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Abstract 

The random sum distribution is a key role in probability theory and its applications as well, these applications 
could be used in different sciences such as insurance system, biotechnology, allied health science, etc. The 
statistical significance in random sum distribution initiates when using the applications of probability theory in the 
real life, where the total quantity X  can be only observed, which is included of an unknown random number X  
of random contributions. Saddlepoint approximation techniques overcome this problem. Saddlepoint 
approximations are effective tools in getting exact expressions for distribution functions that are not known in 
closed form. Saddlepoint approximations usually better than the other methods in which calculation costs, but not 
necessarily about accuracy. This paper introduces the saddlepoint approximations to the cumulative distribution 
function for random sum Poisson- Exponential distributions in continuous settings. We discuss approximations to 
random sum random variable with dependent components assuming existence of the moment generating function. 
A numerical example of continuous distributions from the Poisson- Exponential distribution is presented. 
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1. Introduction 

Saddlepoint approximations are powerful tools for obtaining accurate expressions for distribution functions which 
are not known in closed form. Saddlepoint approximations, usually better than other methods regarding to the 
calculation costs, but not necessarily about accuracy. Daniels (1954) in his study presented, the primary 
saddlepoint approximation and that is basically a formula for approximating a density or mass function from its 
associated moment generating function. Saddlepoint approximations are depend on using the moment generating 
function (MGF) or, equivalently, the cumulant generating function (CGF), of a random variable. For discussion 
saddlepoint approximations methodologies and the relevant techniques see Daniels (1954) and Daniels (1987) for 
the details of density and mass approximation and see Skovgaard (1987) for a conditional version of saddlepoint 
approximation as well. In addition, Reid (1998) for applications to inference, Borowiak (1999) for discussion of a 
tail area approximation which has uniform relative error, and Terrell (2003) for a stabilized Lugannani-Rice 
formula. 

We will discuss approximations to the random sum variable with dependent components assuming the moment 
generating function that has been exists. Suppose a continuous random variable X  has density function f ( x )  
defined for all real values of x . Then the moment generating function MGF is defined as 






  sx sxM ( s ) E( e ) e f ( x )dx                                    (1) 

Wherever this expectation exists and 0M ( )  always exists and is equal to 1. We shall assume that M ( s )  
converges over the largest open neighborhood at zero as ( a,b ) . The cumulant generating function CGF is given by 
(Hogg & Craig, 1978) 

K ( s ) ln M ( s ) , s (a,b)                                  (2) 

For continuous random variable X  with CGF K( s )  and unknown density f ( x ) , the saddlepoint density 
approximation of f ( x )  is given by (Johnson et al., 2005) 
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ˆ ˆ ˆf ( x ) exp( K( s ) sx )

ˆK ( s )
,                                  (3) 

where )(ˆˆ xss   denotes the unique solution to the saddlepoint equation  ˆK ( s ) x , (Daniels, 1954). The 
approximation is useful for values of x  that is interior point of the support  }0)(:{ xfx . The normalized 
Saddlepoint density is defined as  
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                                        (4) 

As well as, it is clear to note that 1)(ˆ 
dxxf , because the interior point of the support 

 }0)(:{ xfx . 

The saddlepoint approximation for univariate cumulative distribution functions F( x )  is given by 
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where the continuous random variable X  has CDF F( x )  and CGF K( s )  with mean  E( x ) and ŵ and û  
are defined as 

)ˆ(ˆˆ

)ˆ(ˆ)ˆsgn(ˆ }{2

sKsu

sKxssw




                                   (6) 

As well as, uw ˆ,ˆ  are function of x  and saddlepoint ŝ , where ŝ  is the implicitly defined function of x  given 
by the unique solution to xsK  )ˆ(  and symbol   and   denote the standard normal density and CDF 
respectively and )ˆsgn(s  captures sign )(  for ŝ  (Butler, 2007). 
2. The Random Distributions 

The random sum distributions have many natural applications. We motivate the notion of random distributions 
with an insurance application. In an individual insurance setting, we wish to model the aggregate claims during a 
fixed policy period for an insurance policy. In this setting, more than one claim is possible. The random variable 
Y  is said to have a random distribution if Y  is of the following form 

1 2 3     NY X X X .... X                                        (7) 

where the number of terms N  is uncertain, the random variables iX  are independent and identically distributed 
(with common distribution X ) and each iX  is independent of N . If N = 0 is realized, then we have 0Y . 
Even though this is implicit in the definition, we want to call this out for clarity. In our insurance contexts, the 
variable N  represents the number of claims generated by an individual policy or a group of independent insured 
over a policy period. The variable iX  represents the thi  claim. Then Y represents the aggregate claims over the 
fixed policy period. The distribution function of Y  is given by  







0

][)()(
n

nY nNPyGyf                                     (8) 

Where 1 nn ,G ( y ) , is the distribution function of the independent sum 1 2 3    NX X X .... X . We can also 
express Yf in terms of convolutions (Johnson et al., 2005): 







0

* ][)()(
n

n
Y nNPyfyf                                   (9) 

where f  is the common distribution function for iX  and *nf  is the n- fold convolution of f . If the common 
claim distribution X  is discrete, then the aggregate claims Y  is discrete. On the other hand, if X  is continuous 
and if 0 P [ N n ] , then the aggregate claims Y will have a mixed distribution, as is often the case in 
insurance applications. The mean aggregate claims E [ Y ] is 
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E [ Y ] E [ N ] E [ X ]                                     (10) 

The expected value of the aggregate claims has a natural interpretation. It is the product of the expected number of 
claims and the expected individual claim amount. This makes intuitive sense. The variance of the aggregate claims 
Var[ Y ]  is 

2 Var [ Y ] E [ N ]Var [ X ] Var [ N ] E [ X ]                      (11) 

The variance of the overall claims also has a natural explanations. It is the sum of two elements such that, the first 
element stemming from the variability of the amount claimed by individual and the second element stemming 
from the variability of the number of claims.  

The moment generating function of aggregate claims Y is defined as 

Y N XM ( s ) M [ln M ( s )]                                 (12)
 

where the function ln is the natural log function. As well as, the cumulant generating function of aggregate claims 
Y  is defined as (Hogg & Tanis, 1983) 

  Y Y N X N XK ( s ) ln M ( s ) ln M [ K ( s )] K [ K ( s )] .                 (13) 

The random sum Poisson distribution is a model for describing the aggregate claims arise in a group of 
independent insured. Let N  be the number of claims generated by a portfolio of insurance policies in a fixed time 
period. Suppose 1X  is the amount of the first claim, 2X  is the amount of the second claim and so on. Then 

1 2 3     NY X X X .... X  represents the total aggregate claims generated by this portfolio of policies in the 
given fixed time period. In order to make this model more tractable, we make the following assumptions: 

 1 2X ,X ,...are independent and identically distributed. 

  Each iX  is independent of the number of claims N . 

The number of claims N  is associated with the claim frequency in the given portfolio of policies. The common 
distribution of 1 2X ,X ,...  is denoted by X . Note that X  models the amount of a random claim generated in this 
portfolio of insurance policies.  

When the claim frequency N  follows a Poisson distribution with a constant parameter  , the aggregate claims 
Y  is said to have a random sum Poisson distribution which has the mean  E[ N ]  and the variance 

2V a r [ Y ] E [ X ] . The moment generating function is 

1  Y N X XM ( s ) M [ln M ( s )] exp[ ( M ( s ) )]                   (14) 

3. Numerical Example 

Suppose that an insurance company acquired two portfolios of insurance policies and combined them into a single 
block. For each portfolio the aggregate claims variable has a random Poisson distribution. For each of the 
portfolios, the Poisson parameter is   and the individual claim amount has an Exponential distribution with 
parameter  . Let the random sum 1 2 Y X X  be the aggregate claims generated in a fixed period by an 
independent group. When the number of claims N  follows a Poisson ( )  a distribution, ,

iX s  are i.i.d. random 
variables follows Exponential ( )  distribution, the sum Y 	is said to have a Poisson-Exponential random sum 
distribution. The cumulant generating function for N is given by  

1s
N N K  (s)=ln[ M  (s)]= (e )                                    (15) 

And for ,
iX s  which are i.i.d. random variables follows Exponential ( )  distribution. The CGF for ,

iX s  is 
defined as  

1 X XK  (s)=ln[ M  (s)]= ln( s )                                (16) 

Then, we can drive the cumulant generating function for the Poisson-Exponential random sum distribution as 
follows  
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                   (17) 

Then the saddlepoint equation is  

21 0     Y ˆ ˆK ( s ) ( s ) x , x [ , )                         (18) 

Then we can drive the saddlepoint 
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xŝ
 

                                      (19) 

The second derivative of the cumulant generating function is given by 

2 32 1   Y ˆ ˆK ( s ) ( s )                                  (20) 

Then the saddlepoint density function for the Poisson-Exponential random sum distribution by using equation (3) 
is in the form  
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Now, let  F̂( x ) P(Y X )  as given in equation (5) with ŵ , û  as in Equation (6) and ŝ  as in Equation (19). 
In the previous insurance company example, let 1  and 5  when 01x . . Then we can drive the 
saddlepoint as ŝ 21 36067977 . . As well as, the cumulant generating function given as 

4 776393202 Y ˆK ( s ) . . The second derivative of the cumulant generating function is 
0 Y ˆK ( s ) .0008944271916   and 3 020856304ŵ - . , û -0.6388333294 . Then the saddlepoint cumulative 

distribution function for the random sum Poisson- Exponential when 01x .  is 01 F̂(. ) 0.0063977 .  

On other hand, we can use the Empirical distribution function to determined exact cumulative distribution function 
for Poisson- Exponential by simulating 610  independent values of Y  where N is Poisson (5) and ,

iX s  is 
Exponential )1(  generated by using Matlab program. 

Table 1 shows the comparation of the exact probabilities with saddlepoint approximations for Poisson- 
Exponential distribution, for each X , the first value of each cell of Table 1 is the exact Poisson- Exponential 
distribution, the second, is the saddlepoint approximations and the last value is the relative error . 
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Table 1. Compares the exact probabilities with saddlepoint approximations for Poisson- Exponential distribution 

X  F( X )  F̂( X )  F̂( X ) F( X ) % Relative Error 

0.01 0.007239 0.0063977 -0.0008413 11.621771 

0.28 0.01817 0.017361 -0.000809 4.45239406 

0.55 0.032687 0.032177 -0.00051 1.56025331 

0.82 0.051596 0.050571 -0.001025 1.98658811 

1.09 0.073048 0.072404 -0.000644 0.88161209 

1.36 0.098535 0.097426 -0.001109 1.12548841 

1.63 0.12628 0.12532 -0.00096 0.76021539 

1.9 0.15703 0.15572 -0.00131 0.8342355 

2.17 0.18936 0.18823 -0.00113 0.59674694 

2.44 0.22365 0.22244 -0.00121 0.54102392 

2.71 0.25885 0.25797 -0.00088 0.33996523 

2.98 0.29555 0.2944 -0.00115 0.38910506 

3.25 0.33239 0.33137 -0.00102 0.30686844 

3.52 0.36951 0.36853 -0.00098 0.2652161 

3.79 0.406 0.40556 -0.00044 0.10837438 

4.06 0.44295 0.44217 -0.00078 0.17609211 

4.33 0.47932 0.47811 -0.00121 0.25244096 

4.6 0.51458 0.51317 -0.00141 0.27400987 

4.87 0.54816 0.54715 -0.00101 0.18425277 

5.14 0.58071 0.5799 -0.00081 0.13948442 

5.41 0.61208 0.61131 -0.00077 0.12580055 

5.68 0.64138 0.64129 -9E-05 0.01403224 

5.95 0.67008 0.66977 -0.00031 0.04626313 

6.22 0.6973 0.69671 -0.00059 0.08461208 

6.49 0.72243 0.7221 -0.00033 0.04567917 

6.76 0.7461 0.74592 -0.00018 0.02412545 

7.03 0.76873 0.7682 -0.00053 0.06894488 

7.3 0.78998 0.78897 -0.00101 0.12785134 

7.57 0.8085 0.80826 -0.00024 0.0296846 

7.84 0.82641 0.82614 -0.00027 0.03267143 

8.11 0.84245 0.84264 0.00019 0.02255327 

8.38 0.85809 0.85784 -0.00025 0.02913447 

8.65 0.8725 0.8718 -0.0007 0.08022923 

8.92 0.88441 0.88459 0.00018 0.02035255 

9.19 0.89656 0.89628 -0.00028 0.03123048 

9.46 0.90673 0.90693 0.0002 0.02205728 

9.73 0.91691 0.91663 -0.00028 0.03053735 

10 0.9259 0.92543 -0.00047 0.05076142 

10.27 0.93385 0.9334 -0.00045 0.04818761 
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Figure 1. A comparative plot for exact probabilities with saddlepoint approximations for Poisson- Exponential 

distribution 
F hat(x) is the saddlepoin approximation. 

F(x) is the exact distribution. 

 
Figure 1 shows a comparative plot of the true cumulative distribution function CDF, F( x ) (solid line) for the 
random sum Poisson (5) Exponential (1) with the saddlepoint approximation F̂( x )  (dotted line).  

It is clear that, saddlepoint approximation for cumulative distribution function shares the same accuracy with exact 
and the mean squared error of the saddlepoint approximation is MSE= 60 0 604708.  which shows that the 
saddlepoint approximation is almost exact.	 
4. Conclusion 

This paper introduced saddlepoint approximations to the cumulative distribution function for random sum 
Poisson- Exponential distributions in continuous settings. We discussed approximations to random sum random 
variable with dependent components assuming presence of the moment generating function. We used the 
Empirical distribution function to calculate the exact CDF value by simulation one million independent values of 
Y . A numerical example of continuous distributions from the Poisson-Exponential distribution was presented. We 
found that, the saddlepoint approximation for CDF shares the same accuracy with exact CDF. And the mean 
squared error of the saddlepoint approximation is close to zero. 
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