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Abstract 
This study extends the earlier contribution of Azamathulla et al. in 2005. Artificial neural networks (ANNs), due to their 
excellent capabilities for modeling complex processes, have been successfully applied to a variety of problems in 
hydraulics. However, one of the major criticisms of ANNs is that they are just black-box models, since a satisfactory 
explanation of their behavior has not been offered. They, in particular, do not explain easily how the inputs are related 
to the output, and also whether the selected inputs have any significant relationship with an output. In this paper, a 
perturbation analysis for determining the order of influence of the elements in the input vector on the output vector is 
discussed. The approach is illustrated though networks recommended in Azamathulla et al. 2005 for prediction of scour 
using neural networks. The analyses of the results suggest that each variable in the input vector (discharge intensity, 
head, tail water depth, bed material, lip angle and radius of the bucket) influences the depth of scour in different ways. 
However, the magnitude of the influence cannot be clearly quantified by this approach. Further it adds that the selection 
of input vector based on linear measures between the variables of interest, which is commonly employed, may still 
include certain spurious elements that only increase the complexity of the model.
Keywords: Neural Networks, Scour, Spillways
1. Introduction 
Artificial neural networks (ANN) technique has been successfully applied across a broad spectrum of problem domains 
such as pattern recognition and function approximation. Most ANN applications in engineering mainly fall in the 
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category of prediction, in which an unknown relationship exists between a set of input factors and an output (Jingsheng, 
2002). The objective of these studies is to find a formula between the selected input variables and the output based on a 
representative set of historic examples. The formula is then extended to predict the outcome of any given input. The 
computational efficiency of ANNs has yielded many promising results in the field of hydraulics and water resources. 
This interest has been motivated by the complex nature of scour mechanism and the ability of ANNs to model nonlinear 
relationships (Azamathulla et al. 2005). However, ANNs remain something of a numerical enigma. In particular, they 
offer end user little or no insight into either the process by which they arrived at a result or, in general, the totality of 
knowledge actually embedded therein (Tickle et al. 1998). The ANNs possess several significant attributes such as 
universal function approximation property, robustness, and ability to learn. However, ANNs are also criticized due to 
their perceived weakness of being black-box models.
This is a significant weakness, for without the ability to produce comprehensible decisions it is hard to trust the 
reliability of networks addressing real-world problems (Benitez et al. 1997). Therefore, a significant research effort is 
needed to address this deficiency of ANNs. Some solutions have been proposed to represent the operation of a trained 
neural network, which deals with classification problems, in terms of symbolic rules (Lozowski et al. 1996; Benitez et 
al. 1997; Tickle et al. 1998; and Castro et al. 2002). However, most of the hydrologic applications of ANNs fall in the 
category of function approximation, and knowledge extraction from such models is still a virgin research area. For 
instance, Lange (1999) states that ANNs are black-box models that only develop the relation between input and output 
variables without the modeling of any physical processes. However, it must be realized that the data that are employed 
in developing black-box models contain important information about the physical processes being modeled, and this 
information gets embedded or captured inside the model. This paper discusses the use of a method similar to 
perturbation analysis (Ho, 1992) to extract the knowledge embedded in trained ANN models for prediction of scour 
pattern.
2. Perturbation Analysis 
Neural networks (NN) are capable of modeling complex processes, and have been successfully applied to a variety of 
problems in hydraulic engineering. However, one criticism in this regard is that they are black-box models and do not 
offer, a satisfactory explanation of their performance. ANN models neither explain how the inputs are related to the 
output, nor whether the selected inputs have any significant relationship with an output (Sudheer, 2005). In this study, a 
perturbation analysis for determining the order of influence of the elements in the input vector on the output vector is 
therefore discussed.  
Most NN applications in engineering mainly belong to variable prediction, in which an unknown relationship is assured 
to exist between a set of input factors and an output (Jingsheng, 2002). The objective of these studies is to find a 
formula between the selected input variables and the output based on a representative set of historic examples. The 
formula is then extended to predict the outcome of any given input. However, it must be realized that the data that are 
employed in developing black-box models contains important information about the physical process being modeled, 
and this information gets embedded or captured inside the model. This study discusses the use of a method that is 
similar to perturbation analysis (Ho, 1992) to extract the knowledge embedded in trained NN models for prediction of 
scour pattern. The main aim of the study was to identify the strength of relationship between individual input variables 
and the output. The study also aimed at assessing the degree of influence of the individual input variables on the output 
function. The methodology is illustrated through a FFBP Model-1 for prediction of scour pattern downstream of flip 
bucket spillway (Azamathulla et al. 2005).  
3. Methodology  
In NN modeling, the combination of all of the variables (input and output) locates a point in a multidimensional 
input-output space called phase space (Stewart, 1989).  The main idea in the method is that a great deal of information 
is contained in the sample paths in the phase space of the dynamic system. This is much beyond the usual statistics 
collected such as the means and variances of various output variables. Rather than looking at the simulation simply as a 
black box with input parameters and final output results, one can utilize the knowledge on the dynamics of the 
functional domain and get additional information, such as performance and sensitivity of the model. This can be 
achieved by studying the effects of small disturbances (perturbation) in the mathematical model of a physical system. 
This model can be expressed as an algebraic equation, integral equation, and ordinary differential equation, partial 
differential equation, in isolated or combined form.  
Once an NN model is trained for its generalisation properties, it can be assumed that the trained model represents the 
physical process of the system. The knowledge acquired for the problem domain during the training process is encoded 
within the NN in two forms: (a) in the network architecture itself (through number of hidden units) and (b) in a set of 
constants or weights. Since NN models have large degree of freedom in assigning the weights, they can lead to a 
situation where two different sets of weights can yield identical outputs (Schmitz et al., 1999). A perturbation analysis 
of NN parameters may, thus, lead to insignificant implications. However, the distributed nature of information 
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processing in NN implies that a network can be disaggregated in terms of its forecasting inputs, and can still yield 
outputs. Thus by considering the effects of small disturbances in individual input variables to the network, its relative 
importance in the total output can be assessed while keeping the network parameters unchanged; or in other words the 
effect of various inputs on the behavior of the modeled process can be evaluated.  
Consider an NN model that represents the functional relationship between attributes inputs x

n
 and classes  outputs y

m

and evaluated at a set of points S (input patterns) lying inside the domain D.  The magnitudes of the partial derivatives 
of the function with respect to the inputs are a measure of significance and, it is hence assumed that the variables can 
change freely and independently from one another. This assumption is valid as the influencing factors can be varied 
individually. However, if the measured attributes are correlated this assumption is not appropriate, as a change in one 
input feature may be accompanied by a change in another covariant feature.  
Schmitz et al. (1999) showed that these inter-relationships could be taken into account by focusing on the variations of f 
that actually occur inside the domain D, which is done by measuring the variation of f when moving between points in 
S. This variation, is computed by a term absolute variation v(f) of the function f(x) between the points i and j, which is 
defined as the absolute value of the directional derivative of f(x) integrated along a straight line between the two points. 
Thus, with ‘u’ as the unit vector in direction x

i
to x

j
.

j

i

x

x
ij dxuxffv ).()(     (1)  

 This variation can be ciphered between all pairs of points in S. If an attribute is insignificant to the function for the 
domain D, the variation in the function will be unrelated to the variation in the attribute and a measure of significance of 
an attribute x

i
for a function f over a data set S could be the correlation between the absolute variation of the function 

and the absolute variation of that attribute taken between all possible pairs of points in S. This method is illustrated in 
the following sections with the help of a FFBP Model-1, NN model. This approach is based on cross-, auto-, and partial 
auto-correlations between the variables in question.   
The sigmoid function is used as the activation function in both hidden and output layers. Therefore, the model output 
and input were scaled appropriately to fall within the function limits. A standard feed forward back propagation 
algorithm is employed to estimate the network parameters. The number of hidden neurons in the network, which is 
responsible for capturing the dynamic and complex relationship between various input and output variables, was 
identified by various trials (Eberhart and Dobbins, 1990; Maier and Dandy, 2000). The trial-and-error procedure started 
with two hidden neurons, and the number of hidden neurons was increased to 10 during the trials with a step size of 1 in 
each trial. For each set of hidden neurons, the network was trained in batch mode to minimize the mean square error at 
the output layer. In order to check any over-fitting during training, a cross validation was performed by keeping track of 
the efficiency of the fitted model. The training was stopped when significant improvement in the efficiency was 
achieved. The model was then tested for its generalization properties.  
The final structure of the NN model is: 6 input neurons, 10 hidden neurons, and 3 output neurons. The performance of 
error measures of the ANN model during testing are presented in Table 2 of Azamathulla et al. 2005. The good 
correlation between the observed and predicted scour patterns (Table 2 in Azamathulla et al. 2005) even with high 
levels of perturbation indicates that the NN model is able to capture the information contained in the data very well. The 
FFBP model-1 performance was very good in terms of the error measures (Azamathulla et al. 2005).  
This study discusses an effective technique to distinguish the strength of relationship between input and output variables 
in an NN model. The results suggested that by performing perturbation analysis, the influence of each individual input 
variable on the output variable can be assessed. The results indicated that the massively parallel and distributed nature 
of a trained NN is capable of capturing the dynamics of the physical process being modeled. A careful examination of 
the important information contained in the trained NN can reveal the nature of the physical processes captured by 
distributed components of the trained NN.  
Furthermore, it adds that the selection of input vector based on linear correlation between the variables of interest, may 
still include certain spurious elements that will only increase the model complexity.  
To ascertain the fault tolerance of the model, the input variables were individually perturbed over the range of 
validation patterns, and the NN model was used to simulate the forecasts using the perturbed input patterns. Fig. 1 
shows the variation of the correlation coefficient between the computed and observed scour during this analysis. As this 
figure illustrates, an error (perturbation) in the range of -20% to +20 in individual variables does not result in a 
substantial change in forecasts (see Table. 1). It may be noted that these permissible errors are on the individual values 
and not the combined effect of errors on all variables. Hence it can be concluded that the trained NN certainly 
represents the physical behavior of the system through its input variables.  
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4. Internal Network Structure  

As mentioned earlier one of the facts pertaining to the functioning of NNs emunity, is that NN models act as mysterious 
black boxes and do not provide any clue on how they model the physical process. Some sparse and isolated attempts 
only have been made in the recent past to overcome this deficiency and to understand the interval structure of trained 
NN e.g. Castro et al. (2002), Wilby et al. (2003), Jain et al. (2004), Sudheer and Jain (2004). These studies showed that 
hidden neurons can do piecewise regression and can individually model certain catchment processes while predicting 
runoff in time series modeling. This section attempts to prove this aspect further and it differs from the previous in that 
it deals with a causal relationship rather than the earlier temporal ones.  

As an example, a trained FFBP-2 network with 5 input nodes and 10 hidden nodes yielding the scour depth was 
considered. Because the output is obtained by transforming input using the hidden neurons, the two can be 
simultaneously studied to explore the piecewise processing. The coefficient of correlation, r, between the output of the 
scour depth was calculated in order to see the transformation made by the hidden nodes affects the network output. This 
is shown in Table 2. At the same time the output fired from each hidden neuron was listed as in Table 3 for various 
testing cases.  

The hidden neurons H1, H2, H7 are highly correlated with the network output while H3, H4, H8 are not (Table 2). 
Elimination of these links subsequently was attempted. However, the attempt yielded loose generalization in the results. 
From Table 2 it can be seen that the neurons H1, H2, H7 produced outputs in the upper half of the total range of the 
outputs (0,1), while the neurons H3, H4, H8 yielded the outputs in lower tail of the output range. The two tables thus 
indicated that the influential hidden neurons are H1 H2 and H7. While others (H3, H4, H8) are complimentary, these 
neurons may be important to take care of the noise in the data. H1, H2, H7 may be modeling the previously known 
important parameters of head, H1, discharge intensity, q and bucket radius, R while H5, H6, H7, H9, H10 may be 
modeling other relatively less significant variables like lip angle of bucket, , sediment size d50.  To this extent, present 
study was in agreement with previous study of time series modeling (Jain et al. 2004). Even in this case of causal 
relationships, the hidden neurons somehow perform input portioning, transforming it into sub domains with strong 
hidden neurons. Thus, it is reasonable to assume that the massively parallel components of NN represent different 
variables of a physical process. A hidden layer thus seems to convert the input domain into another one where the 
samples become linearly separable and where the data are not forced into a fixed model like regression.  

5. Conclusions  

A perturbation analysis for determining the order of influence of the elements in the input vector on the output vector 
was discussed.   Present study also identified the strength of relationship between individual input variables and the 
output. The correlation between the observed and predicted scour patterns (Table 2, Azamathulla et al. 2005) and the 
high value indicate that the NN model is able to capture the information contained in the data very well. 

It was found that the hidden neurons could do piecewise regression and could individually model certain causal 
relationships.  It was also shown that even in this case of causal relationships, unlike earlier observations belonging to 
time series predictions, the hidden neurons were capable of executing input partitioning, transforming it into sub 
domains with strong hidden neurons. Hence, it can be assumed that the components of NN represent different variables 
of a physical process. A hidden layer thus seems to convert the input domain into another one where the samples 
become linearly separable and where the data are not forced into a fixed model like regression.  
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Table. 1 Perturbation analysis for FFBP Model -1 

Perturbation 
with out 

perturbation 
-5% -10% -15% -20% +5% +10% +15% +20% 

Correlation

coefficient of 

observed to 

predicted Scour 

depth

0.97 0.97 0.946 0.934 0.925 0.965 0.956 0.954 0.953 

Correlation

coefficient of 

observed to 

predicted Scour 

location

0.97 0.965 0.944 0.932 0.927 0.967 0.958 0.956 0.943 

Correlation

coefficient of 

observed to 

predicted Scour 

Width

0.98 0.975 0.964 0.954 0.954 0.978 0.975 0.968 0.963 
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Table 2.  Ranges of H1,H2, H3 …….H10. 

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 

0.755713 0.773763 0.029799 0.098279 0.129731 0.316225 0.748967 0.147867 0.32619 0.327166

0.51793 0.525154 0.035753 0.084581 0.182025 0.235407 0.5091 0.186919 0.242003 0.318382

0.479326 0.455511 0.139226 0.24093 0.243339 0.422084 0.53339 0.211481 0.429642 0.112446

0.64017 0.621656 0.223543 0.330968 0.165308 0.516795 0.685279 0.209114 0.525275 0.11156 

0.942169 0.951587 0.04294 0.167201 0.042336 0.512524 0.941037 0.124268 0.526984 0.377622

0.584446 0.564944 0.19469 0.299342 0.175767 0.484028 0.638839 0.177494 0.492225 0.08823 

0.467791 0.447847 0.145597 0.24162 0.198986 0.41919 0.538603 0.125766 0.426625 0.054413

0.553207 0.559602 0.039631 0.091556 0.192283 0.247866 0.536713 0.216623 0.254818 0.366087

0.517213 0.524174 0.035603 0.084312 0.185477 0.234474 0.507214 0.190512 0.241048 0.323593

0.83728 0.852083 0.044775 0.133331 0.092169 0.39003 0.832141 0.161744 0.401567 0.370908

0.977077 0.976968 0.809945 0.804581 0.000559 0.868021 0.979715 0.180946 0.873543 0.084741

0.977609 0.981387 0.087993 0.27351 0.025865 0.645305 0.974488 0.237951 0.659523 0.619453

0.870284 0.882283 0.054207 0.153628 0.090285 0.423651 0.861084 0.202013 0.435785 0.44994 

0.526459 0.506462 0.168855 0.269578 0.186935 0.45138 0.589641 0.14955 0.459224 0.069231

0.420409 0.414402 0.063666 0.099817 0.227244 0.213875 0.399414 0.207281 0.219037 0.25678

0.834577 0.848652 0.043513 0.130597 0.106269 0.381588 0.824783 0.184798 0.393 0.409948

0.586142 0.566786 0.183105 0.293227 0.184511 0.485937 0.639626 0.202188 0.494231 0.112126

0.680157 0.691165 0.042121 0.106223 0.170018 0.294379 0.660921 0.223154 0.302983 0.409799
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Table 3. Correlation coefficient between output of hidden neuron and Outputs (relative scour depth)  'r' 

Figure 1. Perturbation to inputs and correlation coefficient for Observed to Predicted Scour 

Hidden \ output 

output 
ds/dw

H1 0.8133 

H2 0.8088 

H3 -0.0802 

H4 0.0632 

H5 -0.7636 

H6 0.4401 

H7 0.8032 

H8 0.1937 

H9 0.4526 

H10 0.7046 
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Figure 2. Output from hidden neuron H1 versus relative scour depth 

Figure 3. Output from hidden neuron H2 versus relative scour depth 
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Figure 4. Output from hidden neuron H7 versus relative scour depth 

Figure 5. Output from hidden neuron H3 versus relative scour depth 
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Figure 6. Output from hidden neuron H4 versus relative scour depth 

Figure 7. Output from hidden neuron H8 versus relative scour depth 
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