
Modern Applied Science; Vol. 7, No. 6; 2013
ISSN 1913-1844 E-ISSN 1913-1852

Published by Canadian Center of Science and Education

59

Using Swarm Intelligence to Optimize the Energy Consumption for
Distributed Systems

Neil Bergmann1, Yuk Ying Chung2, Xiangrui Yang2, Zhe Chen2, Wei-Chang Yeh3, Xiangjian He3 & Raja Jurdak4
1 School of Information Technology and Electrical Engineering, The University of Queensland, Australia

2 School of Information Technologies, University of Sydney, Australia
3 University of Technology Sydney, Australia
4 CSIRO ICT Centre, Pullenvale, Australia

Correspondence: Yuk Ying Chung, School of Information Technologies, University of Sydney, NSW 2006,
Australia. Tel: 61-2-9036-9109. E-mail: vchung@it.usyd.edu.au

Received: November 16, 2012 Accepted: April 19, 2013 Online Published: May 21, 2013

doi:10.5539/mas.v7n6p59 URL: http://dx.doi.org/10.5539/mas.v7n6p59

Abstract
Large, distributed, network-based computing systems (also known as Cloud Computing) have recently gained
significant interest. We expect significantly more applications or web services will be relying on network-based
servers, therefore reducing the energy consumption of these systems would be beneficial for companies to save
their budgets on running their machines as well as cooling down their infrastructures. Dynamic Voltage Scaling
can save significant energy for these systems, but it faces the challenge of efficient and balanced parallelization
of tasks in order to maximize energy savings while maintaining desired performance levels. This paper proposes
our Simplified Swarm Optimization (SSO) method to reduce the energy consumption for distributed systems
with Dynamic Voltage Scaling. The results of SSO have been compared to the most popular evolutionary
Particle Swarm Optimization (PSO) algorithm and have shown to be more efficient and effective, reducing both
the execution time for scheduling and makespan.

Keywords: energy optimization, evolutionary algorithm, distributed computing

1. Introduction

According to recent research on energy consumption, the electricity usage on servers in U.S. in 2005 represents
0.6% of the total electricity consumption of the whole country, and the number goes to 1.2% when the cooling
infrastructures are also included (Koomey, 2008). In the past few years, out of the interest of large scalability,
cost efficiency and performance, the concept of cloud computing has became very popular among companies
that require huge amounts of computation, and nowadays the rapid growth of both experimental and commercial
cloud services has brought a significant influence on building large data centers, web services, and the whole
Internet, together with a tremendous growth of energy consumption on these machines.

Dynamic Voltage Scaling (Lee & Zomaya, 2009) is a power management technique that can optimize the energy
efficiency on distributed systems with or without influencing the overall performance depending on our goals. In
order to perform dynamic voltage scaling effectively, we need to find out the critical path in the task graph.
Unfortunately, the problem of finding out the critical path itself is NP-Complete (Garey & Johnson, 1990),
which means that the solutions can be hard to compute in a reasonable amount of time. In this paper, we propose
Simplified Swarm Optimization (SSO) to achieve better performance. The results have been compared with the
most popular evolutionary algorithm Particle Swarm Optimization (PSO) (Kennedy & Eberhart, 1995). We
explain the design of our experiments, how the algorithms work and why would they be effective in solving
distributed computing problems.

To evaluate the performance, we have focused on three parameters: makespan, time and energy consumption.
The evaluation approach will be introduced in Sections 2 and 3, and the experimental results and analysis will be
presented in Section 4.

www.ccsenet.org/mas Modern Applied Science Vol. 7, No. 6; 2013

60

2. Experiment Design
2.1 Overview

A distributed computing task can be presented as a directed graph with weights on each node indicating the
amount of computation that is needed to complete each task respectively.

Figure 1. An example graph

Figure 1 is an example graph, with the nodes 1 to 5 indicating 5 different individual tasks that are needed for the
whole computation. With dependencies to each other (shown as arrows), we know that in order to start
calculating task 5, task 3 and task 4 need to be finished beforehand. Inside a distributed system, a task scheduler
needs to distribute the tasks on different machines to make the overall performance efficient. For the example
that is given in Figure 1, a possible solution is to utilize 2 threads: one of them is made of tasks 1, 2, 3, 5 and the
other one is made of tasks 1, 4 and 5.
Parallel and distributed computing does not always provide a better performance compared to sequential
computing, with the delay and overhead caused by message sending and unbalanced parallelism
(http://en.wikipedia.org/wiki/Distributed_computing; http://en.wikipedia.org/wiki/Parallel_computing). Utilizing
dynamic voltage scaling can help us to optimize the time and energy consumption for unbalanced tasks in a
distributed system.

2.2 Dynamic Voltage Scaling

Dynamic Voltage Scaling (DVS) is a power management function that allows software (e.g. port through BIOS)
to scale up or scale down the voltage supply on components (such as RAM, CPU and disk) inside a computing
system. The power consumption (Rabaey, 1996) P on a device can be presented as follows.

2P CV f (1)
where C is the capacitance being switched per clock cycle; V is the supply voltage and f is the switching
frequency.

DVS has proven to be a very promising technique on DVS-enabled devices. To implement DVS efficiently in a
distributed computing system, we need to schedule the tasks on different processors so that we can reach the
maximum optimization with minimum energy power to finish the specific task. The available voltage levels are
normally pre-set according to the hardware standards. In our case, we have the following four levels according to
the Intel Pentium 4 Processor:

Table 1. The pre-set voltage level for the simulated hardware (Note 1)

Level Voltage
(V)

Relative Speed
(%)

Energy Reduction
(%)

0 1.75 100% 0%
1 1.4 80% 20%
2 1.2 60% 22%
3 0.9 40% 33%

www.ccsenet.org/mas Modern Applied Science Vol. 7, No. 6; 2013

61

Unfortunately, the algorithm of finding the critical path is NP-Complete, which means that the processing time is
super-polynomial to the input size. This renders the computation time prohibitive for problems with large
excessively large inputs. To address this issue, we have proposed the new evolutionary optimization algorithm
called Simplified Swarm Optimization (SSO), which we present in detail in Section 3. We first present the
graph-based model of distributed systems and the key performance parameters to provide context on the problem
that requires optimization.

2.3 Graph-Based Representation
We use Directed Acyclic Graph (DAG) file format to store the tasks. A DAG file indicates a tree structure of
tasks that need to be computed. In our DAG files, we specify the number of processors, the dependencies
between nodes, the processing time for each task on each processor, and the communication delay for each
dependency.

The proposed optimization algorithm can allocate the processor for each task as well as the voltage supply for
each pair of processor and task. The energy consumption will be calculated according to the voltage supply and
the relative speed.

2.4 Performance Parameters

The evaluation will be focused on three different aspects: makespan, time, and the energy optimization.

Makespan is the amount of time needed to finish processing all the tasks including the delays for
communications created during the distributed processes. The makespan is a key parameter to evaluate the
quality of the task schedule. A good schedule of tasks should be relatively more balanced so that we can achieve
good performance.

Time is the amount of time needed to schedule the tasks. Greedy algorithms always provide us with a solution in
the shortest time, however since our problem is NP-Complete, we need algorithms that make approximations so
that we can calculate the solution in a reasonable amount of time.

Energy consumption is the most important measure in our research, which includes energy needed for computing
the tasks, as well as the overhead created during distributing the tasks.

Our goal is to measure these three aspects for different optimization algorithms so that we can achieve the best
energy savings with the minimum performance cost.

3. Algorithms
This section introduces the class of swarm intelligence algorithms
(http://en.wikipedia.org/wiki/Swarm_intelligence). We briefly revisit the popular Particle Swarm Intelligence
approach, and then we introduce our Simplified Swarm Intelligence method.
3.1 Introduction to Swarm Intelligence
The inspiration of Swarm Intelligence (SI) (Beni, 1989) comes from nature. SI systems are often made up of a
set of robots or agents, who are operating on an n-dimensional space interacting locally with one and another.

The following will give an introduction to the most popular evolutionary algorithm Particle Swarm Optimization
(PSO) and the proposed Simplified Swarm Optimization (SSO). Both of them have been applied to the task
scheduling problem in this work.

3.2 PSO

The original idea of Particle Swarm Optimization (PSO) was inspired by the movement of bird flocking. The
PSO algorithm mimics the behavior of flying birds and their means of information exchange to solve
optimization problems. Each potential solution is seen as a particle with a certain velocity, and “flies” through
the problem space. Each particle adjusts its flight according to its own flying experience and its companions’
flying experience. The particle swarms find optimal regions of complex search spaces through the interaction of
individuals in a population of particles. PSO has been successfully applied to a large number of difficult
combinatorial optimization problems; and it often outperforms Genetic Algorithms (Goldberg, 1989).

In PSO, particles represent candidate solutions in a solution space, and the optimal solution is found through
moving the particles in the solution space. An individual particle flies through an n-dimensional search space
with a velocity that dynamically changes according to its own experience and other particles existing in the same
search space. The velocity changes under the following rule:

www.ccsenet.org/mas Modern Applied Science Vol. 7, No. 6; 2013

62

             1 1 2 2 1 1 1 1 1id t id t id t id t gd t id tV WV C R P X C R P X         (2)

     id t id t 1 id t 1X X V   (3)

where d=1, 2,3, ,S ; t is the round of iteration; Vi and Xi are the velocity and position of the ith particle; Pi is the
previous local best of particle I and is called pbest; Pα is the previous best position for all particles and is called
gbest; C1 and C2 are positive constants; and R1 and R2 are random values. All particles will be assessed on their
fitness by a function. A standard procedure for PSO can be described by the following:

1) Initialize t = 0, and S, and set P = S

2) Evaluate S and P, and define gbest and pbest

3) While t < MAX_ITERATION:

4) Update S using Equation (2) and Equation (3)

5) Evaluate S

6) Update P and redefine pbest and gbest

7) t = t+1

8) END While

9) Return gbest

3.3 SSO

In this paper, we propose Simplified Swarm Optimization (SSO) which is an adaptation of PSO using discrete
values and modifying the mutation operation to be determined randomly between 3 user-set limits. SSO uses
random populations with the mutation operation randomly changing each dimension of the particle as
determined by the aforementioned limits. This allows the user to change between focusing on finding local
optima and expanding the search to cover more of the problem space.

SSO is unique and effective due to its simple search methods. Prior to this, particles are mutated randomly with
random dimensions being changed in each cycle. Having each dimension change toward a local optimal or
global optimal dimension is very well suited to discrete data and distributed computing applications. Combining
with the above algorithms gives a wide variety of random vs. controlled mutation and continuous vs. discrete
data optimisation techniques.

The main difference of SSO and PSO is that, SSO does not need to use the velocity and the initial weight;
instead the update positions of particles are chosen based on the relationship between the values of the new
generated random variable and three pre-defined constants CW, CD and CG ranging from (0, 1):

 

 

 

  

wid t 1

w pid t 1

id t

p gid t 1

g

X [0,C)

P [C ,C)
X

g C ,C �

[C ,1)

if newRandom

if newRandom

if newRandom

x if newRandom










 
 

 

 (4)

where X is the position, P is the local best and g is the global best. During the iterations, for each dimension of
the particle, a newRandom variable is generated in the range of (0, 1), and the new position will be chosen
between previous position, local best, global best and the current location based on which interval the
newRandom lies in.

Based on the concept, SSO is more suitable to deal with discrete variables and PSO is more suitable to deal with
continuous variables.

In section 4, we will compare the performance of PSO and the proposed SSO in our experimental model and
explore the feasibility of using them as a task scheduler.

4. Performance Evaluation
4.1 Benchmark

To evaluate the performance, we need some comparative data. For example, the energy consumption usually

www.ccsenet.org/mas Modern Applied Science Vol. 7, No. 6; 2013

63

decreases when the execution time takes longer, and our goal is to find an operating point that balances between
the performance and energy saving. Therefore, when evaluating the energy consumption, we also need to take in
consideration of the speedups.

The makespan will be compared to the sequential runtime (T୭) of the original tasks so that we can see how
different the speedups (Amdahl, 1967) are by using different optimization techniques. To calculate the speedups,
we have:

oT
Speedup

makespan time



 (5)

We will also calculate the raw energy consumption (Eo), to evaluate the results. The energy optimization will be

algo o algoO E / E . We have used hundreds of simulated tasks from the DAG files to test and verify our proposed
SSO system. The optimization will be mainly measured by the macro-average of algoO .

4.2 Test Data

In this paper, we use a graph generator to generate a large set of DAG files for the testing data. The graph
generator can generate directed acyclic graphs with specified number of edges and nodes, and the amount of
computation needed for each task (node) and the communication (edge) is randomly selected from a list of
commonly used constant values.

Table 2. The testing result for PSO and SSO

 Makespan (ms) Time (ms) Energy (J)

None Overall 10005777 0 30595583

Avg 100% N/A 100%

PSO Overall 3806335 1079 23955588

Avg 42.64% N/A 78.24%

SSO Overall 2476881 855 24435717

Avg 27.02% N/A 79.21%

We have tested our model using sufficiently large amount of data in our experiments. For each test case, we have
calculated the makespan, time and energy consumption under no optimization and under optimization using
traditional PSO and the proposed SSO. To compare the differences, we have used the macro-average of
makespan and energy saving to calculate the average performance of the three testing algorithms: None (no
optimization), PSO and SSO.

Table 3. The speedup result for using PSO and SSO

 None PSO SSO

Speed up 1 2.63 4.03

4.3 Analysis

Table 2 shows the overall statistics of our experiment. From the table, we can see that both of the two algorithms
can achieve over 20% of energy savings and PSO can perform slightly (less than 1%) better than SSO. However,
SSO can provide scheduled tasks with better quality, and the makespan of SSO solutions are significantly less
than the makespan of PSO (from Table 2). The execution time of SSO is also around 10% smaller than PSO.
Table has shown the speedups (calculated using Equation (5)) of PSO and SSO. Our results show that SSO is
definitely providing a task schedule that consumes much less time than PSO. Also, we have found that both PSO
and SSO can work better when dealing with more complex tasks.

In the experiments, we have also tried various tasks of different topological structures, and the tasks are different
on many aspects which include: 1) the number of available processors, 2) the dependencies between the tasks, 3)
the depth of critical path, 4) the total number of possible paths. From our results, we have found that the structure
of the tasks have very little effect on the energy optimization; however the effect on makespan varies a lot.

www.ccsen

4.4 Compa

4.4.1 Mak

We have a
chart to co
algorithms
of makesp
Figure 2.

In Figure 2
makespan.
most of the

4.4.2 Time

Figure 3 b
coordinate
the time in
is 10% fas

4.4.3 Ener

The experi
studied the
for 500 ind

net.org/mas

arison
espan

also studied th
ompare the m
s are different
pan of SSO is

2, the x coord
. As displayed
e cases.

e

below shows t
e indicates the
n milli seconds
ster than PSO.

rgy
imental results
e performance
dividual test ca

he performanc
makespan of u

in makespan. A
only 65% of

Figure

inate indicates
d in the chart, t

the relationshi
test case index

s. We can see f

Figure 3.

s have shown
of PSO and S

ases.

0
1
2
3
4
5
6
7

1 37 73

milli-sec

Modern

ce of PSO and
sing SSO and
According to t
PSO, and we

2. Makespan c

s the index of
the ratio of PS

ip of the exec
x (test cases so
from Figure 3,

Execution tim

that both PSO
SSO on energy

73 10
9

14
5

18
1

21
7

c

n Applied Scienc

64

d SSO on indiv
d PSO. In this
the results in th
have found th

comparison fo

test case, and
SO makespan a

cution time of
orted by their
, the ratio of tim

me comparison

O and SSO can
y saving. In the

25
3

28
9

32
5

36
1

39
7

ce

vidual test cas
s work, we w
he previous tab
hat it also app

or SSO and PSO

the y coordina
and SSO make

f PSO and SS
execution time
me between PS

for PSO and S

n deliver over 2
e graph below,

39
7

43
3 Task I

ses. In Figure
would like to t

ble (Table 2),
plies to the ind

O

ate indicates th
espan is also r

SO. As shown
e), and the y c
SO and SSO h

SSO

20% of energy
, we are showi

Index

PSO

SSO

Vol. 7, No. 6;

2, we have us
test how these
the overall ave

dividual cases

he measureme
relatively stabl

n in Figure 3 t
coordinate indi
has shown that

y savings. We
ing the /PSOO

2013

sed a
e two
erage
from

ent of
le for

the x
cates
SSO

have

SSOO

www.ccsen

Figure 4 s
very close

5. Conclus
Task sche
computatio
to reduce
provide a
algorithms
approxima
system wit

We have
results hav
consumpti

Improving
reliance on
swarm inte
can be use

Reference
Amdahl, G

Capab
http:/

Beni, G. (
Scien

Distributed

Garey, M
NP-C

Goldberg,
Addis

Kennedy,
Intern

Kashan, A
mach

Koomey, J
http:/

Lee, Y. C
using
Comp

Parallel Co

net.org/mas

hows that the
to each other.

sions and Fut
eduling is a c
onal efficiency
the energy co
good solution

s can improve
ately 21% of th
thout using op

also studied t
ve showed tha
ion and task sc

g the energy ef
n distributed d
elligence can i

ed to schedule

es
G. M. (1967)
bilities. S
//dx.doi.org/10

(1989). From
nce, 3342, 1-9.

d Computing h

M. R., & Joh
Completeness. N

D. E. (1989)
son-Wesley.

J., & Eberha
national Confe

A. H., & Karim
hines. Compute

J. G. (2008). W
//dx.doi.org/10

., & Zomaya,
g dynamic vol
puting and the

omputing http

Figure 4.

ratio of PSOO

ture Work
common prob
y by implemen
ost. Even thou
n within a reas
e the performa
he entire energ

ptimization alg

the differences
at the propose
cheduling, thou

fficiency of com
data centers an
improve the en
tasks for other

). Validity of
Solid-State
0.1109/N-SSC.

Swarm Intelli
http://dx.doi.o

http://en.wikip

hnson, D. S.
New York, NY

. Genetic Algo

art, R. (1995).
erence on Neur

m, B. (2009).
ers & Industria

Worldwide ele
0.1088/1748-93

A. Y. (2009).
ltage scaling.
Grid. http://dx

://en.wikipedia

Modern

. Energy savin

SSO/ O is floa

blem for distr
nting swarm i

ugh the proble
sonable amoun
ance as well a
gy cost includ
orithm.

s between the
ed SSO tends
ugh PSO is als

mputation is b
nd servers. We
nergy efficienc
r distributed ta

f the Single P
Circuits

.2007.4785615

igence to Swa
org/10.1007/97

pedia.org/wiki/

(1990). Com
Y, USA: W. H

orithms in Sea

 Full text acc
ral Networks,

A discrete pa
al Engineering

ectricity used i
326/3/3/03400

 Minimizing e
In Proceeding

x.doi.org/10.1

a.org/wiki/Para

n Applied Scienc

65

g comparison

ating at around

ributed system
ntelligence tec

em itself is NP
nt of time with
as energy cons
ding the pre-ca

 proposed SS
to provide an

so acceptable f

becoming incre
e have demons
cy as well as th
asks such as dis

Processor App
Society

5

arm Robotics.
78-3-540-3055

/Distributed_co

mputers and
H. Freeman Co.

arch, Optimiza

cess may be a
4, 1942-1948.

article swarm o
g, 56(1), 216-2

in data centers
08

energy consum
gs of 9th IEE
109/CCGRID.

allel_computin

ce

for PSO and S

d 1. Therefore,

ms. In our re
chniques to so
P-Complete, th
hout delay. In
sumption, and

alculation and

O and the tra
n overall bette
for non time se

easingly more
strated that us
he performanc
sk drivers, and

proach to Ach
Newsletter,

Swarm Robo
52-1_1

omputing

Intractability
.

ation, and Ma

available. Par
 http://dx.doi.o

optimization a
223. http://dx.d

s. Environmen

mption for prec
EE/ACM Inter
.2009.16

ng

SSO

, the results of

esearch, we h
olve the task-s
he proposed S

n our model, b
d the amount o
latency when

aditional PSO.
er solution tha
ensitive system

important now
ing dynamic v

ce. Moreover, b
d GPUs.

hieving Large
IEEE,

otics Lecture N

y; A Guide t

achine Learnin

rticle swarm o
org/10.1109/IC

algorithm for
doi.org/10.1016

ntal Research L

cedence-const
rnational Symp

Vol. 7, No. 6;

f PSO and SSO

have improved
scheduling pro
SSO algorithm
both PSO and
of energy sav
compared wit

 Our experim
an PSO for en

ms.

wadays with gr
voltage scaling
both PSO and

e-Scale Comp
12(3), 1

Notes in Comp

to the Theor

ng. Reading, M

optimization. I
CNN.1995.488

scheduling pa
6/j.cie.2008.05

Letters, 3(034

trained applica
posium on Cl

2013

O are

d the
blem

m can
SSO
ed is
h the

mental
nergy

reater
g and
SSO

uting
9-20.

puter

ry of

Mass:

IEEE
8968

rallel
5.007

008).

ations
luster

www.ccsenet.org/mas Modern Applied Science Vol. 7, No. 6; 2013

66

Rabaey, J. M. (1996). Digital Integrated Circuits. Upper Saddle River, NJ: Prentice Hall.

Swarm Intelligence http://en.wikipedia.org/wiki/Swarm_intelligence

Notes
Note 1. Notice that the energy reduction is under the ideal situation and in real world, we have to consider the
communication delay

