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Abstract 
In order to solve the portfolio problem when security returns are birandom variables, firstly we propose a new definition 
of risk, then one type of portfolio selection based on expected value and risk is provided according to birandom theory. 
Furthermore, A hybrid intelligent algorithm by integrating birandom simulation and genetic algorithm is designed. 
Finally, one numerical experiment is provided to illustrate the effectiveness of the hybrid intelligent algorithm. 
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1. Introduction 
The theory of portfolio selection was initially provided by Markowitz (1952, p.77) and has been greatly developed since 
then. It is concerned with selecting a combination of securities among portfolios containing large number of securities to 
reach the goal of obtaining satisfactory investment return. In his path-break work, Markowitz proposed a principle that 
when making investment decision, an investor should always strike a balance between maximizing the return and 
minimizing the risk, i.e., the investor maximize return for a given level of risk, or one should minimize risk for a 
predetermined return level. More importantly, Morkowitz initially quantified investment return as the expected value of 
returns of securities, and risk as variance from the expected value. After Maokowitz’s work, scholars have been showing 
great enthusiasm in portfolio management, trying different mathematical approaches to develop the theory of portfolio 
selection. Traditionally, returns of individual securities were assumed to be stochastic variables, and many researchers 
were focused on extending Markowitz’s mean-variance models and on developing new mathematical approaches to solve 
the problems of computation. Peng (2007,p.433) proposed concept of birandom variable and the framework of birandom 
programming. However, investors may come across birandom returns in portfolio selection situations. For example, 
security returns are usually regarded to be normally distributed random variables, but the expected value may be still 
random variable, thus investors have to face random returns with random parameters, to deal with this type of uncertainty, 
we propose the security returns could be regarded as birandom variables. As a general mathematical description for this 
kind of stochastic phenomenon with incomplete statistical information, birandom variable is defined as a mapping with 
some kind of measurability from a probability space to a collection of random variables. 
In general, there are three types of risk definitions in portfolio selection problems. Variance is the earliest and most 
commonly accepted definition of risk for portfolio selection initially proposed by Markowitz (1952, p.77). A variety of 
extensions to Markowitz’s mean-variance models has been proposed. Semivariance is the second type of risk definitions, 
and was also proposed by Markowitz (1959). Semivariance is an improvement of variance because semivariance only 
measures portfolio return below the expected value. Many models have been built to minimize semivariance in different 
cases. The third popular definition of risk is a probability of a bad outcome initially by Roy (1952, p.431). Much research 
has been undertaken to find ways of minimizing the probability of the bad outcome. Recently, Huang (2007, p.5404) 
proposed another new definition of risk for portfolio selection in fuzzy and random fuzzy environments. The detailed 
exposition on the definition of risk had been recorded in the literature, the interested readers may consult it. We can 
regard it as the fourth type of risk. Her work has enriched the risk theory for portfolio selection. We try to do something 
for portfolio selection in birandom environments, and give a new risk definition and a model for portfolio selection 
according to the proposed risk. 
The rest of this paper is arranged as follows. After reviewing some necessary knowledge about birandom variable in 
section 2, in section 3, one type of risk for portfolio selection model under birandom environment is proposed. In section 
4, we give a model for portfolio selection from the point of the new definition of risk. To provide a general method for 
solving the new models, in section 5, a hybrid intelligent algorithm integrating genetic algorithm and birandom 
simulation is designed. To better illustrate the modeling idea and demonstrate the effectiveness of the proposed algorithm, 
one numerical example is provided in section 6.  
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2. Preliminaries 
Birandom variable theory was introduced by Peng (2007, p.433). To better understand the proposed model for portfolio 
selection, let us briefly review some necessary knowledge about birandom variable. 

Definition 1 A birandom variable ξ  is a mapping from a probability space Pr),,( ΑΩ to a collection of random 
variables such that for any Borel subset B  of the real line R , the induced function })(Pr{ B∈ωξ is a measurable 
function with respect toω . 

Example 1 Let },{ 21 ωω=Ω , and 2/1}Pr{}Pr{ 21 == ωω . Assume that ξ  is a function on Pr),,( ΑΩ as follows. 
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where 1ξ  is a uniformly distributed random variable on ]1,0[  and 2ξ  is a normally distributed random variable with 
mean 0  and variance 1 , i.e., ]1,0[~1 Uξ  and )1,0(~2 Nξ . Then ξ  is a birandom variable according to the 

definition. 

The following are the definitions of the expected value operator and variance of birandom variance and the primitive 
chance of birandom event. 

Definition 2 (Peng (2007, p.4330)). Let ξ  be a birandom variable defined on the probability space Pr),,( ΑΩ . Then 
the expected value of birandom variable ξ  is defined as  

dt})]([|Pr{-dt})]([|Pr{][
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provided that at least one of the above two integrals is finite. 

Definition 3 (Peng (2007, p.4330)). Let ),,,( 21 nξξξξ L=  be a birandom vector on Pr),,( ΑΩ , and mn RRf →:  

be a vector-valued Borel measurable function. Then the primitive chance of birandom event characterized by 
0)( ≤ξf is a function from ]1,0(  to ]1,0[ , defined as  

}.}}0))((Pr{|Pr{|sup{)}(0)({Ch αβωξωβαξ ≥≥≤Ω∈=≤ ff  

Theorem 1 (Peng (2007, p.4330)). Let ),,,( 21 nξξξξ L=  be a birandom vector on Pr),,( ΑΩ , and mn RRf →:  

be a Boral measurable function. Then the chance  

)}(0)({Ch αξ ≤f  

is a decreasing and left-continuous function of α . 

Theorem 2 (Peng (2007, p.4330)). Let ξ  be a birandom variable and α a given number in ]1,0( , then the chance 

distribution 

)}({Ch αξ x≥  is a decreasing and left-continuous function of x . 

3. New definition of risk 

In reality, some investors are only sensitive to one preset bad case. They regard as safe those securities whose chance of 
this bad case occurring is lower than the investors’ tolerance level. Other investors consider all the possible unfavorable 
cases, and only those securities whose chance of every unfavorable case occurring is lower than the investors’ tolerance 
level are regarded as safe. We will define the risk from this perspective. 

Definition 4 Let ξ  be a birandom variable on the probability space Pr),,( ΑΩ , and δ  the preset confidence level 

and b the target return. Then the curve Rrrbrf ∈∀≥= ),}(-Ch{),( δξδ is called the risk curve of an 
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investment in the portfolio, and r  the loss severity indicator. 

The greater the indicator r , the more severe the loss ξ−b . The risk curve ),( rf δ  gives the chance of the 
occurrence of all events when the birandom return ξ  is r less than the target return b . 

From theorem 1 and theorem 2 we can derive that the risk curve ),( rf δ  is a decreasing function with respect to δ  
and r , that is, the greater theδ , the smaller the ),( rf δ  value, the greater the r , the smaller the ),( rf δ . 

To determine whether a portfolio selection is risky, an investor must first decide what is his or her maximum tolerance 
level of each bad event occurring. Usually, the worse the event,  the lower the tolerance level. Then for every loss 

severity indicator Rr ∈0 , the investor always can give a confidence level corresponding  )( 0rα  , thus the confidence 

level )(rα  is a function of the loss severity indicator r , the function )(rα  is called the confidence curve.   

Let ξ  be a birandom return of a portfolio A , and )(rα the confidence curve. We can say that A  is safe if  

(r))}(-Ch{),( αδξδ ≤≥= rbrf for every Rr∈ , where b  is the target return and δ  the preset credibility level. 

The number r denotes all possible loss severity indicator. If the investor is only concern with one special loss severity 
indicator 0r , then the risk becomes the chance )}(-Ch{ 0 δξ rb ≥ , Which is exactly the ordinary chance measure of 

birandom variable. 

4. Birandom portfolio selection 

Let us select a portfolio according to the definition of risk in the preceding content. Let ix  denotes the investment 
proportions in security i , iξ  the birandom return for the thi  security, ni ,,2,1 L=  , respectively. Let r denote the 
loss severity indicator, and )(rα the confidence curve preset by the investor. To obtain the maximum investment return 

and avoid risk, the investor should select an optimal combination of securities from the portfolio safe point. We use the 
expected value of the securities to express the investment return. Thus we should set a goal of maximizing the expected 
return of a portfolio, and require that the risk curve ),( rf δ is not larger than the confidence curve )(rα . Let b  be 
the target return and δ the preset credibility level. Then the model is formulated as follows: 
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                                                             (1) 

When the birandom returns degenerate to random, the chance constraint becomes 

0),(}Pr{
1

≥∀≤≥−∑ =
rrrxb n

i ii αξ , 

thus the model is the following  

nix

x

rrrxb

xE

i

n
i

i
n

i i

i
n

i ix

,,2,1,0

1

0),(}-Pr{

tosubject

][max

1i

1

1

L=≥

=

≥∀≤≥

∑
∑

∑

=

=

=

αξ

ξ

                                                         (2) 

Furthermore, if the investor only concerns one preset loss severity level 0r , then the model (2) can be converted into 

the formulation: 
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5. Hybrid intelligent algorithm  
Since the two-fold uncertainty of birandom variable, it is difficult to analytically solve the models (1), (2) and (3). To 
provide a general solution to the models, we design a hybrid intelligent algorithm integrating genetic algorithm (GA) 
and birandom simulation. Roughly speaking, in the proposed hybrid intelligent algorithm, the technique of birandom 
simulation is applied to compute the expected value and the chance measure, then birandom simulation and GA are 
integrated for solving the birandom models.  
5.1 Birandom simulation  
In this section, we first discuss the calculation of the expected value and the chance measure of birandom variables.  

Let iξ  be birandom variables and ix  decision variables, ni ,,2,1 L= , respectively. Write i
n

i ixxf ξξ ∑ =
=

1
),( , 

where ),,,(),,,,( 2121 nnxxxx ξξξξ LL == . Let b be the target return and δ  the preset credibility level. The number 
r denotes all possible loss severity indicator. In order to solve the proposed models, we must handle the following two 
types of uncertain function. 

.0),()}(),({Ch:
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)(1 xU may be estimated by the following procedure. 

Algorithm 1 (birandom simulation for )(1 xU ) 

Step 1. Set .0)],([ =ξxfE  

Step 2. Generate ω  from Ω  according to the probability measure Pr. 

Step 3. ))](,([)],([)],([ ωξξξ xfExfExfE +← may be calculated by stochastic simulation. 

Step 4. Repeat the second to the third steps N times. 

Step 5. NxfExfE /)],([)],([ ξξ ← . 

Algorithm 2 (birandom simulation for )(2 xU ) 

Step 1. Set 1=l . 
Step 2. randomly generate a real number r  according to the confidence curve given by the investor. 
Step3. Generate Nωωω ,,, 21 L  from Ω  according to the probability measure Pr. 

Step 4. Compute the probability }))(,(Pr{ rxfb nn ≥−= ωξβ for Nn ,,2,1 L= , respectively, by stochastic 
simulation. 

Step 5. Set 'N as the integer part of Nδ . 

Step 6. Return the th'N  largest element β  in },,,{ 21 Nβββ L . 

Step 7. If β  is no larger than )(rα , then 1*ll = , else 0*ll = . 

Step 8. repeat the second to the fifth steps for a given number times. 
Step 9. If 1=l , then return YES, else return NO. 
Remark: here YES means that the investment proportion x is feasible; NO means that x is infeasible. 
5.2 Genetic algorithm 
Representation structure: A solution ),,,( 21 nxxxx L=  is represented by the chromosome ),,,( 21 nvvvV L= , 
where the genes nvvv ,,, 21 L  are randomly generated in the interval ]1,0[ , and the relation between x  and V are 
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formulated as follows: 
nivvvvx nii ,,2,1),/( 21 LL =+++= ,   

which ensures that  
nixxxx in ,,2,1,0,121 LL =≥=+++  always holds. 

Initialization process: sizepop _  number of chromosomes are initialized randomly by generating 

points ),,,( 21 nvvv L  from the hypercube n]1,0[  pop-size times. Since the constraint required that 
),,,( 21 nxxxx L= satisfy 121 =+++ nxxx L , based on the relation between x  and V , the feasibility of the 

randomly generated chromosomes is obvious. 
Evaluation function: Evaluation function, denoted by )(Eva V , is to assign a probability of reproduction to each 
chromosome V so that its likelihood of being selected is proportional to its fitness relative to the other chromosomes in 
the population. That is, the chromosomes with higher fitness will have more chance to produce offspring by using 
roulette wheel selection. One well-known evaluation function is based on allocation of reproductive trial according to 
rank rather than actual objective values. We can rearrange the pop-size chromosomes according to their objective values 
to make better chromosome take smaller ordinal number. That is, after rearrange, among pop-size chromosomes 

sizepopVVV _21 ,,, L , 1V  is the best chromosome, and sizepopV _  the worst one, then a parameter )1,0(∈a in the 
genetic system is given. We can define the rank-based evaluation function as follows: 

sizepopiaaV i
i _,,2,1,)1()(Eva L=−= . 

Note that 1=i  means the best individual, sizepopi _=  the worst one. 

Selection process: Firstly, calculate the cumulative probability iq  for each chromosome iV , 

sizepopiVEvaqq
i

ij ji _,,2,1,)(,00 L=== ∑ =
 

Secondly, generate a random number r in ],0( _ sizepopq , and select the chromosome iV  if r  satisfies ii qrq ≤<−1 . 

Repeat the second and third steps sizepop _ times and obtain sizepop _  copies of chromosome. 

Crossover operation: A parameter cp  of a genetic system as the probability of crossover is defined first. The parents 
for crossover operation are selected by doing the following process repeatedly from 1=i  to sizepop _ : Generating a 
random number r  from the interval ]1,0[ , the chromosome iV  is selected as a parent if cpr < , the selected parents 
are denoted by L,,, 321 VVV ′′′  and divided into the pairs: L),,(),,(),,( 654321 VVVVVV ′′′′′′ . The crossover operation on 
each pair is illustrated by ),( 21 VV ′′ . At first, we generate a random number c from the open interval )1,0( , then the 
operator on 1V ′  and 2V ′  will product two children X  and Y  as follows: 

2121 )1(,)1( VcVcYVcVcX ′+′−=′−+′= . 

If both children are feasible, then we replace the parents with them. If not, we keep the feasible one if it exists, and then 
redo the crossover operator by regenerating a random number c  until two feasible children are obtained or a given 
number of cycles is finished. In this case, we only replace the parents with the feasible children . 
Mutation operation: A parameter mp  of a genetic system as the probability of mutation is defined first. This 
probability gives us the expected number of sizepoppm _⋅  of chromosomes undergoing the mutation operations. We 
repeat the following steps from 1=i  to sizepop _ : Generating a random number r  from the interval ]1,0[ , the 
chromosome iV  is selected as a parent if mpr < . For each selected parents iV , we mutate it in the following way. 

Let M be an appropriate large positive number. We choose a mutation direction d  in nR  randomly. If dMV ⋅+  is 
not feasible, then we set M  as a random number between 0 and M until it is feasible. If the above process cannot 
find a feasible solution in a predetermined number of iterations, then we set 0=M . Anyway, we replace the parent iV  
with its feasible child dMV ⋅+ . 
The following is the hybrid intelligent algorithm integrating birandom simulation and genetic algorithm. 
Algorithm 3 (hybrid intelligent algorithm) 
Step 1 Initialize sizepop _ chromosomes. 

Step 2 Calculate the objective values for all chromosomes by birandom simulation. 
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Step 3 Given the rank order of the chromosomes according to the objective values, and the values of the rank-based 
evaluation function of the chromosomes. 
Step 4 Compute the fitness of each chromosome according to the rank-based evaluation function. 
Step 5 Select the chromosomes by spinning the roulette wheel. 
Step 6 Update the chromosomes by crossover and mutation operations. 
Step 7 Repeat the second step to the sixth step for a given number of cycles. 
Step 8 Take the best chromosome as the solution of portfolio selection. 
6. Numerical example 
To illustrate the modeling idea and to test the effectiveness of the designed hybrid intelligent algorithm, let us consider 
one numerical example. The example is performed on a personal computer by using C++ programming language. The 
parameters in the HIA are set as follows: the probability of crossover 3.0=cp , the probability of mutation 2.0=mp , 
the parameter 05.0=α in the rank-based evaluation function. 
Example 2 Assume that there are 5 securities, the returns of securities are all birandom variables. 
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Where  
)1,(~ 11 μξ N  with )1,0(~1 Uμ ,    

)1,(~ 22 μξ N  with )2,1(~2 Uμ ,   

)1,(~ 33 μξ N  with )3,2(~3 Uμ ,   

)2,(~ 44 μξ N  with )4,3(~4 Uμ ,   

)1,(~ 55 μξ N  with )5,4(~5 Uμ .   

Suppose that the investor has given the confidence curve and other parameters : 

0,
)1.1(

1)(
4

≥
+

= r
r

rα . 0.9=b , 9.0=δ . 

Here, ),( 2σμN  represents the normally distributed random variable with mean μ  and standard variance σ and 
),( baU denotes the uniform distribution on the interval ),( ba . A run of the hybrid intelligent algorithm with 3000 

generations shows that among 5 securities, in order to gain maximum expected value of the total securities return the 
investor should assign his money according to the optimal solution: 

3657.0,2782.0,2236.0,1325.0,0 *
5

*
4

*
3

*
2

*
1 ===== xxxxx . 
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