Modern Applied Science Vol. 2, No. 5

September 2008
www.ccsenet.org/journal.html eptember

Steady-state Analysis of the GI/M/1 Queue with Multiple

Vacations and Set-up Time

Guohui Zhao
College of Science, Yanshan University
Qinhuangdao 066004, China
E-mail: zhaoguohui821@163.com
Xinxin Du
College of Science, Yanshan University
Qinhuangdao 066004, China
Naishuo Tian
College of Science, Yanshan University
Qinhuangdao 066004, China
Xiaohua Zhao
College of Science, Yanshan University
Qinhuangdao 066004, China
Dongmei Zhao
College of Science, Yanshan University
Qinhuangdao 066004, China

Abstract

In this paper, we consider a GI/M/1 queueing model with multiple vacations and set-up time. We derive the distribution
and the stochastic decomposition of the steady-state queue length, meanwhile, we get the waiting time distributions.
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Introduction

Vacation queues servers to stop the customers’ service at some periods, and the time during which the service is
interrupted is called the vacation time. Vacation queue research originated from Levy and Yechial, then many
researchers on queuing theory deal with this fields. So far, the theory frame whose core is the stochastic decomposition
is developed and vacation queues have been applied successfully to many fields, such as computer systems,
communication networking, electronic and call centers. Details can be seen in the surveys of Doshi and the monographs
of Tian. For GI/M/1 type queues with server vacations, Tian used the matrix geometric solution method to analyze and
obtained the expressions of the rate matrix and proved the stochastic decomposition properties for queue length and
waiting time in a GI/M/1 vacation model with multiple exponential vacations.

1. Description of the model

Consider a classical GI/M/1 queue, inter-arrival times are i.i.d.r.vs. Let 4(x) and 4"(s) be the distribution function
and L.S transform of the inter-arrival time A4 of customers. The mean inter-arrival time is
E(A):—a*’(O): A" Service times during service period, vacation times and set-up times are assumed to be
exponentially distributed with rate 4,8, B, respectively. We assume that the service discipline is FCFS.

Suppose 7, be the arrival epoch of nth customers with 7,=0. Let L =L (r;) be the number of the customers

before the nth arrival. Define
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0,thenth arrival occurs during a service period,

J,=J(,)= 1, thenth arrival occurs during a set - up period,

2, the nth arrival occurs during a vacation period.
The process {(L,,J,),n > 1}is a Markov chain with the state space

Q={(0,2)U(k, j),k=1,;=0,1,2}.

We introduce the expressions below

» k ot k
a, = J'QZ') e “dA(t),k =20, b, = ”.,Be’ﬁ"' —[ ( k'X)] e " dxdA(t),k =0,
0 : 00 :

-y

ot 1- o k
¢, = ” j 0e " e Mw”ﬂuxdydA(z),k >0.
00 0 N

First, the transition from(i,0)to(j,0)occur if j+1- j services complete during an inter-arrival time. Therefore, we

have
Pioyjo = Gipi 2L j =1 i+1.
Similarly,
PG =bu 121 j =1 i+ 1 Py = .[e_ﬂtdA(t) =a (B)=7,
0
Diryiszy = ,[eigtdA(f) =a' @)=y, P =i jpi 20, =1 it 1L

0

Paian = | [0 e VdA) = 0(a’ (B)-a” (0)/(0-B) = a(r,—75)

The transition matrix of ( L,J,) can be written as the Block-Jacobi matrix

BOO AO]
B] 1 A()
P=1B, 4, 4 A4,
B3 A3 AZ Al A()
where By =1-c,—a(y,=1)=7s Ay =(cp, (7= 73),73)s
k
1-) a
a, 0 0 a 0 0 20:
— _ k
4,=| b, 7> 01, A4 ={b 0 0|k21 B, - 1—2171—72 k>l
c aly,=v) 1, c, 00 i=0
k
I—ZCi—a(}/z—}/3)—;/3)
i=0
The matrix P is a GI/M/1 type matrix.
2. Steady-state queue length distribution
Lemmal. If p=44"<1, 6,5>0,then §>0, B (5-A)>0.
0-p
where 5_ 1=¢ B _ n-rs |, n=d® _ n-rn ()
B-ul-a (B) p-uld-y,) O-pll-a (0)] 0-pul-y,)

Theorem 1. If p <1, 6,3>0, then the matrix equation p _ i R*A4, has the minimal non-negative solution

k=0
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7 0 0
R= po 7, 0
af(6=A) aly,=7) 7
where y, is the unique roots in the range 0<z<1of the equation z = a" (u(l - z)) -

a=6/(0-p),0 and Aare defined as in (1).

Proof. Becauseall 4,,k>0 are lower triangular, we assume that R has the same structure as
rn, 0 0
R=|r, n, O

we obtain

Zrllak_a(lu(l 1)) P =Yy By =V

k=0
Zrz (Z 11 - ljak+zr21;b/c’ By =a(y,=7;) )

0
k=1 i=0

" k-l 2 k=2-i
_ i k—1-i J o k=2—i—j
”31—2”31 27’11’33 a,\+2}’32r21 Z”n Iyl
= i=0

i=0 Jj=0

) k-1 0
i k-l k
+zrzz Zrzzrm b +Z’§30k
k=1 i=0 =0

As we known, if p <1,60>0, the first equation has the unique root 7;,=y, in the range(0 <, <1. We can compute

N Zkzbk:ﬂ[a*(ﬂ(l—rzz))_rzz]:ﬂ[a*(ﬂ(1—72))_72], w[ ; ;zl,ja IR SV el kzl_y]—a"(ﬂ(l—yz))
2 B-u(i-r,) B—u(-7,) =2 2 DR "7
_aul-7,))-7,

"=V ’

Finally, we obtain », = g5, #;;=af(5 — A)and the expression for R.
Theorem 2. The Markov chain ( Ln,Jn)is positive recurrent if and only if p<1, 6,5>0.

Proof. Based on Neuts, the Markov chain( ,J,) is positive recurrent if and only if the spectral radius

SP(R)=max {y,,7,,7,}of Ris less than 1, and the matrix
B()() AOI
B[R] = ZRk—lBk sz—lAk
k=1 k=1

has a positive left invariant vector. Evidently, SP(R)=max {y,,y,,7,}<1. Substituting the expressions for R, 4,and B, in

B[R],we obtain
I-¢, C 0 0
% — 0 0
V4 V4
B[R]= 1_ﬂ5a0+b_0 ﬂ5ao_b_0 0 0
VSR ST SV C R £}
y B 0{72_7/3 1
73
Where
“A Sy — _ _
A:—aﬁ[d A+ (7/2 7/3)]&0—&72 73+i_a72 73
nrs VEYE 7273 73 73
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A S(v— _
B:aﬂ(é‘ AL S 73)]a0+a72 Vs G
nrs VEYE 7273 73

It can be verify that B[R]has the left invariant vector
HOZK(Laﬁ(é‘_A)JZ(]/z_]/3)773)' (3)

Thus, if p<1, 8, >0, the Markov chain(Z ,.J,)is positive recurrent.

If p<1,8,[>0,let (L,,J)be the stationary limit of the process(L,,J, ).Let

Ty =T T = (T i)k 215
ﬂ’-kj :P{L:k,J:]}:}lgI;P{Lﬂ :k7‘]n :]}7(ksj)€Q

Theorem 3.  If p <1, the stationary probability distribution of (L ,J) is

k_ Kk k_ ok
”k()zKaﬂ(?/l }/2 é‘_yl 7/3 AJ,kZl,
=7 Nn=7

T IKO{(}/;—j/;),kZI,
7 =Ky k>0,

where g _ (1-7)(1=7)(1-7)
ap|(1-7,)8-(1=p,) A |+ a(r,=7,)(1=7)+(1-1)(1-7,)

Proof.  (7,,,7,.,7,.,7,) 1sgiven by the positive left invariant vector (3) and satisfies the normalizing condition
T T (T s )L = R) e =1

Then, we get

(1=7)(1=7)(1-7) )

0= 7)o-(=7)Ara(r-m)(1-7)+ (1=7)(-72)

We obtain

T =K, (70, 700,,7,) = K(af(6 = D), a(y, = 73).73) -
We have
Ty = (T s pn) = (o 701, T )RS k21,
Finally, we obtain the theorem.
Theorem 4. 1If p <1, the stationary queue length 7 can be decomposed into the sum of two independent random
variables: [, = L+ L,, where Lis the stationary queue length of a classical GI/M/1queue without vacation, follows a

geometric distribution with parametery,; [, follows the discrete PH distributions (¢, T)of order 2,where

K (a72—71+ﬂ5 _(a—l)(n—yl)mmj, _ K
1_7/1 1_72 1—73

3 1 :
T [;2 j’TO (1 }/2J
}/3 1_7/3

Proof. The PGF of L is as follows:

L(2)= iz"P(L‘, =k)

160



Modern Applied Science September, 2008

3

—Ka[ﬁ+(7é‘—7")z" polri-n) Z ﬂA(%k_ﬁ)zk]
(22 =7 7 —V3

_1-y K [al—zyl+z,6’5_(05—1)(1—271)+ZO‘/3AJ—L(z)L(,(z)
l=zy 1= 1=zy, =27,

Where L(z)is the PGF of L of a classical GI/M/1queue without vacation.

L=k [al—zyl+zﬂ5_(a—l)(1—zyl)+zaﬁAj 4)
1= 1-2zy, 1-2zy,
1_12%7“&; (1-zy, +2p5 27" C =y, 4 po -y, 27“ ‘.
—ZY,

Substituting the above equation into (4),we obtain the distribution of £, .

We can get means

Ery=2 i K {a%"%+2ﬁ5_(0l—1)(73—%3+0!ﬁA]
=y 1=pn  (=p) (-7,

3. Waiting time distribution
Let wand VI7(S) be the steady-state waiting time and its LST, respectively. Firstly, let H,,H, ,H, be the

probability that the server is in the service(set-up, vacation) period when a new customer arrives. We can compute

o ap[(1-7,)8-(1-7,)A]
Yoap[(1-7y)5-(1-n)A |+ a(r,—7,)(1=7)+(1-1)(1-7,)

_ (72 73)(1 }/1)
1 aﬂ[(l—n) (1 72 A]+a 7’2 7’3)( ) ( )(1 7/2)

(1_71)( 72) .
af[(1-7)6-(1-1.)A |+ a(r=r)(1=1)+(1=-n)(1-7)

Theorem 5. If p<1, 8,4>0,the LST of stationary waiting time W is
We)=p B _W+)=y) wl-y) 4+, 0 pl-y) B
"Bts p(-y)+s u(—y)+s CO+s u(l=y)+s fts
- {w (6 -A)s }(ws)(l—m (-7)  pl-7)
1T SU=r) A=) | m=p)+s w=py)+s pl=py)+s

Proof. When a customer arrives, if there are k& customers and the server is in the service period, the waiting time equals

B

i

H, =

k service times by the rate £ . Then, we have

zﬁko Wi (s) = Kaﬁz‘{?ﬁ 725 71 73 Aj[ Yz j

71 =72 7= V3 HtES

:H{M (5-A)s }(ws)(l—m (-7)  ul-y) )
S1-y)=A1=7,) | u(=p)+s u=p,)+s pl=y)+s

When a customer arrives, if there are A customers and the server is in the set-up period, the waiting time is the sum of

the residual set-up time and & service times by the rate £ . Then, we have

i”k[Wkl(‘g) = Kaii(ﬁ _73k)[ 2 j

B+sio H+s
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=g B wts)-y) pl-ry) (6)
CBts u=p)+s ul-y)+s
Similarly,
S e Y B0~ 0 wl-y) f )
kzz;ﬂ“sz(S) K;(y+sj P+sO+s H29+s,u(l—73)+s,ﬁ+s

From (5)-(7), we have the result in Theorem 4.
With the structure in Theorem 4, we can get the expected waiting time

E(W)_H{l+ ! +l}+H{ o | +1}
0 ul-y) p uld=y,) wul=yy) B

+H{71_ S-A +1+1]
N u-y) wu[6(-r)-Ad-r)] wl-y,) wld-y,)

4. Numerical examples

In the above analysis,we obtain the expected queue length in the steady state. The difference of parameters may
influence the queue length. So, we present numerical examples to explain.
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