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Abstract

In this paper, global exponential stability of a class of neural networks with finite distributed delays is investigated by
metrix measure technique and Halanay inequality. Several sufficient conditions are given to guarantee globa
exponential stability of the neural networks without assuming the differentiability of delay. At last, two examples art
given to illustrate the applicability of our results.
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1. Introduction

In recent years, various neural networks models such as Hopfield neural networks, cellular neural networks, and
bi-directional associative memory networks have been extensively investigated and successfully applied to signal
processing, pattern recognition, and associative memory and optimization problems. In such applications, due to finite
switching speed of the amplifiers and communication time, time delays are actually unavoidable in the electronic
implementation. It is known that the delays are a potentia cause of the loss of stability to a system. On the other hand, it
has also been shown that the process of moving images requires the introduction of delay in the signa transmitted
through the networks. Therefore, it is of importance to investigate stability of neural networks with delays. In the
literature, a lot of results have been established on global stability and global exponential stability of the equilibrium
point for delayed neural networks (see, e.g., and references therein). To the best of our knowledge, few results on the
global exponential stability of a class of neura networks with finite distributed delays have been reported in literatures.
In this paper, the global exponential stability of this network were discussed, some sufficient conditions ensuring the
global exponential stability of neural networks are derived, two examples are given to illustrate the effectiveness of our
results.

The paper is organized as follows. In Section 2, the new network model is formulated; some preliminaries such as
Halanay inequality, matrix measure are presented. In Section 3, some sufficient conditions ensuring the global
exponential stability neural networks are given. In Section 4, two illustrative examples are provided to show the
effectiveness of our results. Some conclusions are drawn in Section 5.

2. Preliminaries

In this paper, we consider the neural network model with distributed delays as

X (t)=—dx(t +Z""u es ))+Zhjgj (Xi (t-7, (t)))J’ZIQj ()9, (x (t-s))ds+u, 1=1...n 1)
j=1

i=lo

Here, N is the number of neurons in the indicated neural network, x(t)=(x(t)...x,(t))"is the state vector of the

network at time t, g(x(t))=(gl(&(t)),...,gn(xn(t)))TiS the output vector of the network at time t, p = diag (d,,..d )>0,
A = (a”_ ). is the feedback matrix, g - (b.j) is the delayed feedback matrix and c(s ﬂ is
nxn 1l /nxn ij

existent for j j=1..,n, c:(]c‘(s)dsJ » U =(u,,..u,)" isthestimulusfrom outside of the network at time t, the
ij
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(2) LetPe R™ is nonsingular, for any xe R", X =[P ||||m denotes M-norm of R", then ||” is a vector

normof R", the matrix measure ,m(A) and thenorm Hp“:induced by HH: satisfies respectively

up(A)= 1, (PAP?) A" = [PaP-|

(3) For the 1-norm, 2-norm and oo - norm of R", the induced matrix measure are given by

1, (A)= max[a +§a”j

ﬂz(A)=maX[ .

]

o (A)= maX[a. +>a, I]

j#

@ A< -u(- A < Re2(A)< w(A)< A

3. Global exponential stability of equilibrium of the system (2.1)

In this section, we will derive sufficient conditions for the existence of equilibrium of the system (2.1). Furthermore, we
will use lemma 1 and matrix measure to establish the exponential stability of system (2.1).

An equilibrium point of the system (2.1) is a constant vector (x1 e X )T e R" which satisfies the following equation

. L LN 3.1) Theorem 3.1 Assume that
dixi :Zailgl(xl)+ — bljgj(xi)+ ~ J.Cu ( )ds+u =1.., ( )
(], +|c],)< - m(-D+AL) 32)

where | =diag(l, 1,): I=maxf,i=1..n}- Thenthere exists a unique solution of the equation (3.1), i.e., the system (2.1)

has a unique equilibrium point.

Proof. It follows from (3.2) that

I(mﬁxg‘qj‘+n1jax;‘cij‘j< mjin(dJ —ayl; —;‘@ilig

i.e,

di{l(m,axil‘b‘l‘*—mjaxil‘cll‘j"—ajjlj+i}‘au|1‘}<l Jj=L..n
j i= i= i#

Define o as

o= max{ {(maxZ‘ +m§alecUJ+a;jlj+;aijlj}}

Itisobviousthat o<g<1.

Let gx =vs i=1..n in (3.1), then we have

"7=i [ J+; 19 [ :]+ZOI, [ *]ds+u 1.0 G9

i=1

To finish the proof, it suffices to show that (3.3) has a unique solution. Consider amapping «:Rr" — r" defined by
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\Y n v n 7 v
a;g; -+ +zbijgj -4 +ZJC“(S)QJ —Llds+u,
= dj) 2 d;) = d,

<Siat{macS e+ Sa o -9

< gdi[l(maXZ\h |+ maxz‘ \j+| a +§:‘aii @‘Vi 9

J

< Z":a\vi -v,|=alv-v,
1

this implies that o:r" — r" iS a global contraction on r" endowed with the ||-||1.Hence by contraction mapping

principle, there exists a unique fixed point of themap ¢:r" — r" wWhich is a unique solution of the equation (3.3) from
which the existence of a unique solution of (3.1) will follow. The proof is completed.

Consider two solutions x(t) and z(t) of system (2.1) corresponding to any initial values x(t)=g¢(t) and z(t)= g(t)
for te[-7,0], Let y(t)=x(t)- z(t), then we have

y ——dy, +Zan J(yl ) Zhj J(ylt T )+i]l th s d

j=1

OF  y{t)=-Dy(t)+ Af (y(t)+ Bf (ylt - 7(t)))+ [C(s)f (y(t—s))ds
where fj(yj(t)): g,-(y,-(t)+ Z,-(t))—gi(zj(t))' (t)=(z,(t),...,7, (t)), the functions f satisfy the hypothesis H  (i=1,2)

and fj(o):o, j=1..,n-

let (y, (t)= f,(y, )y, ) F(ylt)=diag(F,(y(t))..F (v, (1) then o<F(y, )<l j=1...n-
Theorem 3.2. Assume that x(t)and z(t) aretwo solutions of system (2.1) corresponding to any initial valuesx(t) = ¢(t)

and 2(t) = o(t) forte [ 7,0], if the condition (3.2) is satisfied then Hx(t)— Z(tml < sup HX(S)— Z(S)Hle—/l(HU) t>t,

to-7<s<ty

where 1 isunique positive solution of the following equation
A= _lul(_ D+A L)_ l (HBH1 + chl)eh
Proof. Consider the rate of change of the 1-norm of y(t)

a0l Iyes) -yl 0+ s+ o), -yt

L= lim
dt 50" S 50" S
{1 + = D+ AF(y(t)}(t) + sBf (y(t - 7(t)) + S]C(S)f (v(t- S))d% =[ly(t)],
=lim 0 1
s—0' S
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< iim |t +9- D+ AF(y(t))]

50" S

), + B ez, + [l (v~ s
< il D+ ALY+ (8], +[cl,) s ),

By lemma L, if i(|g], +|c],)< - u(- D+ A'L), then we have

Iy, < sup [y(s), e t>t,

to-7<8<t,

where 2 isunique positive solution of the following equation
A= _/Ul(_ D+A L)_I(HBH1 +HCH1)GM
This completes the proof.
By using Theorem 3.2, we can easily derive the following Corollaries.

Corollary 3.1. Assumethat X" isthe equilibrium point of system (2.1), if the condition (3.2) is satisfied, then X" is
globally exponential stable.

Proof. Assumethat x(t) isasolution of the system (2.1) holding theinitial condition (2.2), then

Hx(t)— x*Hl < sup Hx(s)— x*Hle‘lt =e* sup Zn:‘qji (s)- xf‘ t>0

0-7<s<0 0-7<s<0 j1

<[ 3 mao -] e - oo -x

where ;1 isunique positive solution of the following equation
A= _/ul(_ D+A L)_IQ‘BH1 +HCH1)6M

Thisimplies X" isglobally exponential stable. The proof is completed.

Corollary 3.2. The equilibrium point of system (2.1) X~ isglobally exponential stable if there exist a positive diagonal
matrixes p = diag(pl, pzl___pn) such that

n N .oapl
(oS DS B <o a1y -5 2| @9
i=1 pj J i=1 pj I p

i#] j

Proof. Using lemma 2, we have

,u,l,(—D+A*|_)=,ui{P(—D+A*|_) Pfl} =i {-D+PALP} _ mjax[_dj +1,a) +Zn“pi7|i‘aﬁ J
i#] j
1 1) n n
85 1L )= o o oo ok oS 2
Hence, if the condition (3.4) holds, then we can conclude that

18t +1cl: )< —ut-D+ A'L)

Similar to the proof theorem 1, we have that if x(t) and z(t) denote two solutions of system (2.1) corresponding to an
initial values x(t)=g¢(t) and z(t)=g(t) forte [-7,0], then

[x() -z, < sup |x(9)-z(s)f, " t>t,

P pmrsssty P

where, 1 isunique positive solution of the following equation

A=—ur(-D+ AL)-1{[BfE +[Cf
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Using the method of the proof Corollary 3.1, we have
x(s)—x*Hlpe‘” =e™ sup Z‘p, 4,(s)—x ] t=0

0-7<s<0
- At
je

ax(p )[¢()-x e =M [g(s)-x e

Hx(t)—x*H1 < sup

0-7<s<0

< mﬁX(pi)[Z max g, (s)-

where, x(t) denotesasolution of the system (2.1) holding theinitial condition (2.2)
Thisimplies X" isglobally exponential stable. The proof is completed.
Corollary 3.3. The equilibrium point X* of system (2.1) is globally exponential stable if.

mJaX(a},» +§6ﬁj ] (3.5 Proof. Using lemma 2, we
have
,ul(—D+A*|_)glul(—D)+;Ll(A“|_):mi +||A|| L, < mln(di)+l mjax(a’j*j +g&jj

(3.6)
From (3.5) - (3.6), we get that
(8], +Ic],)< - -0+ A'L)
Applying Corollary 3.1, we can compl ete the proof.
4. lllustrative examples
Example 1. Consider the following system

D N e st
L [f0da-5) 031-s))tah(ut-9)), (1) (4.1)
J(O-Z(l— s) 0.3(- S)](tanh(xz( - S))J [J

Whefegl(x): gz(x):tmh(x), clearly satisfy hypothesis Hpl =1,=1. ’Z'l(t)=1'2(t)= sinl(t) , 7=1.
2

It isobviousthat the delay is not differentiable,

o[l 0] A_(01 02) __(005 003 ]-0](1 s) 03(1-5) 4o [005 0.15
o1 103 03 006 0.04 J02(1-s) 03@1-s)) (010 015

We can easily check that

18], +|c|,)=0.45<0.50=— 41,(-D+A'L)
It then follows from Corollary 3.1 that the equilibrium point of the system (4.1) is globally exponential stable.
Example 2. Consider the following system

%(t)) (=2 0 0)(x(t)) (01 01 06)tanh(x(t))
%(t)[=| 0 -2 0 | x(t)[+]02 01 04| tanh(x,(t))
5(1)) L0 0 -2)x(t) 02 09 04) tanh(x (1))

002 002 003\ E(x(t-7(1)
+{ 001 0.04 005 || tanh(x, (t—7,(t)))

001 0.07 0.08)| tonn(x, (-7, (1))
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1
+]| 0.1(1-5) 0.2(1——sin%sj 0.3(1——005%5 tanh(x, (t—s)) ds

0

0.2(1-s) 0.2[1——9' n%sj 0.4(1——005% s

(4.2)

where g, (x)=g,(x)=gs(Xtanh(x)s 1, =1, =1,=1, 7 (t)=17,(t)=17, =

200 01 01 06 002 002 003
D=0 2 0 A=/02 01 04| B=|001 004 005
00 2 02 09 04 001 007 008
0.31-5s) O{l—lsm sj 021- Lo j
) T 4 "2 015 015 0.10
c={ 011-9) 2[1——sm sj {1 = os’;sj ds=| 050 0.10 0.15
0 T T
010 010 0.20
02(1-s) 0.2( E fj 4[1 Leos® s]
T V4 2

We can check that

18], +|c],)= 061> 0.60=— 1, (-D+A'L)
we cannot determine that the system (4.2) is globally exponential stable, if we use Corollary 1. However, let
P = diag(1,2,2), We have

5 i i + * pl
I m;’:\x; gj b ‘+maxz P ‘c” J 0.595 < 0.90:rnj|n[dj -1,a; —Zp—‘ aﬂj

i#] j
So, it follows from CoroIIary 3.2 that the equilibrium point of the system (4.2) is globally exponentia stable.
5. Conclusions

In this paper, severa sufficient criterions have been derived to guarantee global exponential stability of the neural
networks with distributed delays without assuming the differentiability of delay. Different from the normal method, i.e.,
constructing suitable Lyapunov function, these results are obtained based on matrix measure and Halanay inequality
approach. Our results are easily checkable and valuable in the design of global exponential stability of neural networks.
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