery domains. The computations 

of these variables are developed using the exact Van der Wearden identities. For spin S = 1, for example, this 
identity is 

2 2exp( ) cosh( ) sinh( ) 1z z z zJS S J S J S                             (5) 

where ∇ = ∂/∂x is the differential operator. In Equation (5) the operators for the magnetizations Sz and the single 
site spin correlations 2

zS  are clearly identified under the identity. The EFT approach is general and may be 

applied to higher spin values with corresponding Van Der Wearden identities, but for these systems one needs to 
make appropriate decoupling approximations for the multiple-spin correlations as shown for the S = 2 system, 
for example, in the appendix. 

The developed Mathematica package that pilots the code to calculate Equation (4) consists of a number of 
symbolic and numerical procedures. To give an idea of its scale, one manipulates ∼ 500 and ∼ 1500 terms for 
the square and hexagonal lattices, respectively. These terms are necessary to compute the canonical averages for 
each magnetic variable, and their number increases considerably with increasing zc, reaching ∼ 20000 terms for 
an fcc lattice for S = 5/2 systems (Abou Ghantous et al., 2012a, 2012b). The developed package solves these 
symbolic problems for the needed expressions in a direct way. 

For a core site pertaining to the nano-island core domain, modeled by a 2D lattice with coordination number zc, 
the generating equations that yield the required thermodynamic averages for a given spin operator, ⟨Op⟩, are 
expressed generically as 

  OpOp exp( ) ( , , ) 0
zc

zc cJS f x D x                           (6) 

A core site interfacing the periphery domain has nearest-neighbor atoms in the core as well as on the periphery 
domain, which necessitates writing separate generating equations. However, since the core domain is 
significantly larger than the periphery domain, we neglect the periphery-core exchange interactions for the core 
Hamiltonian. 

All atomic sites pertaining to the periphery domain interface naturally the core domain, and have each r 
nearest-neighbor atoms on the periphery and s nearest neighbors in the core domain. The required generating 
equations for a periphery site are hence given by 

 8 OpOp exp( ) exp( ) ( , , ) 0
r

zp zc pJS JS f x D x                         (7) 

The exponential operators in Equations (6), (7), and (8) are replaced by the Van der Wearden identity of Equation 
(5) for spin S = 1, and should be replaced by the appropriate Van derWearden identities for any other given spin 
system. Note that zc = 6 > zp = (r + s) for a hexagonal lattice, and that the differential operator has the following 
property 

Op 0 Op 0 Op( , , ) ( , , ) ( , , )a
i x i x ie f x D f x a D f a D

                        (8) 

Equations (6), (7), and (8) are necessary and sufficient to compute the magnetic properties for the core and 
periphery domains as detailed as follows.  

Equation (6) and Equation (8) for the core domain sites generate in their applications to the site spin operators 
and single-atom spin correlations, a system of nonlinear polynomial equations in the longitudinal and transverse 
magnetizations, mz(kT; J, Dc, Ω) and mx(kT; J, Dc, Ω), and in the single-atom spin correlations qzz(kT; J, Dc, Ω), 
qxx(kT; J, Dc, Ω), and qzx(kT; J, Dc, Ω). They are self-consistent equations which can be used to solve 
successively for the magnetic variables of interest. For example, the magnetization m for a core site can be 
calculated from its its characteristic reduced polynomial 

3 5(1) (3) (5)z zc z z zm S a m a m a m                            (9) 

and the single-atom spin correlations qzx for a core site may then be calculated from its characteristic reduced 
polynomial 

2 4 6(0) (2) (4) (6)zx zc xc z z zq S S e e m e m e m                        (10) 

Equation (7) and Equation (8) for the periphery domain sites generate in their applications, using r = 2 and s = 2 
for the hexagonal lattice, the set of nonlinear polynomials per periphery site for the longitudinal and transverse 
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magnetizations, mzp(kT; Ω, Dp; mz, qzz) and mxp(kT; Ω, Dp; mz, mx, qzz), and single atom spin correlations qzzp(kT; 
Ω, Dp; mz, mx, qzz), qxxp(kT; Ω, Dp; mz, mx, qzz), and qzxp(kT; Ω, Dp; mz, mx, qzz). We give here only those for mzp 
and qzxp as a sample representation 

2 4(0) (1) (2) (4)zp zp zp zpm u u m u m u m                            (11) 

2 4(0) (1) (2) (4)zxp zp zp zpq p p m p m p m                           (12) 

The coefficients a(n), e(n),..., and u(n), p(n),..., in Eqs.(9, 10,...; 11, 12...) are in general extensive polynomial 
functions of the temperature kT, core variable qzz, and system constants (Ω, J, Dc, Dp). They are determined 
exactly from the numerical results obtained by applying the symbolic and numerical procedures of the 
Mathematica package code. It is in this sense that Equations (9, 10, ...; 11, 12...) are accurate numerically 
generated results. The ensembles of the nonlinear polynomial equations are obtained directly in our procedure; 
however, they will not be detailed here because of their extensive symbolic and numerical character. 

Higher nano-island spin S > 1 systems generate, for the same lattice, higher-order nonlinear polynomial 
equations, characteristic of the corresponding zc core, and r and s periphery, coordination numbers. 

To obtain unique solutions for the magnetic variables for the core domain, the nonlinear polynomials for mz and 
qzz must be satisfied simultaneously at all temperatures. Note that Equation (9) admits simple solutions for mz, 
which correspond to four for the hexagonal lattice. We have developed a specific procedure to solve for the 
unique solution of this variable in the entire temperature range, see details in (Khater & Abou Ghantous, 2011; 
Abou Ghantous & Khater, 2011). Substituting for the physically appropriate root mz from Equation (9) into the 
nonlinear polynomial for qzz, we are able to reduce the latter to a polynomial identity in the single-atom spin 
correlations qzz(kT; Dc, Ω). The set of the calculated unique physical solutions for mz and qzz permit in turn the 
determination of the transverse magnetization mx(kT; Dc, Ω), and the single-atom spin correlations qxx(kT; Dc, Ω) 
and qzx(kT; Dc, Ω), for the core domain from Equations (9, 10, ...). 

The core domain results are injected in the periphery polynomial equations Equations (11, 12, ...) to obtain the 
corresponding variables qzzp and mzp for the periphery atoms. These permit in turn the determination of the 
transverse magnetization mxp, and the correlation variables qxxp and qzxp. 

The above results give direct access to the isothermal longitudinal and transverse susceptibilities, χz(kT; Ω) and 
χx(kT; Ω), for the core and periphery domains, under the influence of the transverse magnetic field. The 
susceptibilities are calculated in the normalized form 

22( ; ) /X X kT S S kT   
                              (13) 

where α = x, z. The longitudinal and transverse susceptibilities, for a core site, χz and χx, and for a periphery site, 
χzp and χxp, are consequently calculated using Equation (13). 

The characteristic magnetic properties for a nano-island system are consequently computed in a comprehensive 
manner. The model calculations for the spin S = 1 system are applied numerically to compute the magnetic 
properties for the 2D mono-layer Co nano-islands on nonmagnetic fcc(111) metal surfaces. Since this 
nano-island system presents a hexagonal lattice symmetry, it is of interest to specifically consider this lattice. The 
numerical results are computed using the magnetic exchange and core anisotropy constants, J = 2 meV and Dc = 
−0.1 meV respectively, characteristic of the 2D Co nano-islands on Pt(111) substrates. The present computations 
consider in particular the influence of low and high transverse magnetic fields, namely for Ω/J = 1/2 and Ω/J = 3, 
in comparison with the nearest neighbor magnetic exchange. The EFT model computations for the honeycomb, 
square and hexagonal lattices show common features for the magnetic properties of the nano-island under an 
applied transverse field. However, the results presented here are only for the hexagonal lattice. 

3. Magnetic Properties of the Hexagonal Nano-Island Under the Influence of a Transverse Magnetic Field 

The calculated results for qzz and qxx for the core domain of the Co nanoislands are presented in Figure 1 as a 
function of temperature, for the considered transverse fields. 

The calculated longitudinal and transverse magnetizations, mz and mx, for sites in the core domain of the 2D Co 
nano-island, are presented in Figure 2 as a function of temperature, for the relatively low and high transverse 
magnetic fields, Ω/J = 1/2 and Ω/J = 3. They are seen to satisfy the required relation 2 2 2 1z xm m S    at T = 

0K for both fields. The order parameter mz decreases in the ordered phase going to zero at a Tc that corresponds 
in each case to the selected transverse field. In general mx increases slightly with temperature in the ordered 
phase before decreasing monotonically for temperatures T > Tc. 
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Further, it is observed in Figure 2 that Tc decreases with increasing Ω. This is a direct measure of the ability of 
the applied transverse field term to disrupt and reduce the magnetic order. A potential outcome under a critical 
transverse field c  is to drive the order-disorder transition temperature 0cT  , provided the magnitude 

of the single-atom magnetic anisotropy Dc is sufficient to quench the tri-critical point in the phase diagram (kTc/J, 
Ω/J) of the core domain (Miao et al., 2009; Yüksel et al., 2010). The value Dc = −0.1 meV for the 2D Co 
nano-island core domain satisfies these criteria. This potential outcome marks the possibility of a quantum phase 
transition for the core domain and the nano-island at Tc ≈ 0, that may be accessed by varying the transverse 
magnetic field up to Ωc. Note that the Hamiltonian of Equation (1) is similar to that used for the investigation of 
quantum critical points (Sachdev, 2001), when Ω is large and the system is near its critical temperature. 

 
Figure 1. Calculated single-atom spin correlations, qzz and qxx, along the longitudinal and transverse directions, 

for the core domain of the Co nano-island, as a function of temperature in meV, for relatively low and high 
transverse fields Ω/J = 1/2 and Ω/J = 3. The hexagonal lattice symmetry and system constants Dc = −0.1 and J = 
2 in meV correspond to Co nano-islands on the Pt(111) surface. The discontinuities of the qxx derivative mark 

the system Tc for the corresponding Ω values 

 

 
Figure 2. As in Figure 1, for the longitudinal and transverse magnetizations, mz and mx, for the core domain of 
the Co nano-island. The discontinuities of the mx derivative mark the system Tc for the corresponding Ω values 
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Figure 3. As in Figure 1, for the isothermal longitudinal susceptibility χz for the core domain of the Co 
nano-island. The discontinuities of the χz derivative mark the system Tc for the corresponding Ω values 

 

Figure 3 and Figure 4 present our calculated results for the core domain susceptibilities, χz and χx respectively, as 
a function of temperature, for the relatively low and high transverse magnetic fields. In Figure 3 the core domain 
longitudinal susceptibility preserves its character of a second order phase transition, as has been observed for a 
nano-island spin system free from the applied transverse magnetic field (Khater & Abou Ghantous, 2011; Abou 
Ghantous & Khater, 2011). An important feature, however, is observed for χz at very low temperatures, namely 
that it starts from large non zero values. The transverse field provokes this, effectively, by reducing qz and 2

zm in 
unequal proportions. 

Figure 4(right) gives in particular the calculated results for the inverse susceptibility 1/χx of the transverse spin 
component in the core domain, showing an approximate paramagnetic behavior in the ordered phase for 
temperatures up to T ∼ Tc/2. In the region about Tc, it has a complicated behavior due to the decreasing magnetic 
order. Above Tc the linear slopes of 1/χx with temperature point clearly a paramagnetic regime for the transverse 
spin component in the disordered phase. 

 
Figure 4. Calculated isothermal transverse susceptibility χx (left), and its inverse 1/χx (right), for the core domain 
of the Co nano-island, as in Figure 1. The reciprocal 1/χx indicates clearly two limiting paramagnetic regimes for 

the transverse components of spin in the ordered and disordered phases above Tc 
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The model calculations yield equally the correlations for the longitudinal and transverse components of the spin 
on a single atom, namely qzx(kT; Ω) = ⟨SzcSxc⟩. This prompts us to consider the function ϕzx(kT; Ω) defined by the 
following equation 

zx x z zx z xq S S S S                                 (14) 

Equation (14) introduces the characteristic thermodynamic function ϕzx as a measure for the random phase 
decoupling approximation for the correlations of the longitudinal and transverse spin components on a single 
atom. We have verified numerically that qzx is symmetric, qzx = ⟨SzSx⟩ = ⟨SxSz⟩ = qxz, commuting x and z. See also 
Equation (4). The calculated results for qzx and ϕzx for the spin S = 1 system are presented in Figure 5. Note that ϕzx is not identical to unity, and that it varies monotonically with temperature in the magnetically ordered phase, 
T ≤ Tc. In particular ϕzx(0; Ω) = 0.5 with varying transverse fields. 

The numerical calculations are carried out using the same constants for the exchange, the core and the periphery 
anisotropies, characteristic of the 2D Co nano-islands on Pt(111) substrates. In these calculations we consider 
again the influence of the relatively low and high transverse fields in comparison with the magnetic exchange, 
namely Ω/J = 1/2 and Ω/J = 3. 

 
Figure 5. As in Figure 1, (left) single-atom spin correlations, qzx, and (right) characteristic thermodynamic 

function ϕzx, for the Co nano-island domain 

 

Figure 6a and Figure 6b present, for respectively low and high transverse fields, the calculated results for the 
longitudinal and transverse single-atom spin correlations for a periphery site, qzzp and qxxp, in comparison with 
the longitudinal qzz for a core site. As is physically expected the qzzp decreases whereas the qxxp increases with 
the transverse field. For a sufficiently high transverse field a crossover temperature exists above which qxxp may 
become greater than qzz on a periphery site, as in Figure 6b. 

The calculated results for the periphery longitudinal and transverse magnetizations, mzp and mxp, are presented in 
Figure 7, and seen to satisfy the required relation 2 2 2 1zp xpm m S    at T = 0 K for the considered transverse 
fields, as is observed for the core magnetizations. However, contrary to the latter, mxp and mzp decrease 
monotonically at the periphery in the ordered phase going together to zero at Tc. For a given transverse field 
there is a crossover temperature above which the transverse magnetization becomes greater than the longitudinal 
magnetization on a periphery site, this is particularly clear for the high transverse magnetic field. 

Further, Figure 5a, Figure 5b, and Figure 6 show that the longitudinal and transverse single-atom spin 
correlations, qzzp and qxxp, and the longitudinal and transverse magnetizations, mzp and mxp, are well defined for 
the periphery domain in the ordered magnetic phase, T ≤ Tc, but vanish however in the disordered phase for T > 
Tc. This thermodynamic behavior is a general consequence of the lower dimensionality of the periphery domain 
in comparison with the core domain, which has been observed previously in the theoretical analysis of the 
magnetic properties of the the 2D Co nano-islands in two other specific cases, namely in the absence of an 
externally applied magnetic field (Khater & Abou Ghantous, 2011), and under the influence of an applied 
longitudinal field (Abou Ghantous & Khater, 2011). 
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Figure 6. Calculated single-atom spin correlations qzzp and qxxp for the Co nano-island periphery domain, for the 
relatively low and high transverse fields Ω/J = 1/2 and Ω/J = 3. The qzz for the Co nano-island core domain is 

indicated for comparison. The hexagonal lattice symmetry and system constants Dc = −0.1, Dp = 0.9, and J = 2 in 
meV, correspond to Co nano-islands on the Pt(111) surface 

 

The transition temperature Tc is common to the core and periphery nanoisland domains and decreases with 
increasing transverse field. This implies that under a sufficiently strong critical transverse field c , the 
nanoisland domains approach simultaneously a quantum phase transition at T = 0 in the absence of the tri-critical 
point, as observed previously using the same detailed numerical technique (Khater & Abou Ghantous, 2011). 

The isothermal longitudinal susceptibility χzp(kT; Ω) for the periphery domain of the Co nano-island in the 
presence of the transverse field Ω, is calculated in the normalized form using Equation (13). In Figure 8(left) and 
Figure 9(left) we present our calculated results for the χzp for a periphery site as a function of temperature, for 
respectively low and high transverse fields, in comparison with the χz for a core site. Further, it is known that the 
experimentally measured isothermal longitudinal susceptibility for an ensemble of nano-islands, with statistical 
variations of the sizes of the core and periphery domains, is effectively a statistical average (Khater & Abou 
Ghantous, 2011; Abou Ghantous & Khater, 2011). We present hence in Figure 8(right) and Figure 9(right) the 
calculated total longitudinal susceptibility χz;total for an average nano-island configuration putting 15% of its 
atoms on the periphery, and 85% in the core. Though the core sites present a second order phase transition, it is 
observed that the nano-island χz;total does not strictly present the character of this transition. A discontinuity 
occurs at T = Tc for low transverse field, while it is absent for relatively high transverse fields. 

 
Figure 7. As in Figure 6, for the longitudinal and transverse magnetizations, mzp and mxp, for the Co nano-island 

periphery domain 
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Figure 8. Calculated (left) isothermal longitudinal susceptibility χzp for the Co nano-island periphery domain as 
in Figure 6, compared with χz for the core domain, for a relatively low transverse field Ω; (right) longitudinal 
susceptibility χz;total for the Co nano-island, averaged proportionally over the core and periphery domains. See 

text for details 

 

 
Figure 9. As in Figure 8 for a relatively high transverse magnetic field Ω 
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Figure 10. Calculated inverse isothermal transverse susceptibility 1/χxp for the Co nanoisland periphery domain, 
for a) relatively low, and b) relatively high transverse fields, in comparison with 1/χx at all temperatures for the 

core domain. Note the crossover of χxp with respect to χx at high transverse fields 

 

 
Figure 11. (Left) calculated correlations qzxp, and (right) their characteristic function ϕzxp for the longitudinal 
and transverse spin components on a single atom in the Co nanoisland periphery domain. The continuous line 

and the dashed line in the right figure, correspond to low and high transverse fields respectively. They are shown 
together with the previous results for the core domain for comparison. See text for details 

 

The inverse isothermal susceptibility 1/χxp(kT; Ω) for the transverse spin component in the periphery domain are 
calculated under the influence of the transverse field, and presented in Fig.10, for respectively the low (left) and 
high (right) transverse fields. The results show also the crossover of χxp with respect to χx for high transverse 
fields. These susceptibilities are given in comparison with the inverse isothermal susceptibility 1/χx for core sites, 
and show as for the core domain an approximate paramagnetic behavior in the ordered phase T ≤ Tc. The 
linear slopes above the transition temperature, Tc, underline clearly the paramagnetic behavior of the transverse 
spin component in this domain, in the disordered phase. The model calculations yield equally the correlations for 
the longitudinal and transverse spin components on an atom in the periphery domain, qzxp(kT; Ω) = ⟨SzpSxp⟩. The 
calculated results for qzxp for the spin S = 1 system are presented in Figure 11(left), for low and high transverse 
fields. This prompts us further to consider the symmetric function ϕzxp ≡ ϕxzp = ϕzxp(kT; Ω) for periphery sites 
defined by an equation equivalent to Equation (11), as in the previous section. In Figure 11(right) we present our 
calculated results for the function ϕzxp for two transverse fields values 2 and 6 meV grouping each the periphery 
sites and core sites curves for comparison. Despite the inflexion in ϕzxp for periphery sites it is quite comparable 
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to ϕzx for core sites, for low and high transverse fields. 

 
Figure 12. Calculated core magnetic variables m, q, mx, and χT, for the spin S = 2 system, showing similarity with 

the same calculated magnetic variables for the spin S = 1 system as presented in previous figures. The system 
parameters are indicated 

 

Although they are not presented here, we have also calculated the principal magnetic properties for the 
hexagonal lattice for the spin S = 2 nanoisland system, to test the robustness of the method. Comparable forms 
are derived for the magnetic variables including qzx, ϕzx, qzxp, and ϕzxp. In this case however ϕzx(0; Ω) = 0.8. This 
confirms the observation that the ϕ function presents attributes of a general form scaling directly and simply 
with the spin and the applied transverse field. In particular, Figure 12 presents the results for the spin S = 2. The 
Van Der Wearden identity and the decoupling approximation are given in the appendix. The same behavior, apart 
the change of scale with the spin S = 1 system, is observed for the q variable. Given the importance of this 
variable to other quantities, we can use this observation to verify that one can get the result for the spin S = 2 
system directly from that of the spin S = 1 system by scaling the results under the condition that both must have 
the same critical temperature but with different values of exchange constants J. The verification was better than 
10−4. Higher spin systems, for spin S = 5/2, and 9/2, have been investigated in this respect (Abou Ghantous, 
2012a, 2012b) related to the island of 60C  adsorbed on buffer surfaces, where the transverse field describes the 
tunneling between the JT wells in the fullerene anion. 

4. Summary and Conclusions 

In this work we present an Ising spin EFT model to investigate the consequences of an applied transverse field 
for the magnetic properties of a 2D mono-layer nano-island. A non-diagonal Ising Hamiltonian with nearest 
neighbor exchange, single-atom magnetic anisotropy, and a transverse magnetic field term, defines the ground 
state of the system. The choice of Ising spin S = 1 and S = 2 systems for the nano-island, permits the analysis of 
the effects of spin fluctuations via the single-atom spin correlations. 

To avoid approximations inherent to previous analytical treatments of the Ising spin Hamiltonian which presents 
diagonal and off-diagonal terms, a novel symbolic and numerical approach is developed. The procedure consists 
of using defined codes in Mathematica package for the density matrix over any given characteristic spin operator. 
It is this numerical property which permits the generation of numerically exact EFT results, valid for a wide 
range of values for the local anisotropy and applied magnetic transverse fields. This novel approach is general. It 
can be applied successfully to spin systems higher than S = 1, and for diverse 2D lattices such as the honeycomb, 
square, and hexagonal. Compared to other theoretical and numerical treatments, such as the Monte Carlo 
simulations, the Ising EFT model remains a robust and useful approach for the study of 2D nano-islands which 
goes beyond mean field theory. 

In particular, we investigate the consequences of an applied transverse magnetic field in conjunction with the 
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structural effects inherent to the different reduced dimensionalities and their anisotropies on the nano-island core 
and periphery domains. The principal longitudinal and transverse magnetic properties of the domains of a 
magnetic nano-island, are computed for relatively low and high transverse fields. Though both the core and 
periphery domains have a common order-disorder transition temperature, the properties of each are very 
different, they are also different along the longitudinal and transverse directions. Our model calculations are 
systematically applied to calculate the charactersitic magnetic properties of the magnetically ordered 2D 
mono-layer Co nano-islands on the Pt(111) surface. 

We have primarily developed and presented in this work the model calculations for a hexagonal lattice 
nano-island, with spin S = 1. To test the robustness of our model, we have also applied our method to calculate 
the magnetic properties of a square lattice nano-island with spin S = 2, although these latter results are not 
presented here. 

We show that the temperature behavior of the spin correlations and the magnetizations are fundamentally 
different for the longitudinal and transverse directions, particularly evident for relatively high transverse fields. 
This field entails also quite different longitudinal and transverse isothermal susceptibilities for the core and 
periphery domains, which are seen to be exchange dominated for the out-of-plane, and quasi-paramagnetic for 
the in-plane, components. Such a configuration yields statistically averaged longitudinal susceptibilities that do 
not correspond to a second order phase transition for a magnetically ordered nano-island. 
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Appendix A. S = 2 

The Van Der Wearden identity for S = 2 is obtained to be 
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where β is subsumed in the generating functions fop. used with the decoupling procedure approximation 
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etc. and omitting the anisotropy, the generating functions may be written with 2 2 1/ 2( )E x  in the form 
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However if the anisotropy is present, then Equation (4) must be used. 
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