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Abstract 
In this paper, the numerical solution of the linear and nonlinear fuzzy Volterraintegro-differential equations have 
been investigated using the analytical method namely homotopy analysis method (HAM) and then the proposed 
method is illustrated by solving two numerical examples. It was found that the HAM provides a simple way to 
adjust and control the convergence region of solution series by introducing a nonzero auxiliary parameter . 
Keywords: fuzzy numbers, fuzzy volterraintegro-differential equations, homotopy analysis method 

1. Introduction 
Integro-differential equations (IDEs) play an important role in many branches of linear and nonlinear functional 
analysis and their applications in the theory of engineering, mechanics, physics, chemistry, astronomy, biology, 
economics, potential theory and electrostatics. The fuzzy functions were introduced by Chang and Zadeh (1972). 
Later the concept of integration of fuzzy functions was introduced by Dobois and Prade (1982). In 1992, Liao 
employed the basic ideas of the homotopy, a fundamental concept in topology and differential geometry, to 
propose a general analytic method for linear and nonlinear problems, called Homotopy Analysis Method (HAM) 
(Liao, 2003; 2004; 2009 a & b). The homotopy analysis method (HAM) is a general analytic approach to get 
series solutions of various types of nonlinear equations, including algebraic equations, ordinary differential 
equations, partial differential equations, differential-integral equations, differential-difference equation and 
coupled equations of them. This method has been successfully applied to solve many types of linear and 
nonlinear problems (Afroozi, Vahidi, & Saeidy, 2010; Abbasbandy, Magyari, & Shivanian, 2009; Abbasbandy, 
Babolian, & Ashtiani, 2009; Bataineh, Noorani, & Hashim, 2008; Dubois & Prade, 1982; Ghanbari, 2010; Liao 
& Tan, 2007). 

2. Preliminaries  
In this section, the most basic notations used in fuzzy calculus are introduced. We start with defining a fuzzy 
number. 

Definition 2.1 (Goetschel & Voxman, 1983) A fuzzy number is a map u: R I [0,1]   which satisfies 

i.  u is upper semi-continuous, 

ii. u(x) 0 outside some interval [c,d] , 

iii. There exist real numbers a, b such that c a b d   , where 

1) u(x) is monotonic increasing on [c,a] , 

2) u(x) is monotonic decreasing on [b,d] , 

3) u(x) 1 , a x b  . 

An equivalent parametric definition of fuzzy numbers is given by Friedman, Ma, and Kandel (1999) as follows: 

Definition 2.2 An arbitrary fuzzy number in parametric form is represented by an ordered pair of functions 
(u( ),u( ))  0 1   , which satisfying the following requirements: 

i. u( ) is a bounded left-continuous non-decreasing function over [0,1] , 

ii. u( ) is a bounded left-continuous non-increasing function over [0,1] , 
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iii. u( ) u( )   , 0 1   . 

For arbitrary fuzzy numbers u (u( ),u( ))   , v (v( ), v( ))    and real constant we define addition u v  
and scalar multiplication ku as 

(u v)( ) u( ) v( ),

(u v)( ) u( ) v( ),

     

                                      (1) 

(ku)( ) ku( ), (ku)( ) ku( ), ifk 0

(ku)( ) ku( ), (ku)( ) ku( ), ifk 0

      

      
                         (2) 

The collection of all such fuzzy numbers with addition and multiplication as defined by Equations (1) and (2) is 
denoted by 1E  and is a convex cone. Next, we will define the fuzzy function notation and a metric D  in 1E  
(Goetschel & Voxman, 1986). 

Definition 2.3 For arbitrary fuzzy numbers u (u( ),u( ))   , v (v( ), v( ))   , the quantity  

 
0 1 0 1

D(u, v) max sup u( ) v( ) , sup u( ) v( )
 

        

is the distance between u  and v . This metric is equivalent to the one used by Puri and Ralescu (1983) and 
Kaleva (1987). It is shown (Puri & Ralescu, 1986) that 1(E , D)  is a complete metric space. 

Definition 2.4 A fuzzy function 1 1f : R E  is said to be continuous if for arbitrary fixed 1
0x R and 0 

there exists 0  such that 

if 0x x   , then 0D(f (x), f (x ))                           (3) 

Throughout this work we also consider fuzzy functions which are defined only over a finite interval [a, b] (we 
simply replace 1R  by [a, b]  in definition 2.4). 

Definition 2.5 (Mehrkanoon, Suleiman, & Majid, 2009) 
The Seikkala derivative f (x)  of a fuzzy function f is defined by  

[f (x)] [f (x; ), f (x; )], (0,1]

      

where prime symbol denote the derivative with respect to x. 

Following the idea of Bede and Gal in 2004 and 2005, Chalco-Cano and Roman-Flores (2008) define the fuzzy 
lateral H-derivative for a fuzzy function 1f : I E  as follows: 

Definition 2.6 (Mehrkanoon, Suleiman, &Majid, 2009) 
Let 1f : I E  be a fuzzy function and 0x I R  , then f is differentiable at 0x , if 

(I) there exist an element 1
0f (x ) E  , such that for all h 0  sufficiently small, there are 0 0f (x h) f (x )  ; 

0 0f (x ) f (x h)   and 

0 0 0 0
0

h 0 h 0

f (x h) f (x ) f (x ) f (x h)
lim lim f (x )

h h  

                           (4) 

or 

(II) there exist an element 1
0f (x ) E  , such that for all h 0  sufficiently small, there are 0 0f (x h) f (x )  ; 

0 0f (x ) f (x h)   and 

0 0 0 0
0

h 0 h 0

f (x h) f (x ) f (x ) f (x h)
lim lim f (x )

h h  

                          (5) 

where the relation (I) is the classical definition of the fuzzy H-derivative (or differentiability in the sense of 
Hukuhara). 

3. HAM for Solving Fuzzy Volterra Integro-Differential Equations (FVIDEs) 
In this section, we shall apply HAM for solving linear and nonlinear fuzzy Volterra integro-differential equations 
(FVIDEs)  

x

0
F (x) f (x) K(x, t)F(t)dt                                (6) 
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x

0
F (x) f (x) K(x, t, F(t))dt                                (7) 

under the initial condition 0F F(0) (F(0, ) , F(0, )) (0,0)      where 
d

F (x) F(x)
dx

  , 1f : [0, b] E  is 

continuous fuzzy function, K  is arbitrary continuous function over the regions  

{(x, t) 0 t x b}     and 1{(x, t,F(x)) 0 t x b,F(x) E }       

respectively, and F  is to be determined.  

In the following, we shall follow the same method that proposed by Bede (2008), and Chalco-Cano and 
Roman-Flores (2008) in the fuzzy differential equations to reduce FVIDEs to a crisp systems of 
integro-differential equations (IDEs) using relations (4) and (5) in definition (2.6). 

Let us recall the proposed method. We denote the level   set of F , f  and K  by  

[F(x)] [F(x; ),F(x; )]    , 

[f (x)] [f (x; ), f (x; )]    , 

and 

[K(x, t,F(t)] [K(x, t,F(t, )),K(x, t,F(t, ))]     

respectively. Then we have the following two cases: 

Case I If we consider F (x)  in the first form (4) of definition (2.6) then we have to solve the following systems 
of crisp IDEs 

x

0

x

0

F (x; ) f (x; ) K(x, t)F(t; )dt

F (x; ) f (x; ) K(x, t)F(t; )dt

      


     




, F(0; ) F(0; ) 0                    (8) 

for the linear case, and 
x

0

x

0

F (x; ) f (x; ) K(x, t, F(t; ))dt

F (x; ) f (x; ) K(x, t, F(t; ))dt

      


     




, F(0; ) F(0; ) 0                    (9) 

for the nonlinear case. 

Case II If we consider F (x)  in the second form (5) of definition (2.6), then we have to solve the following 
systems of crisp IDEs 

x

0

x

0

F (x; ) f (x; ) K(x, t)F(t; )dt

F (x; ) f (x; ) K(x, t)F(t; )dt

      


     




, F(0; ) F(0; ) 0                  (10) 

for the linear case, and 
x

0

x

0

F (x; ) f (x; ) K(x, t,F(t; ))dt

F (x; ) f (x; ) K(x, t,F(t; ))dt

      


     




, F(0; ) F(0; ) 0                 (11) 

for the nonlinear case. 

In our work, we will consider case I, hence we have to solve the systems (8) and (9). 

For simplicity and without lose of generality of the problem, we assume that the kernels K(x, t) 0  on  and 
K(x, t, (x)) 0  , K(x, t, (x)) 0   on  . 

3.1 Linear Fuzzy VolterraIntegro-Differential Equations 

For solving system (8) by HAM we first construct the zeroth-order deformation equations: 



www.ccsenet.org/mas Modern Applied Science Vol. 7, No. 3; 2013 

18 
 

0

x

0

0

x

0

(1 p)L[ (x,p; ) w (x; )] p H(x)[ (x, p; ) f (x; )

K(x, t) (t, p; )dt]

(1 p)L[ (x,p; ) w (x; )] p H(x)[F (x, p; ) f (x; )

K(x, t)F(t, p; )dt]

         

  


        

 








                (12) 

where p [0,1]  is the embedding parameter,   is nonzero auxiliary parameter, L  is an auxiliary linear 
operator, H(x)  is an auxiliary function, 0w (x; )  and 0w (x; )  are initial guesses of F(x; )  and F(x; )  
respectively and (x,p; )  , (x,p; )   are unknown functions. 

Differentiating the zeroth-order deformation Equations (12) m  times with respect to the embedding parameter 
p  and dividing them by m! and finally setting p 0 , we obtain the so called m th  order deformation 
equations 

m m m 1 m 1 m

x

m 10

L[u (x; ) u (x; )] H(x)[u (x; ) (1 )f (x; )

K(x, t)u (t; )dt]

 



        

 


              (13) 

mu (0; ) 0   

m m 1 m 1m m

x

m 1
0

L[u (x; ) u (x; )] H(x)[u (x; ) (1 )f (x; )

K(x, t)u (t; )dt]

 




        

 


              (14) 

mu (0; ) 0   

Choose the auxiliary linear operator as L
x




, the initial guesses 0 0w u 0  , 0 0w u 0   and the 

auxiliary function H(x) 1 . 

By taking 
x1

0
L   on both sides of equations (13) and (14) then we obtain the following iteration forms 

x

1 0

x

1
0

u (x; ) f (s, )ds

u (x; ) f (s, )ds

   

   







                               (15) 

and 
x s

m m 1 m 10 0

x s

m m 1 m 1
0 0

u (x; ) (1 )u (x; ) K(s, t)u (t; )dtds

u (x; ) (1 )u (x; ) K(s, t)u (t; )dtds

 

 

      

      

 
 

 

 
, m 2            (16) 

Hence, the homotopy solution series is given by 

m
m 1

m

m 1

F(x; ) u (x; )

F(x; ) u (x; )








  

  




                              (17) 

therefore the approximation solution series of order n is  
n

n m
m 1

n

n m

m 1

F (x; ) u (x; )

F (x; ) u (x; )





  

  




                             (18) 

3.2 Nonlinear Fuzzy Volterra Integro-Differential Equations 

For solving system (9) by HAM we first construct the zeroth-order deformation equations 

0

0

(1 p)L[ (x,p; ) w (x; )] p H(x)N[ (x, p; )]

(1 p)L[ (x,p; ) w (x; )] p H(x)N[ (x, p; )]

       

       




                 (19) 

where 
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x

0
N[ (x,p; )] (x,p; ) f (x; ) K(x, t, (t, p; ))dt                            (20) 

and 
x

0
N[ (x,p; )] (x,p; ) f (x; ) K(x, t, (t, p; ))dt


                            (21) 

The corresponding m-th order deformation equations reads: 

m m m 1 m m 1L[u (x; ) u (x; )] H(x)R [u (x; )]                             (22) 

mu (0; ) 0   

and 

m m 1 m 1m mL[u (x; ) u (x; )] H(x)R [u (x; )]                            (23) 

mu (0; ) 0   

where 
x

m 1m m 1 m 1 m 0
R [u (x; )] u (x; ) (1 )f (x; ) K (x, t; )dt 

                        (24) 

and 
x

m 1m 1 m 1m m 0
R [u (x; )] u (x; ) (1 )f (x; ) K (x, t; )dt 


                        (25) 

where 
m 1

m 1 p 0m 1

m 1

m 1 p 0m 1

1
K (x, t; ) K(x, t, (t, p; ))

(m 1)! p

1
K (x, t; ) K(x, t, (t, p; ))

(m 1)! p



 



 

   
 

   
 

                     (26) 

Choose the auxiliary linear operator as L
x




 and the auxiliary function H(x) 1 . 

By taking 
x1

0
L   on both sides of equations (22) and (23) we obtain the following iteration forms 

x x s

01 0 0 0 0

x x s
01 0

0 0 0

u (x; ) u (x; ) f (s, )ds K (s, t; )dtds

u (x; ) u (x; ) f (s, )ds K (s, t; )dtds

      

      

  
  

  

  
                (27) 

and 
x s

m 1m m 1 0 0

x s
m 1m m 1

0 0

u (x; ) (1 )u (x; ) K (s, t; )dtds

u (x; ) (1 )u (x; ) K (s, t; )dtds





      

      

 
 

 

 
, m 2               (28) 

where 

0 0K (s, t; ) K(s, t, u (t; ))    

and 

0 0K (s, t; ) K(s, t,u (t; ))    

Hence, the homotopy solution series is given by 

0 m
m 1

0 m

m 1

F(x; ) u (x; ) u (x; )

F(x; ) u (x; ) u (x; )








    

    




                            (29) 

therefore the approximation solution series of order n is  
n

n 0 m
m 1

n

n 0 m

m 1

F (x; ) u (x; ) u (x; )

F (x; ) u (x; ) u (x; )





    

    




                           (30) 

4. Numerical Examples 
In this section, we examine our method by giving two numerical examples with known exact solutions. 
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Example 4.1 
Consider the linear FVIDE with  

K(x, t) xt , b 1 , 1   

and 
41

3f (x; ) (1 x )     
41

3f (x; ) 2 x (2 )      

The exact solution in this case is given by  

F(x; ) x

F(x; ) (2 )x

  

  
 

From Equations (15) and (16) we obtain 
51

1 15u (x; ) (x x )     , 

5 2 9 51 1 1
2 15 945 15u (x; ) (1 ) (x x ) ( x x )           , 

5 2 9 5 2 1387363867296955731 1 1
3 15 945 15 1180591620717411303424

2 9 51 1 1 1 1 1
9 105 105 945 15 15

u (x; ) (1 ){( 1 ) (x x ) ( x x )} ( x

( ( ) )x ( ) x )

            

        

     

    
, 

2 3 4 2 4 3 5 431 2 4 2
4 15 5 15 5 315

3 2 9 3 4 133541774862152233864203 15741221609565483892091 1
105 315 159539248665647376488202240 53179749555215792162734080

4385

u (x; ) ( 3 3 )x ( )x (

)x ( )x

                   

       



        

   
4 17323534906013

151115727451828646838272 x

, 

3 4 2 5 2 3 5 4 58 6 161 1
5 15 15 5 3 15

2 4 3 5 9 38 35417748621522338642034 2 2
945 315 105 189 79769624332823688244101120

1574122160956548389209
132949373888039480

u (x; ) ( 6 4 4 )x ( )x

( )x (

                     

         



         

    
4 5 13 45902958103587056471051 604462909807314567905837

40683520 79769624332823688244101120 5207361076446730368574921113600

5 17755578637259143214744109 281364116
5207361076446730368574921113600

)x (

)x

    

  

  

 5 215252981
38685626227668133590597632 x

, and 

52 1
1 15 15u (x; ) {( )x 2x x}        , 

5 9 52 1 1 2 1 1
2 15 15 63 15 15 15u (x; ) (1 ) {( )x 2x x} { ( )x (2 )x }                    , 

3 3 2 2 5 3 5 3 5 5 2 51
3 15

2 5 2 3 2 3 9 3 3 134 1 2 2 1
9 315 945 315 135135

u (x; ) ( 2 2 2 4 )x (2 x 6 x 3 x x 4 x

8 x ) ( 45 )x (2 )x

                 

         

          

      
, 

4 2 4 3 2 3 4 4 332 4
4 15 15 5

2 2 3 5 3 2 4 4 3 2 961 2 4 2 1 4 2 1 2
15 5 5 5 105 315 315 315 105 315

3 3 4 4 138 16444963255892 1 4
45045 45045 135135 135135

u (x; ) ( 2 2 3 3 6 6 )x ( 8/15

)x ( )x

( )x

                  

             

      

           

         

    4 17 4 17755 1644496325589755
56668397794435742564352 28334198897217871282176x x  

, 

4 5 2 5 4 3 3 2
5

5 5 4 4 3 2 3 2 532 16 16 6 82 2 1 12 1
15 3 3 15 15 5 15 15 5 15

2 4 5 5 3 2 3 4 98 16 82 4 4 4 2
945 315 189 189 105 945 105 315

34 2
45045 450

u (x; ) ( 8 2 2 8 4 12 6 x 4 )x

( )x

( )x

(

               
              

           

 

         
         

       

 3 4 4 5 5 1316 32 2
45 135135 135135 27027

4 475557863725914322890873 75557863725914322890873 31482443219130967915219
325460067277920648035932569600 325460067277920648035932569600 21697337818

4/27027 )x

(

      

  

    

  5
5280432023955046400

5 17 5 5 2131482443219130967915219 1758525728283113 1758525728283113
108486689092640216011977523200 12089258196146291747061760 24178516392292583494123520)x ( )x



   



  

, 

Then we approximate F(x; )  with n 5  by 
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2 5 4 3 5 2 4 3 51 1 4 4
5 3 3 3 3

2 5 3 4 9 559029581035870564710512 2 2 2
189 189 63 63 79769624332823688244101120

1686559458167730413719
113956606189748126063

F (x; ) ( 5 10 5 10 )x ( 2 )x

( )x (

                     

          



         

    
4 3 132361183241434822560779

00160 31907849733129475297640448

4 5 17755578637259143198847287 377789318629571604331517 281364116525
5207361076446730368574921113600 2603680538223365184287460556800

)x

( )x

  

    

 

  5 212981
38685626227668133590597632 x

and F(x; )  

with n 5  by 

5 3 2 5 3 4 4 2
5

5 2 4 4 3 5 2 3 5 58 82 4 4 1 1 2 4
3 3 3 3 3 3 3 3 189

3 5 4 4 2 2 3 9 5 32 2 2 4 2 4 4 4 4
63 189 63 63 189 189 63 27027 27027

48
27027

F (x; ) ( 10 10 2 10 20 5 5 10 20 )x

( 4 2 )x (

)x (

               
               

           



         
          

        

 3 4 5 13 4944473296573929049004432 4 2
27027 27027 27027 650920134555841296071865139200

515741221609565484115267 94447329657392904900443
54243344546320108005988761600 32546006727792064803593256960

)x (       

 

   

 4 5 1715741221609565484115267
0 108486689092640216011977523200

5 5 211758525728283113 1758525728283113
12089258196146291747061760 24178516392292583494123520

)x

( )x

 

  

 

 

 

We determine the valid region of   such that the homotopy solution series converges, we plot the curve  
of approximate solution 5F (0.5,0.5)  and 5F (0.5,0.5)  which is obtained by HAM as shown in Figure 1. From 
this figure we can find that the valid region of   is the interval [ 1.5, 0.3]  . The error between exact and 
approximate solution of order 5 obtained by HAM is shown in Table 1. 

 
Figure 1. Plot of the curve  of 5F (0.5,0.5)  and 5F (0.5,0.5)  dashed dotted line represents 5F (0.5;0.5)  

and solid line represents 5F (0.5;0.5)  

 

Table 1. The error between exact and approximate solution for different values of   

x 1.4   1.2   1   0.8   0.6   0.4 
0 0 0 0 0 0 0 

0.1 2.e-3 6.3987e-5 1.4546e-31 6.4009e-5 2.e-3 1.56e-2 

0.2 4.1e-3 1.2759e-4 3.0506e-25 1.2827e-4 4.1e-3 3.11e-2 

0.3 6.1e-3 1.8889e-4 1.5216e-21 1.9408e-4 6.2e-3 4.67e-2 

0.4 7.9e-3 2.4296e-4 6.3975e-19 2.6477e-4 8.3e-3 6.26e-2 

0.5 9.5e-3 2.8047e-4 6.9362e-17 3.4688e-4 1.06e-2 7.88e-2 

0.6 1.05e-2 2.8691e-4 3.1910e-15 4.5145e-4 1.31e-2 9.60e-2 

0.7 1.04e-2 2.4261e-4 8.1247e-14 5.9582e-4 1.61e-2 0.1147 
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0.8 8.9e-3 1.2473e-4 1.3416e-12 8.0633e-4 1.98e-2 0.1358 

0.9 5.3e-3 8.7951e-5 1.5916e-11 1.1e-3 2.47e-2 0.1607 

1 8.2305e-4 4.0630e-4 1.4546e-10 1.6e-3 3.12e-2 0.1908 

 
Example 4.2 Consider the nonlinear FVIDE with 

2

2

K(x, t,F(t; )) F (t; )

K(x, t,F(t; )) F (t; )

  

  
, 0 x 1  b 1, 1    

and 

4 3 2 5 21
5f (x; ) ( 2 )x 2( )x           

3 6 4 2 5 31
5f (x; ) (16 8 8 2 )x 2(4 )x               

The exact solution in this case is given by 

2 2

3 2

F(x; ) ( )x

F(x; ) (4 )x

    

   
 

Choose 00u (x; ) u (x; ) 0     and from equation (28), we obtain 

m 1x s

m m 1 i m 1 i0 0
i 0

m 1x s

m m 1 i m 1 i
0 0

i 0

u (x; ) (1 )u (x; ) u (t; )u (t; )dtds

u (x; ) (1 )u (x; ) u (t; )u (t; )dtds



  




  


       

       

 

 

 

 
, m 2  

From this and (27), we can obtain the first three terms of approximate homotopy solution series as 
2 3 6 21

1 30u (x; ) (2 )x (1 )x         , 

2 3 6 21
2 30u (x; ) (1 ) (2 )x (1 ) (1 )x             , 

3 4 3 8 3 7 3 6 3 5 1456308742593741 56308742593741 1 1 1
3 9223372036854775808 9223372036854775808 40950 27300 40950

3 6 3 5 3 3 3 4 10 3 2 2 2 3 2 41 1 1 1 1 1 2 1
1350 450 1350 450 15 15 15 15

u (x; ) (   )x

( )x (

           

               



    

       
4 2 6 2 3 3 2 2 2 2 21 1

30 30 )x ( 2 2 )x                     

, 

and 

3 2 6 4 6 3 21 1
1 30 30u (x; ) ( 8 16 8 2 )x (30 120 30 )x                 , 

3 2 6 4 6 3 21
2 30u (x; ) (1  ) ( 8 16 2 8  2 )x ( 1  ) ( 40  )x                      , 

3 3 12 3 4 3 3 232 56308742593741 5433793660296007 32 4
3 20475 9223372036854775808 4611686018427387904 20475 6825

33 7 3 6 3 5 8 3 9 3 10 3 3 14342 1 2 1 2 1
6825 1638 6825 27300 20475 40950 20475

u (x; ) (

)x

(

          

             



    

     
3 3 9 3 6 3 3 3 3 4 3 5 3 732 49 81 2 4 1 1

675 1350 225 1350 225 225 450 450

3 2 10 2 2 2 2 6 6 2 2 4 2 38 16 8 82 1 1 1 2
225 15 15 15 30 15 15 15 15

3 4 2 6 2 3 2 2 24 1 4 1
15 15 15 30

)x (

)x (2 8 2 4

             

                

                 

       

        

         3

3 3 3 24 )x    



  

. 

Then, the approximate solutions 3F (x; )  and 3F (x; )  are given by 
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3 4 3 8 3 7 3 6 3 5 1456308742593741 56308742593741 1 1 1
3 9223372036854775808 9223372036854775808 40950 27300 40950

3 6 3 5 3 3 3 4 10 2 3 2 2 3 2 41 1 1 1 1 1 1 1
1350 450 1350 450 5 10 5 10

1
10

F (x; ) ( )x

( )x (

           

               



    

       

 2 4 6 3 3 2 2 2 2 2 21
10 )x ( 3 3 3 3 )x                    

 

and 

3 3 12 3 4 3 3 232 56308742593741 5433793660296007 32 4
3 20475 9223372036854775808 4611686018427387904 20475 6825

3 7 3 6 3 5 3 8 3 9 3 10 3 3 14342 1 2 1 2 1
6825 1638 6825 27300 20475 40950 20475

F (x; ) (

)x

          

             



    

      
3 3 9 3 6 3 3 3 3 4 3 5 3 732 49 81 2 4 1 1

675 1350 225 1350 225 225 450 450

3 2 10 2 2 2 2 6 6 2 2 4 2 38 82 4 1 1 1 1 4
225 5 10 10 10 5 5 5 5

3 4 2 6 2 3 2 3 2 34 1 4 1
5 5 5 10

(

)x (

)x (3 12 3 3 4

3

             

                

                 

 

       

        

         

 3 3 3 212 )x   

 

respectively.  

To determine the valid region of the auxiliary parameter  , we plot the curves 3F (0.5;0.5)  and 
3F (0.5;0.5)  as shown in Figure 2. We can find that the region of   is the closed interval [ 1.4, 0.6]  . The 

error between exact and approximate solution is given in Table 2. 

 

Figure 2. The curve  of 3F (0.5;0.5)  and 3F (0.5;0.5) , dashed dotted line represents 3F (0.5;0.5)  and solid 

line represents 3F (0.5;0.5)  
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Table 2. The error between exact and approximate solutions 
x 1.3   1.2   1.1   1   0.9   0.8   0.7 
0 0 0 0 0 0 0 0 

0.1 1.1e-3 3.2038e-4 4.0176e-5 4.7407e-12 4.0144e-5 3.2026e-4 1.1e-3 

0.2 4.4e-3 1.3e-3 1.7126e-4 4.8543e-9 1.6922e-4 1.3e-3 4.3e-3 

0.3 1.0e-22 3.2e-3 4.8793e-4 2.7986e-7 4.6518e-4 3.1e-3 1.00e-2 

0.4 1.9e-28 6.7e-3 1.4e-3 4.9668e-6 1.2e-3 6.2e-3 1.87e-2 

0.5 3.6e-26 1.39e-2 3.7e-3 4.6201e-5 3.3e-3 1.20e-2 3.23e-2 

0.6 6.7e-24 2.89e-2 9.3e-3 2.8543e-4 8.4e-3 2.36e-2 5.47e-2 

0.7 0.1234 5.86e-2 2.09e-2 1.3e-3 1.99e-2 4.65e-2 9.29e-2 

0.8 0.2217 0.1125 4.20e-2 5e-3 4.40e-2 9.02e-2 0.1589 

0.9 0.3836 0.2020 7.52e-2 1.62e-2 9.16e-2 0.1702 0.2716 

1 0.6313 0.3368 0.1190 4.58e-2 0.1814 0.3115 0.4597 

 

It is worthy to point out that there are many applied problems that are modeled as integro-differential equations 
and can be solved by the current method such as; steady state condition of biological species living together, 
Maxwell equation in integro-differential form, chance to find time gap in dense traffic, etc. 

5. Conclusions  
In this paper we solved successfully the fuzzy Volterra integro-differential equations using Homotopy Analysis 
Method (HAM). It is apparently seen that HAM is very powerful and efficient technique in finding approximate 
solution for such equations. This method enjoys great freedom in choosing initial approximations, auxiliary 
linear operators and auxiliary functions. By means of this kind of freedom, a complicated problem can be 
transferred into an infinite number of simpler, linear subproblems that contain the auxiliary parameter   which 
provides a convenient way to adjust and control the convergence of the solution series, this represents the main 
advantage of this method. 
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