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Abstract 

In this paper, closed form approximate solutions to the equations of motion for coupled shear walls are 
developed using Ritz-Galerkin method. Hamilton’s principle is used to derive the equations of motion. These 
equations and solutions were developed for two different cases, one for the coupled shear wall on fixed 
foundation and the other for coupled shear wall on flexible foundation. Through literature review, it is identified 
that previous studies addressed only the free vibration of coupled shear wall system without considering external 
load. The main focus of this paper is to develop equations of motion with external load applied to coupled shear 
walls on both fixed and flexible base using variational approach. Then cast equations of motion and 
corresponding boundary conditions into non-dimensional form. The solution of equations of motion is developed 
through the use of the Ritz-Galerkin technique. Thus attempts were made to develop equations of motion 
considering a driving force, ݌ሺݔ,  ሻ on the structure. By using selected shape functions for the longitudinal andݐ
lateral defelections, a matrix eigenvalue equation is derived for both cases yielding closed form approximate 
solution. 

Keywords: coupled shear walls, blast load, dynamics, Ritz-Galerkin 

1. Introduction 

In tall building systems, reinforced concrete coupled shear walls are widely used to provide lateral resistance 
against the dynamic loads arising from earthquakes, wind and blast loads. Earlier investigations considered the 
effects of both fixed and flexible foundation to predict the stresses and deformation of coupled shear walls. The 
analysis of coupled shear wall systems may be approached from several directions. The particular approach 
selected by the structural engineer will depend upon the desired application and the design stage of the structure. 
If the need is for preliminary design analysis, it is more amenable to use approximate techniques. Now-a-days, it 
has become a standard in the design and analysis of coupled shear walls or shear wall systems to use the 
continuum medium technique. One benefit of this approach is that the differential equation developed, under the 
continuum approximation, will have a closed form solution. 

The continuous medium method was first used by Chitty (1947) in the analysis of a cantilever composed of a 
series of parallel beams interconnected by cross bars. Chitty and Wan (1948) applied the technique to tall 
building structures under wind loads. Beck (1962) presented an approximate method of analysis where a 
continuous system replaced a discontinuous frame system, which took into account the shear deformation due to 
normal forces. Rosman (1964) developed an approximate method of analysis for the case of a concentrated load 
at the top of the structure using continuum approximation. Coull and Choudhury (1967) used the continuum 
approximation to develop curves useful for rapid evaluation of the stresses and maximum deflection in any 
system of coupled shear walls. Tso and Biswas (1973) used the continuum approach to address the deformations 
of the coupled shear walls subject to lateral loading. In their study the coupled shear walls were not restricted to 
be in plane. For the non-planar coupled shear walls, the loading becomes nonsymmetrical and torsion effects are 
introduced into the structure. Gluck (1973) used the continuum approach to address elasto-plastic analysis of 
coupled shear walls. Wang et al. (2005) used fourth order Sturm-Liouville differential equation, to determine 
first two periods of natural vibration of the buildings with uniform coupled shear walls.  

Skattum (1971) made a study of the free vibrations of planar coupled shear walls by using the variational 
approach and assuming the spandrels can be replaced by a system of continuous laminae. Skattum method 



www.ccsenet.org/mas Modern Applied Science Vol. 7, No. 4; 2013 

2 
 

considered the effects of longitudinal motion in an approach, which keep the motion in the longitudinal direction 
of the wall as separate variables. Skattum’s free vibration work was conducted under the assumption of fixed 
foundation. Mukherjee and Coull (1973) computed the free vibrations of coupled shear walls under the 
continuum assumption. Their work developed the dynamical equations for a fixed base using force moment 
equations. The equations of motion were transformed into one sixth order differential equation, which was 
solved using the Galerkin technique. Mukherjee and Coull (1974) later developed an approximate technique to 
compute the free vibrations of coupled shear walls on flexible bases. 

The dynamics of coupled shear walls has not been addressed to near the degree as that of static loading. Most of 
the work has addressed only the free vibration analysis of the coupled shear wall system. Previous studies 
conducted free vibration analysis of coupled shear walls using continuum approach on fixed base (Mukherjee & 
Coull, 1973) and discrete-continuous approach (Lee & Choo, 1995). Discrete-continuous approach is later 
applied to stiffened coupled shear walls with fixed base (Kuang & Chau, 1964) and flexible base (Kuang & Chau, 
1999). Having the free vibration analysis is very important to predicting the response of a coupled shear wall 
system to earthquake and wind loading, the development of the equation of motion with the load included, and 
then searching for solutions to these equations, has had little attention from researchers in tall buildings. This 
paper develops equations of motion with load included using a variational approach on both fixed and flexible 
foundation.  

In this paper, the computation of the equations of motion for coupled shear walls will be developed under two 
separate conditions using a variational method. The first case (Case I) will proceed with the assumption that the 
foundation is fixed with there being no significant longitudinal or rotational kinetic energy in the system. The 
second case (Case II) will be a higher order theory where the flexibility of the foundation is not assumed fixed 
and the rotational and longitudinal kinetic energies are included as possibly a significant contribution to the 
dynamical system. Figure 1 provides an illustration of the general lateral loading of coupled shear walls. 

 
Figure 1. Laterally loaded coupled shear walls 

 

The approach to both cases will be through the use of Hamilton’s principle given by  

1

0

t

t
δ Ldt 0                                       (1) 

where L is the Lagrangian of the structural system. L is the total kinetic energy of the system minus the total 
systems potential energy. Hamilton’s principle is stated as the actual motion, which takes place in a conservative 
dynamic system in the time interval between t0 and t1, provides a stationary value to the action integral, IA, where 

1

0

t

A t
I Ldt                                       (2) 
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that is, AδI =0. 

The shear wall system shown in Figure 1 will be analyzed by replacing the connecting beams by a uniform 
system of continuous lamina as shown in Figure 2. This approach is similar to that developed by Skattum (1971), 
except that he did not consider the case of coupled shear walls on flexible base. 

 
Figure 2. Coupled shear wall with beams replaced by a system of continuous laminae 

 

It will be shown that the Hamilton’s principle, or the variational method, applied to the first case will exactly 
reproduce the dynamical equation developed by Mukherjee and Coull (1973), which used a different approach to 
compute the free vibration state of coupled shear walls on a fixed foundation. Todevelop equations of motion, 
the total potential energy of the system for general case is given by  

  W C FV V V V . 

In this equation VW is the total strain energy of the walls under bending and axial deformaton. VC is the strain 
energy in the connecting lamellae, and VF is the strain energy of the flexible foundation. The total potential 
energy of the system and kinetic energy of the systemfor both cases are shown in Table 1 and Table 2 
respectively. In the case of coupled shear walls on a fixed foundation, rotational and longitudinal kinetic energies 
are neglected, whereas on a flexible foundation kinetic energy due to rotation (TR) and longitdinal (TL) motion of 
the wall is considered. The equation of the strain energy due to flexible foundation is provided by Mukherjee and 
Coull (1974). 

 

Table 1. Total potential energy of the system (V) 

Case I  H 22 21 2
30 0 0

6

2
   
 

  
 W CV V

H H
c

xx x x

EIA AE
I y dx u dx ly u dx

A ha
 

Case II   1 2
H 22 2 2 21 2

30 0 0
0

6 1

2 2


       
  

 
  

 
FW C

VV V

H H a ac
xx x x b x

a x

K KEIA AE
I y dx u dx ly u dx K y u

A Kha
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Table 2. Kinetic energy of the system (T) 

Case I 2

02 
H

t

ρ
Ay dx  

Case II 
2 2 21 2

0 0 02 2 2
   
 

R L

H H H

t xt t

T T

A Aρ ρ ρ
Ay dx Iy dx u dx

A

 

2. Equations of Motion and Boundary Conditions 

2.1 Coupled Shear Walls on Fixed Foundation (Case I) 

If ncδW is work done by non-conservative forces (external) and any conservative forces not considered in the 
Lagrangian L, Hamilton’s principle with inclusion of ncδW is given by  

1 1

0 0

t t

nct t
δLdt δW dt 0                                  (3) 

The Lagrangian, L for coupled shear walls on fixed foundation is given by 

 

2
t0

22 2 c1 2
xx x x30 0 0

ρ
Ay dx

2
L T V;where

6EIA AE
I y dx u dx ly u dx

2 A ha

            



  

H

H H H

T

V
          (4) 

   c1 2
t t xx xx x x x x30

12EIEA A
δL ρAy δy EIy δy u δu ly u δ ly u dx

A ha
       
 

H
          (5) 

 nc 0
δW p(x, t)δy dx 

H
                             (6) 

Using and applying integration by parts, the Equation (3) developed from Hamilton’s principle can be reduced to 

 3

12
( , )   c

xxxx xx x tt

EI
EIy l ly u ρAy p x t

ha
                     (7) 

 1 2
3

12
0  c

xx x

EIEA A
u ly u

A ha
                         (8) 

These equations provide the equations of motion of the coupled shear wall system, case I, under the continuum 
approximation, on a fixed foundation with rotational and translational kinetic energies neglected. In these 
equations u is motion in the longitudinal direction and y is deflection in the lateral direction. The equations were 
not derived in this form by Mukherjee and Coull, rather presented a sixth order differential equation given by 
Equation (9), which has less ease to solve them by hand calculations.  

6 4 4 2

6 4 2 2 2

y y y y
EI EIα' ρ' β'ρ'

x x x t t

      
    

                     (9) 
with ρᇱbeing the mass per unit height, 

2
c
3

1 2

12I l A
α'

I A Aha

 
  

 
and c

3
1 2

12I A
β'

A Aha
 . 

The approach used in this paper (variational approach) is different from that of Mukherjee and Coull (1973) 
(force moment approach). Equation (7) and Equation (8) can be reduced to six order differential equation given 
by Mukherjee and Coull (1973) with the appropriate change of notion.  in the Lagrangian is mass per unit 
volume whereas ' is mass per unit length in Mukherjee and Coull’s equation. It should also be noted that 
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Mukherjee and Coull did not address the dynamic response of the structure under loading. Their dynamic 
analysis only addressed the free vibration problem. 

The boundary condition equations, which are produced from the Hamilton’s principle approach, are determined 
from the remaining terms of the parts of integration, which are not used to develop the equations of motion. 
Collecting terms not used in the calculation of differential equations of motion yields boundary conditions as 
shown below 

Moment at top xx x H,t
EIy 0,


  

Rotation at foundation x x 0
y 0,


  

Shear and rotation at top  c
xxx x3

x H,t

12EI
EIy l ly u 0

ha 

     
, 

and, strain at top x x H,t
u 0.


  

2.2 Coupled Shear Walls on Flexible Foundation (Case II) 

The additional part (due to strain energy of the elastic foundation and kinetic energies of rotational and 
longitudinal motions) to be added to the Lagrangian of case I, to have Lagrangian for case II is 

F

1 2

R L

V

a a2 2 2 21 2
additional par t xt t b x0 0

a x 0
T T

K KA Aρ ρ 1
L Iy dx + u dx - K y u

2 2 A 2 K


 
 

 
  



 

H H
            (10) 

For arbitrary δy  and δu , this added variation reduce the equations of motion for the coupled shear wall system 
on flexible bases with inclusion of rotational and longitudinal kinetic energy to as follows: 

 3

12
( , )    c

xxxx xx x tt xxtt

EI
EIy l ly u ρAy ρIy p x t

ha
                       (11) 

 1 2 1 2
3

12
0   c

xx tt x

EIEA A ρA A
u u ly u

A A ha
                          (12) 

These equations form a set of coupled transverse and longitudinal dynamical equations of the shear wall system. 
The displacements y and u are coupled in the equations of motion and such coupling will be seen in the 
calculation of boundary conditions. If the desire is to calculate the free vibrations, this may be accomplished by 
setting the driving force, p(x,t) in Equation (11), equal to zero. 

In this case, computation of the boundary conditions proceeds by combining the coefficients of remaining 
integral terms not used in the calculation of equations of motion. The natural boundary conditions from 
remaining terms can be written as 

 c
xxx x xtt3

x H,t

12EI
EIy l ly u ρIy 0

ha 

      
, 

xx x H,t
EIy 0


 , 

 x a x 0
EAu K u 0


  , 

 xx b x x 0
EIy K y 0


  , 

x x H,t
u 0


 . 
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The forced boundary condition is  

0,
0.


x x t

y  

3. Equations of Motion and Boundary Conditions into Non-dimensional  

3.1 Coupled Shear Walls on Fixed Foundation 

In order to ease the calculations, it is advantageous to cast the equation of motion and boundary conditions into 
dimensionless form. To do this, let     , cos sin y x t Y x P ωt Q ωt and     , cos sin u x t U x P ωt Q ωt . 
Substituting corresponding derivatives into Equation (7) and Equation (8), and setting  , 0p x t , since free 
vibration is the concern, gives 

  2
3

12
0   c

xxxx xx x

EI l
EIY lY U ρAω Y

ha
                         (13) 

 1 2
3

12
0  c

xx x

EIEA A
U lY U

A ha
                            (14) 

These equations may be cast into non-dimensional form assuming  x
z

H
,  Y
Ψ

H
,  U
Θ

l
. By using 

appropriate derivatives and chain rule, Equation (13) and (14) can be reduced into non-dimensional form as 

follows 

  0   IV 'Ψ α Ψ" Θ λΨ                                 (15) 

  0  βΨ Θ" βΘ'                                   (16) 

where 
2 2 23 4

3 3
1 2

12 12
, , .  c cI l H AI HρAω H

α  λ  β
EIIha ha A A

 

Also, transforming the boundary conditions into their non-dimensional form, gives 

1,
0,




z t
Ψ"                                        (17) 

 
1,

0,


     z t
Ψ''' α Ψ' Θ                                (18) 

0,
0,




z t
'Ψ                                        (19) 

1,
0.




z t
Θ'                                        (20) 

0,
0,




z t
Ψ                                       (21) 

0,
0.




z t
Θ                                       (22) 

3.2 Coupled Shear Walls on Flexible Foundation 

By using the expressions for y, u and derivatives yx, yxx, ytt, yxxxx, ux, uxx used in case I with the additional 
derivatives given by  2 cos sin  xxtt xxy Y ω P ωt Q ωt  and  2 cos sin  ttu Uω P ωt Q ωt , Equation (11) and 
Equation (12) becomes 

 
2 2

3

12
0    c

xxxx xx x xx

I l ρAω ρIω
Y lY U Y Y

EI EIIha
             (23) 



www.ccsenet.org/mas Modern Applied Science Vol. 7, No. 4; 2013 

7 
 

 1 2 1 2
3

12
0   c

xx tt x

EIEA A ρA A
u u ly u

A A ha
                       (24) 

Again use is made of the relations  x
z

H
,  Y
Ψ

H
, and  U

Θ
l

, with the derivatives and transformations being 

the same as in case I. With the rearrangement of terms and substitution of the derivatives and transformations 

computed in case I, Equation (23) and Equation (24) now becomes 

      IV
rΨ α Ψ" Θ' λ Ψ Υ Ψ"                           (25) 

     lβΨ' Θ" βΘ λΥ Θ                              (26) 

where 
2 2 23 4

3 3 2
1 2

12 12
, , , .    c c

r l

I l H AI HρAω H I
α λ β Υ Υ

EIIha ha A A AH
. 

Also, transforming the boundary conditions into their non-dimensional form, gives 

 
1,

0


     r z t
Ψ''' α Ψ' Θ λΥ Ψ' ,                         (27) 

1,
0




z t
Ψ" ,                                   (28) 

 
0,

0


 a z t
Θ S Θ' ,                               (29) 

 
0,

0


 b z t
Ψ' S Ψ" ,                               (30) 

1,
0




z t
'Θ .                                  (31) 

where , a b
a b

EA EI
S S

K H K H
. 

The case II equations of motion will reduce to the case I equation when 
2

 r l

I
Υ Υ  

AH
is set to zero, where 

,r lΥ Υ  is equivalent to the rotational and kinetic energies of the system. Also, setting 0rΥ  in Equation (27), 

0aS in Equation (29) and 0bS  in Equation (30) will reproduce the case I boundary conditions (Equation 

(18), Equation (22) and Equation (19)). 

Since  and a b
a b

EA EI
S S

K H K H
 occur when  anda bK K  are infinite, which occurs when the foundation is 

fixed, setting these parameters equal to zero in the boundary conditions, will, along with the vanishing of 

parameters listed above, reproduce the case I boundary conditions. 

4. Eigen Value Equations Using Ritz-Galerkin Technique 

4.1 Coupled Shear Walls on Fixed Foundation 

Ritz-Galerkin technique is used to solve the differential equations of motion. Mukherjee and Coull (1973) used 
this method in their solution to free vibration problems for coupled shear walls on a flexible base as well as in 
solutions to equations of free vibration, originating in other types of tall structures. 

In the Ritz-Galerkin technique the two shape functions Ψ andΘ  are approximated by a linear combination of 
suitable co-ordinate functions. These functions are given as 
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n

j j
j 1

Ψ c v


                                      (32) 
and 

n

j j
j 1

Θ g w


                                     (33) 
where jc  and jg  are chosen to satisfy all the uncoupled boundary conditions. The jc  and jg  are generalized 
co-ordinates, which are not a function of time, which will be determined by the varational process. The shape 
functions will be substituted into the non-dimensional equations of motion and boundary conditions. The 
substitution of these approximate functions will not provide exact satisfaction of the differential equations and 
coupled boundary conditions. The difference between the exact value and the approximate value is referred to as 
a residual. 

The derivative of order k of the shape functions will be represented in the form given by 

n
k k

j j
k 1

Ψ c v


                                   (34) 
and 

n
k k

j j
k 1

Θ g w


                                  (35) 

substituting these derivatives into the non-dimensional form of the equations of motion given in Equation (15) 
and Equation (16) will give the residuals for this system. 

Using the Equation (15), leads to the residual given by 

 
n n

I IV '
1 j j j j

"
j j

j 1 j 1

R c v αv λv αg w
 

                             (36) 
substituting the shape functions and the appropriate derivatives into the coupled boundary conditions given by 
Equation (23), provides another residual given by 

n n
I ''' '
2 j j j j j

j 1 j 1
z 1

R c v αv αg w
  

 
      

 
                         (37) 

Using the Equation (21), leads to third residual given by 

 
n n

I ' ''
3 j j j j j

j 1 j 1

R β c v g w βw
 

                               (38) 
Mukherjee and Coull (1973) take the approach that residuals occurring in tall structures represent residual 
forces .With this understanding the residuals 1

IR , 2
IR  and 3

IR  for case I are then described as 1
IR  being a 

residual force distributed transversely within domain, 2
IR  is a concentrated residual force acting at the free 

boundary, and 3
IR  is one distributed longitudinally within the domain. The analysis requires that the virtual 

work performed by these residual forces during the virtual displacements i iδc v  and i iδg w , must vanish within 
the domain and at the boundaries. The necessary conditions which must be satisfied are given by 

 1 I I
1 i 2 i0 z 1

R v dz R v 0


                            (39) 
1 I

3 i0
R w dz 0, for all i=1,2, .,n                         (40) 

Substituting residuals 1
IR  and 2

IR  in Equation (39), leads to 

       
I I I
ij ij ija b d

n n n1 1 1IV '' ''' ' '
j i j j i j j j i j i j j i j0 0 0z 1z 1

j 1 j 1 j 1

c v v αv dz v v αv α g v w dz v w λ c v v dz


  

         
        (41) 

This equation provides a set of matrix values that are given by 
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   
1

I IV '' ''' '
ij i j i j i j i j

z 1
0

a v v αv v dz v v αv v


                            (42) 
 I '

ij i j i j z 1

1

0
b w dz v w v                                  (43) 

1I
ij 0 i jd v v dz                                       (44) 

With the available boundary conditions and using integration by parts, Equation (42), Equation (43) and 
Equation (44) can be further reduced.  

Using the computed matrix elements, Equation (41) may now be written as 
n n n

I I I
j ij j ij j ij

j 1 j 1 j 1

c a α g b λ c d , for i 1, 2,...n .
  

                           (45) 
This equation may now be written using matrix notation as 

  
I I I

A C B G D C  

where the double overbar is for a matrix and the single overbar is used to indicate a vector. The vectors C  and
G , have components given by jc  and jg in the matrix equation in Equation (45). 

Similarly, substituting residual 3
IR  in Equation (40), reduces to the form 

n n
*I * I

j ij j ij
j 1 j 1

βc b g a 0,for i=1,2, ,n .
 

                               (46) 
where  

1 1*I ' '
ij j i j i0 0

a w w dz β w w dz                                 (47) 
1*I '

ij j i0
b v w dz                                     (48) 

Further, Equation (46) may be cast into the matrix form as 

0 
* I * I

B C+A G  

Thus results of Ritz-Galerkin method for case I are given by the set of matrix equations 

I I I

A C B G D G                                     (49) 
and 

*I *I I

B C+A G O G                                    (50) 
In the Equation (50), the matrix given by O , is the matrix with entries being zero in all its elements. 

4.2 Coupled Shear Walls on Flexible Foundation 

In order to obtain solution to the equation of motion of case II, approach which was used in the case I, will again 
be used. Substituting Equation (34) and Equation (35) into Equation (25) and Equation (26), leads to the 
residuals given by 

  
n n

II IV '' '' '
1 j j j j r j j j

j 1 j 1

R c v αv λ v Υ v αg w
 

      ,                      (51) 
n n

II ''' ' '
2 j j j r j j j

j 1 j 1
z 1

R c v αv λΥ v αg w
  

 
       

 
  ,                      (52) 
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  
n n

II ' ''
3 j j j j j l j

j 1 j 1

R β c v g w βw λΥ w
 

     .                      (53) 
In case II, it is also required that the virtual work performed by the residual forces during the virtual 
displacements i iδc v  and i iδg w  must vanish. The necessary conditions which must be satisfied are given by 

 1 II II
1 i 2 i0 z 1

R v dz R v 0


                               (54) 
and 

1 II
3 i0

R w dz 0, for all i=1,2, .,n .                             (55) 
Substituting residuals 1

IIR  and 2
IIR  in Equation (54), reduces to form 

n n n
II II II

j ij j ij j ij
j 1 j 1 j 1

c a α g b λ c d , for i=1,2, ,n
  

                           (56) 
where  

1 1II '' '' ' ' '' ''
ij i j i j b i j0 0 z 0

a v v dz α v v dz S v v


                             (57) 
1II '

ij i j0
b v w dz                                      (58) 

1II ' '
ij i j r i j0

1

0
d v v dz Υ v v dz                                 (59) 

Equation (56) may now be written using matrix notation as 

  
II II II

A C B G D C  

Similarly, substituting residual 3
IIR  in Equation (55), reduces to the form 
n n n

*II * II * II
j ij j ij j ij

j 1 j 1 j 1

βc b g a λ g d , for i = 1, 2, , n
  

     .                        (60) 
where  

1 1*II ' ' ' '
ij j i j i a i j0 0 z 0

a w w dz β w w dz S w w


                               (61) 
1*II '

ij j i0
b v w dz                                      (62) 

1*II
ij l i j0

d Υ w w dz                                     (63) 
Further, Equation (60) may be cast into the matrix form as 

  
* II * II * II

B C+A G D G  

Results of Ritz-Galerkin method for case II given by the set of matrix equations 

   
II II II

A C B G D G                                 (64) 
and 

  
* II * II * II

B C+A G D G                                (65) 
The two matrix equations for both case I and case II may be combined to yield one matrix eigenvalue equation 
for each case and is given by 
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C Cα
λ    (for case I)α

G G
 
β

 
  
     

      
     

   
 

I
I I

* I
* I

A
B D

  O

  A
O OB

                     (66) 

C Cα α
λ     (for case II)

G G
 
β β

   
   

      
      

      
   
   

II II
II

* II * II
* II

A D
B O

  

  A D
B O

                 (67) 
5. Closed Form Approximate Solutions 

To provide solutions for the free and force driven coupled shear wall system, a particular set of shape functions 
are considered and is given by Equation (34) and Equation (35). The functions vi and wi in Equation (34) and 
Equation (35) respectively must be selected to satisfy the boundary conditions presented in each case. Mukherjee 
and Coull (1974) have approached several different structural systems where the equations of motion have been 
approximated by shape functions which satisfy the particular system under analysis. In their free vibration 
calculation for coupled shear walls, Mukherjee and Coull (1973) provide functions, which satisfy both cases of 
this paper. Thus to compute matrix coefficients, the shape functions developed by them will be used and is given 
by  

2 3 i
i i i i

p πz
v l z m z n z sin

2
                                  (68) 

i i i iw sin q z r cos q z                                    (69) 
where 1,3,5,...,(2i-1), for all 1,2,3,...,n . ip i  

The functions of Equation (68) have been chosen because they represent the deflection functions of a simple 
cantilever beam under sinusoidal loading. Equation (69) functions are used due to their representing of the mode 
shapes for free longitudinal vibration of a prismatic bar. The functions iv  and iw  must satisfy the boundary 
conditions of the functions they have been selected to represent, that is, the boundary conditions of Ψ andΘ , 
which are in the non-dimensional representation of the equations of motion. In order to solve the eigenvalue 
equations, the values of , , , ,i i i i ir q l m n  must be computed. These values will vary depending upon the 
foundation conditions, with additional values needing to be computed as the degrees of freedom, which produce 
additional shape functions and higher vibration modes, are increased. 

5.1 Coupled Shear Walls on Fixed Foundation 

For case I, the conditions on Ψ given by Equation (17), Equation (18) and Equation (19) leads to conditions 

''
i z 1

v 0

 , '

i z 0
v 0


 ,  ''' '

i i i
z 1,t

v α v w 0


     . 
and conditions onΘ given by Equation (20) and Equation (22) leads to conditions, 

'
i z 1

w 0

 , i z 0

w 0

 . 

Using the above conditions, the coefficients for coordinate functions in the shape function expansion can be 
computed and is given by  

,
2

  i
i

p π
l                                      (70) 

2
6 3

sin sin / 6 ,
2 2 2 2

                

i i i i
i

p π p π p π p π α
n

α
                     (71) 



www.ccsenet.org/mas Modern Applied Science Vol. 7, No. 4; 2013 

12 
 

2
1

3 sin and
2 2 2
     
 

i i
i i

p π p π
m n                            (72) 

  i2 1 with r 0.
2 2

   i
i

p ππ
q i                           (73) 

With the chosen shape functions and with the solutions of the coefficients in these shape functions, matrix 
coefficients in case I given by Equation (42), Equation (43), Equation (44), Equation (47) and Equation (48), can 
be computed by evaluating integrals. These integrals require long computations; as such final results for matrix 
coefficients are given below. 

   

     
4

4 6 12 6 sin sin
2 2

4 3 9

3 2 51

2 2
sin sin

2 2

4
sin

2 2

          

         
                

 
 
 



I
ij i j i j j i i j i j j i i j j i

i j i j j i i j j i i j i j j i i j

i
ij

j i
i j

ji
j

j

π π
a m m m n m n n n π p m p m n p n p

l l m l m l n l n l m m m n m n n n
p π

δ α
p π p π

l l

p πm π
p

π p
α

2

2 2 2 2
2 2 2

1 sin 1
2 2

12 1 1 1
2 sin 2 sin

4 2 4 2 2 2

                       
 
                           

j i
i

i

j ji i i
j i ij

j i

m p ππ
p

p

p π nn p π p π
p π p π δ

π p p

  (74) 

Where ij

1, if i j

0, if i j


   

 

 

     

2 2 2 2 3 3

2 8 8 16 1
sin 3 sin 1 cos

2 2 4

1 1 1
-

4

   
       
                  

j ji i
i i

j j j j
I
ij

i

i j i j

p π p πl m
n p π

p π π p p π p π
b

i j p
p p p p

          (75) 

where the notation i≠j has the logical meaning, given by 
1, if true

i j
0, if false


  


 

     
2 2

2 2 3 3

1 1 1 1 1

3 4 5 6 7

2 2
sin sin 2 sin 1 sin 1

2 2 2 2 2 2

2
3

        

                                                   

    

I
ij i j i j j i i j j i i j i j j i i j

j j j j j ji i i i

j i j i

d l l m l m l n l n l m m m n m n n n

p π l p π p π m p πl p π m p π

π πp p p p

π

4
2 2 2 2

4 4

1 1 1
2 sin 2 sin

4 2 4 2 2

                         

j ji i
i i ij

j i

p π nn p π
p π p π δ

p p

 (76) 

 
 

 
 

 
 

 
 

sin sin sin sin
2 2 2 2

2 2

         
      

      
   

i j i j i j i j
i j* I

ij

i j i j i j i j

π π π π
p p p p p p p pp pπ β

a
πp p p p p p p p

       (77) 
     

T* I I
ij ijb b                                     (78) 
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It is to be noted that results of matrix coefficients in case I, may be confirmed by comparing to results of 
Mukherjee and Coull (1974), who have supplied their results, for the free vibration case. 

5.2 Coupled Shear Walls on Flexible Foundation 

For case II, the conditions on Ψ given by Equation (27), Equation (28) and Equation (30) leads to conditions 

 ''' ' '
i i i r i

z 1,t
v α v w λΥ v 0


      , ' ''

i b i z 0
v S v 0


  , ''

i z 1
v 0


 . 

and conditions onΘ  given by Equation (29) and Equation (31) leads to conditions. 

'
i z 1

w 0

 , '

i a i z 0
w S w 0


  . 

Using the above conditions, the coefficients for coordinate functions in the shape function expansion is given by 

 
2

1 6 3
sin sin cos / 6 ,

2 2 1 2 1

                          

i i i
i i i i

b b

p π p π p π α
n q r q

S α S
           (79) 

2

i i
i i

p π p π1
m 3n sin ,

2 2 2
     
 

                           (80) 

2 ,
2

  i
i b i

p π
l S m                                   (81) 

with andi ir q determined from the requirement, 

cot . i i a iq r S q                                   (82) 

It may be noted that setting 0aS in Equation (82), gives 0ir  and
2

 i
i

p π
q , which is associated value in the 

fixed foundation model, case I. Also, by setting 0bS in Equation (81), gives the value of 
2

  i
i

p π
l , reduces 

to that of case I with the foundation fixed. Thus above coefficients for coordinate functions in the shape function 

expansion for case II are to be expected. 

It was shown that in case II, ri is no longer zero and qi is not in the simple form given by
2
ip π

, but is calculated 

by computing the roots of the Equation (82). The matrix elements needed for the eigenvalue equation in case II 

is given by Equation (57), Equation (58), Equation (59), Equation (61), Equation (62) and Equation (63), where 

   
4

1

0

1
4 6 12 6 sin sin

2 2 2 2
                 '' '' i

i j i j i j j i i j i j j i i j j j ij

p ππ π
v v dz m m m n m n n n π p m p m n p n p δ  (83) 

     1

0

2 2
2 2 2

4 3 9

3 2 5

4
sin sin sin 1 sin 1

2 2 2 2 2

12 1 1
2 sin

4 2 4

         

                                

    

 ' '
i j i j i j j i i j j i i j i j j i i j

j j ji i i
i i j

i i

j ji
j i

j i

v v dz l l m l m l n l n l m m m n m n n n

P π P π mPπ m Pππ
l l P

π P P

P π nn
P π P

π P P

2

2 2 1
2 sin

2 2 2

               

i i
ij

Pπ Pπ
π   δ

         (84) 
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     1

0

2 2

2 2 3 3

1 1 1 1 1

3 4 5 6 7

2 2
sin sin 2 sin 1 sin 1

2 2 2 2 2 2

2
3

        

                                                   



 i j i j i j j i i j j i i j i j j i i j

j j j j j ji i i i

j i j i

v v dz l l m l m l n l n l m m m n m n n n

p π l p π p π m p πl p π m p π

π πp p p p

π

4
2 2 2 2

4 4

1 1 1
2 sin 2 sin

4 2 4 2 2

                              

j ji i
i i ij

j i

p π nn p π
p π p π δ

p p

  (85) 

            

    

1 i j i j i j' '
j i i j i j i j0

i j i j i j

i j
i j

i j

1 r r 1 r r r r
w w dz sin q q sin q q 1 cos q q

2 q q 2 q q 2 q q
for i j

r r
1 cos q q ,

2 q q

  
      

  



  




   (86) 

 
2 2

1 ' ' i i i
j i i i i0

1 r 1 r r
w w dz q sin 2q 1 cos 2q , for i=j

2 2 2

 
                 (87) 

            

    

1 i j i j i j
j i i j i j i j0

i j i j i j

i j
i j

i j

1 r r 1 r r r r
w w dz sin q q sin q q 1 cos q q

2 q q 2 q q 2 q q

r r
1 cos q q , for i j

2 q q

  
      

  


   




 (88) 

 
2 2

1
i i i

j i i i i0

1 r 1 r r
w w dz q sin 2q 1 cos 2q , for i=j

2 2 2

 
                 (89) 

   

   

1 ' 2i i i
i j j j j j j j j j2 30

j j j

2i i i i i i
j j j j j j j2 3 2 3

j jj j j j

i i
j j

i

i i
j

l 2m 3n
v w dz r 1 r q 2q 2r r q sin q

q q q

l 2m 3n l 2m 6n
q r q 2 2r q cosq r

q qq q q q

p π p π
1 cos q 1 cos q

p π1 2 2
p π p π2 2 q
2

        
  

                 
      

         
    




i i
j j

j
i i

j j j

p π p π
sin q sin q

2 2
r

p π p π
q q q

2 2 2

                        
                       

  (90) 

'' ''
b i j b i j

z 0
S v v 4S m m


                                (91) 

' '
a i j a i j

z 0
S w w S q q


                                 (92) 

The integrals provided have been worked out for a particular case and their accuracy is confirmed. Integrals 

provided by this analysis will give all the matrix elements in both cases. The integrals in case II are identical to 

those of case I under the limit that gives ir 0 , aS 0 , bS 0 and i
i

p π
q

2
 , for all i=1, 2, …, n. The 

eigenvalue equations may now be constructed for both cases and their solution given by standard matrix 

eigenvalue calculations. 
6. Summary and Conclusion 

In this paper, a variational approach (Hamilton’s principle) is used to develop the equations of motion for 
coupled shear walls on both fixed and flexible base. It is shown that the equations of motion developed for fixed 
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base using Hamilton’s principle is consistent with the sixth order differential equation developed by Mukherjee 
and Coull. Boundary conditions for both fixed and flexible base are developed. The approach used in this paper 
to develop equations of motion and boundary conditions is different from that of Mukherjee and Coull. Also 
Mukherjee and Coull’s dynamic analysis considers only the free vibration problem and did not address the 
dynamic response of the structure under loading. The developed equations of motion in both cases are a fourth 
order and second order differential equations, which gives ease to solve them by hand calculations. External load 
applied to the coupled shear wall system can be taken into account by using the developed equations of motion. 
By setting the external load,  , ,p x t equal to zero, free vibration problem can be analyzed. 

By using the equations of motion and the associated boundary conditions an approximation technique, the 
Ritz-Galerkin method, was used to develop eigenvalue equations. These matrix eigenvalue equations developed, 
can be useful to compute mode shapes and eigenvalues for any degrees-of-freedom desired for increased 
accuracy. The matrix coefficients computed are in good agreement with integral values provided by Mukherjee 
and Coull (1974) for case I. For case II, integral values developed were significantly different due to 0ir , qi 
have different set of roots. This significant difference is due to consideration of external load on coupled shear 
wall system while developing equations of motion. In some, this paper provides all the theoretical development 
needed to model coupled shear walls with an external load applied. 
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Appendix A: List of Symbols ܣ  Total area of shear walls ܣଵ, ,௙భܣ ଶ Area of shear walls 1 and 2ܣ  Coefficients in static differential equation of motion  ′ߙ ௙మ Area of foundations 1 and 2 ܽ  Length of connecting beamsܣ
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,Static loading constant ݀௖  Depth of connecting beams ݀ଵ  ′ߚ ݀ଶ Depth of shear wall 1 and 2 ߜ  Variational operator ߜ ௡ܹ௖ Virtual work of non-conservative forces ܧ  Elastic or Young’s modulus ܪ  Height of shear walls ݄  Storey height ܫ  Sum of second moments of shear walls 1 and 2 ܫ஺  Action integral ܫ௕  Second moment of area of connecting beams ܫ௖  Correction of second moment of connecting beams due to shear ܫ௙భ, ,ݔሺ݌ Lateral load moment  ܯ Lagrangian ݈  Center to center shear wall distance  ܮ ௙మ Second moment of foundations 1 and 2ܫ  Lateral coordinate  ݕ Vertical coordinate  ݔ Longitudinal displacement ܸ  Total strain energy ஼ܸ  Strain energy of connecting beams ிܸ  Strain energy of foundations ௐܸ  Strain energy of walls  ݑ Time  ݐ Mass per unit height ܶ  Total Kinetic energy ௅ܶ  Longitudinal kinetic energy ோܶ  Rotational kinetic energy  ′ߩ Density  ߩ ሻ  Static load on structuresݔሺ݌ ሻ General dynamic loadݐ

 


