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Abstract  

The finite element approach was used in the simulation analysis to solve many engineering problems. One of the 
accuracy factors of this method is dependent on the choice of appropriate element size or mesh discretization. 
Good mesh discretization can reduce the percentage of error; avoid the computation time approaches to 
non-practical limits and furthermore, produces the optimal results. The purpose of this study is to identify the 
best size of mesh elements to be used in the problem analysis using the AUTODYN numerical simulation. The 
fully clamped circular plate subjected to blast load as per experimental setup was modified and simplified in the 
two-dimensional (2D) simulation model; it will be seen as a clamped beam at both edges. Plate model were 
discretized to form nodal and element. The deformation or deflection result found to converge at certain value by 
increasing the total number of element discretization. Assumed that the deformation results were accurate at the 
converged state; it will be taken as reference to choose the finest size of mesh element. In this study, several 
mesh sizes been considered, and the appropriate optimum mesh discretization obtained at range of 0.5 mm to 1 
mm. 
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1. Introduction 
Analysis the behaviour of the structure when subjected to blast loading by using the numerical simulation has 
been developed with several techniques. Results obtained in the simulation then compared with experimental for 
validation purpose, thus contributes to reduction of the total experiments need to be carried out. With the rapid 
development of computing technology in the recent years, researchers have focused on the numerical simulation 
which is more convenient and economical. 

AUTODYN is one hyrocode program used to resolve problems involving the interaction of structural, fluid and 
gas simultaneously. This application normally used in the blast and ballistic analysis. Integration of 
pre-processor, post processors and analysis execution code found in this software make it easier to use and more 
user-friendly. AUTODYN also allows different solver (or processor) as Lagrange, Euler to function 
simultaneously in a one model analysis. 

Daniel (2009) used AUTODYN 3D to analyse the effect of blast toward stand-off distance in blast test, and he 
studied the propagation of wave explosion in the confinement area. Amstrong and Walley (2008) used the 
Johnson Cook constituting equation in AUTODYN to estimate temperature rises within the crystals in the 
analysis dynamic recrystallization and spallation or fragmentation. 

There are three types of Eulerian solver in AUTODYN: Euler, Euler Godunov and Euler Flux Corrected 
Transport (FCT Euler). Euler solver used in AUTODYN 2D is based on first-order approach. It allows 
multi-material to be modelled. However, for second order scheme is only available in AUTODYN 3D. Eulerian 
element size 5, 2.5, 1.25, 1, 0.625 and 0.5 mm used in order to analyse the effect of mesh sensitivity toward the 
result. The appropriate meshing size obtained then used for future analysis. 
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2. Simulation Model 
The modified simulation model carried out referring to experiment has performed by Neuberger, Peles, and 
Rittel (2009). The experimental setup was shown in Figure 1. The circular target plate with diameter 1000 mm 
clamped with two thick armor steel ring, tighten together with bolt and clamped, while 8.75 kg of TNT explosive 
charge with 0.2 m stand-off in distance. In 2D simulation the target seen as a beam and in this experiment TNT 
were modified using only 1.1 kg in order to avoid element distortion during analysis. The cross sectional 
diagram and involve parameter shown in Figure 2. 

 
Figure 1. Experimental setup (Neuberger, Peles, & Rittel, 2009) 

 

 
Figure 2. 2D cross sectional diagram (Neuberger, Peles, & Rittel, 2009) 

 

The simulation conducted using high speed computer processor Intel® Core™ i7-2600K CPU@ 3.40 GHz 
(8CPUs), 3.7 GHz. A 2D axis-symmetric model was developed using Langrage and Multi-Material Euler solver. 
The model was created in the domain size 500 mm x 450 mm defined as air symmetry in x- axis. Material 
properties of Steel 1006 with Johnson Cook material model found available in AUTODYN libraries were used to 
represent the plate. Ideal gas equation of state was chosen to describe air and Jones Wilkins Lee (JWL) equation 
of state describes the TNT explosive charge. Eulerian elements were used to represent air and TNT and 
Langrage element were used to represent the plate. Four gauge were pasted at the plate as shown in Figure 3. 
Gauge 1, 2, 3 and 4 were located at 250 mm, 125 mm, 100 mm and 50 mm respectively from symmetrical axis 
and plate were fully clamped at the end of the edge. 
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4. Conclusions 
Model simplification is a very important in simulation analysis. The ability to simplify the model facilitates an 
analysis by shorten the time taken and produce good results. The selection of mesh size found to be one of the 
factors to determine the accuracy of the results produced. Common error occurs in simulation analysis is due to 
the insufficient of refinement finite element grid. 

Noted that the number of elements or grid that too much also causes the computation time approaches to 
non-practical limit and also sometime the results found not promising. In this case, the selection of the mesh 
found to be in the range from 0.5 mm to 1 mm considered as the best element size for the analysis using 
AUTODYN software.  

Acknowledgements 
Financial assistance from the Royal Malaysian Air Force (RMAF) towards this research is hereby acknowledged. 
Opinions and views either directly or indirectly from various parties, including the staff and lecturers from 
engineering research center of National Defense University (UPNM) greatly appreciated. 

References 
Ambrosini, D., Luccioni, B., Nurick, G., Langdon, G., & Jacob, N. (2009). The effect of confinement and 

stand-off distance in blast tests. Mecanica Computacional, XXVII, 343-362. 

Armstrong, R. W., & Walley, S. M. (2008). High strain rate properties of metals and alloys. International 
Materials Reviews, 53(3), 105-128. http://dx.doi.org/10.1179/174328008X277795 

Chung-Kim-Yuen, S., Langdon, G. S., Nurick, G. N., & Pickering, E. G. (2012). Response of V-shape plates to 
localised blast load: experiment and numerical simulation. International Journal of Impact Engineering, 46, 
97-109. http://dx.doi.org/10.1016/j.ijimpeng.2012.02.007 

Hungtington-Thresher, W. K. E., & Cullis, I. G. (2001). TNT blast scaling for small charges. 19th International 
Symposium of Ballistics, Interlaken, Switzerland. 

Neuberger, A., Peles, S., & Rittel, D. (2009). Springback of circular clamped armor steel plates subjected to 
spherical air-blast loading. International Journal of Impact Engineering, 36, 53-60. 
http://dx.doi.org/10.1016/j.ijimpeng.2008.04.008 

Wisniewski, A., & Tomaszewski, L. (2009). Computer Simulation of AP Projectile Penetration into RHA. 
Project report of Technology of production of superhard nanostructural Fe-based alloys and their 
application in passive and passive-reactive armors. Military Institute of Armament Technology, Poland. 

 

Copyrights 
Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 
license (http://creativecommons.org/licenses/by/3.0/). 

 

 


