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Abstract 
We intrduce a new algorithm for 1L  regularized generalized linear models. The 1L  regularization procedure is 
useful,especially because it ,in effect,selects variables according to the amount of penalization on the 1L  norm of the 
coefficients,in a manner less greedy than forward selection/backward deletion. The algorithm efficiently computes 
solutions along the entire regularization path using the predictor-corrector method of convex-optimization. Selecting the 
step length of the regularization parameter is critical in controlling the overall accuracy of the paths; we suggest 
intuitive and flexible strategies for choosing appropriate values. 
Keywords: Generalized Linear Models, Predictor-Corrector algorithm  
1. Introduction 
In this paper we propose a preditor-corrector algorithm for 1L  regularized generalized linear models (GLM). GLM 
models a random variable Y that follows a distribution in the exponential family using a linear combination of the 
predictors, βx′ , where x and β denote vectors of the predictors and the coefficients, respectively. The random and the 
systematic components may be linked through a non-linear function; therefore,we estimate the coefficientβ by solving 
a set of non-linear equations that satisfy the maximum likelihood criterion. 

       ( )ββ
β

;maxargˆ yL=                      (1) 

where L denotes the likelihood function with respect to the given data ( ){ }niyx ii ,,1:, L= .  

When the number of predictors p exceeds the number of observations n , or when insignificant predictors are present, 

we can impose a penalization on the 1L  norm of the coefficients for an automatic variable selection effect. Analogous 
to Lasso (Tibshirani 1996) that added a penalty term, to the squared error loss criterion, we modify criterion (1) with a 
regularization: 

       ( ) ( ){ }
1

;logminargˆ βλβλβ
β

+−= yL      (2) 

where 0>λ  is the regularization parameter. Logistic regression with 1L  penalization has been introduced and applied 
by other researchers, for example in Shevade & Keerthi (2003). 
2. Problem setup 
Let },,1,,:,{ niyxyx i

p
iii L−ℜ∈ℜ∈）（  be n  pairs of p factors and a response. Y follows a distribution in the 
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exponential family with mean ）（YE=µ  and variance ）（YVarV = . Depending on its distribution, the domain of 

iy  could be a subset of ℜ . GLM models the random componentY by equating its mean µ with the systematic 
component η  through a link function g : 

         ββµη xg ′+== 0)(                                (3) 

The likelihood of Y is expressed as follows (McCullagh & Nelder 1989): 
         }),()())((exp{),;( φφθθφθ ycabyyL +−=          (4) 

)(),( ⋅⋅ ba , and )(⋅c are functions that vary according to the distributions. Assuming that the dispersion parameter φ  is 
known, we are interested in finding the maximum likelihood solution for the natural parameter θ , and thus ),( 0 ′′ββ , 

with a penalization on the size of the 1L  norm of the coefficients (
1

β ). Therefore, our criterion with a fixed λ is 

reduced to finding ),( 0 ′′= βββ , which minimizes the following: 

         
1

1
)})(()({),( βλβθβθλβ +−−= ∑

=

n

i
iii byl           (5) 

Assuming that none of the components of β  is zero and differentiating ),( λβl with respect to 4565, we define a 
function H : 

         
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−′−==

β
λ

δµ
δηµ

δβ
δλβ

0
)(),( SgnyWXlH         (6) 

where X is an n by 1+p matrix including the column of s1′ ,W is a diagonal matrix with n  diagonal elements 
21 )( iiV

δη
δµ− , and 

δµ
δηµ)( −y  is a vector with n elements 

iiiy ))((
δµ
δηµ− .         

Our goal is to compute the entire solution path for the coefficients β , withλ  varying from ∞  to 0. We achieve this 
by drawing the uniquely determined curve 0),( =λβH in )2( +p  dimesional space )( 1

+
+ ℜ∈ℜ∈ λβ andp .Because 

),( λβl is a convex function of β , there exists a )(λβ  that attains the unique minimum value for each +ℜ∈λ . In fact, 
a unique continuous and differentiable function )(λβ , such that 0)),(( =λλβH  exists within each open range of λ  
that yields a certain active set of variables; the existence of such mappings ))(( λβλ →  can be shown using the 
implicit function theorem (Munkres 1991). We find the mapping )(λβ  sequentially with decreasing λ . 

3. Predictor-Corrector algorithm 
We introduced an algorithm that implements the predictor-corrector method to determine the entire path of the 
coefficient estimates as λ  varies , i.e., to find ( ){ }∞<< λλβ 0ˆ ： . Starting from ∞=λ , our algorithm computes a series 
of solution sets, each time estimating the coefficients with a smallerλ based on the previous estsmate. Each round of 
optimization consists of three steps: determining the step size in λ ; predicting the corresponding change in the 
coefficients, and correcting the error in the previous prediction. 
The following lemma provides the initialization of the coefficient paths: 

Lemma 1: When λ  exceeds a certain threshold, the intercept is the only nonzero coefficient: ( )yg=0β̂  and  

0)),0,0,ˆ(( 0 =λβ LH  for )()1(ˆmax
},,1{

ygyyWx jpj
′−′>

∈ L
λ        (7) 

Proof. The Karush-Kuhn-Kuhn-Tucker (KKT) optimality conditions for minimizing (5) imply  

     0ˆ)ˆ(ˆ =⇒<−′ ji yWx βλ
δµ
δηµ  for pj ,,1L=                (8) 

When 0ˆ =jβ f or all pj ,,1L= , the KKT conditions again inply 

       0)ˆ(ˆ1 =−′
δµ
δηµyW                                          (9) 

Which, in turn, yields 1)ˆ(1ˆ 0
1 βµ −== gy . 

Asλ is decreased further, other variables join the active set, beginning with the variable )1(maxarg0 yyxj jj −′= . 
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Reducing λ , we alternate between a predictor and a corrector step. 
3.1 Predictor step 
In the k-th perdictor step, ( )1kβ λ +

 is approximated by 

         ( )1
ˆ ˆk k

k k
ββ β λ λ
λ

+
+

∂
= + −

∂
                                 (10) 

             ( )( ) ( )
1

1
ˆ 0,k k

k k A k AX W X Sgnβ λ λ β
−

+
+

′′= − −                (11) 

kW  and 
AX  denote the current weight matrix and the columns of X  for the factors in the current active 

set,respectively. β  in the above equations are composed only of current nonzero coefficients.This linearization is 
equivalent to making a quadratic approximation of the log-likeihood and extending the current solution kβ̂ by taking a 
weighted lasso step (as in LARS). 
Define ( ) ( )( ),f Hλ β λ λ= ; in the domain that yields the current active set, )(λf  is zero for all λ .By differentiating f 

with respect to λ ,we obtain 

                   ( ) 0H Hf βλ
λ β λ

∂ ∂ ∂′ = + =
∂ ∂ ∂

                   (12) 

from which we compute δβ δλ . 

3.2 Corrector step  

In the following corrector step,we use ˆ kβ + as the initial value to find the β that minimizes ( )1, +kl λβ ,as defined in (5) 
(i.e.,that solves ( ) 0, 1 =+kH λβ for β ).Any (convex) optimization method that applies to the minimization of a 
differentiable objective function with linear constrains may be implemented. The previous predictor step has provided a 
warm start;because +kβ̂ is usually close to the exact solution 1kˆ +β , the cost of solving for the exact solution is low.The 
corrector steps not only find the exact solution at a givenλ but also yield the directions ofβ for the subsequent 
predictor steps. 
3.3 Active set 

The active set Α begins from the intercept as in Lemma 3.1;after each corrector step,we check to see if Α should 
have been augmented.The following procedure for checking is justified and used by Rosset&Zhu(2003) and 
Rosset(2004): 

         ( ) λ
δµ
δηµ >−′ yWx j

 for any Α∈j { }jUΑ←Α⇒           (13) 

We repeat the corrector step with the modified active set until the active set is not augmented further. We then remove 
the variables with zero coefficients from the active set. This is,  

         0ˆ =jβ  for any { }jj −Α←Α⇒Α∈                      (14) 

3.4 Step length 
Two natural choices for the step length 1+−=∆ kkk λλ  are: 

(1) ∆=∆k , fixed for every k ,or 

(2) a fixed change L  in 1L  arc-length,achieved by setting 
1

δλδβLk =∆ . 

As we decrease the step size,the exact solutions are computed on a finer grid of λ  values,and the coefficient path 
becomes more accurate. 
We propose a more efficient and useful strategy: 
(3) select the smallest k∆ that will change the active set of variables. 

We give an intuitive explanation of how we achieve this,by drawing on analogies with the Lars algorithm(Efron et 
al.2004).At the end of the thk −  iteration,the corrector step can be characterized as finding a weighted Lasso 

solution that satisfies ( ) 0
0

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−′−

β
λ

δµ
δηµ SgnyWX kkA

.This weighted Lasso also produces the direction for the next 
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predictor step.If the weights kW  were fixed,the weight Lars algorithm would be able to compute the exact step length 
to the next active-set change point.We use this step length,even though in practice the weights change as the path 
progresses. 
Lemma 2: Let µ̂  be the estimates of y  from a corrector step,and denote the corresponding weighted correlations as 

              ( )
δµ
δηµ̂ˆˆ −′= yWXc .                                   (15) 

The absolute correlations of the factors in Α (except for the intercept) are λ ,while the values are smaller than λ  for 
the factors in cΑ . 
Proof. The Karush-Kuhn-Tucker(KKT) optimality for minimizing(5)imply  

               ( ) .ˆˆ0ˆ λ
δµ
δηµβ =−′⇒≠ yWx jj

                        (16) 

This condition,combined with (7) and (8) ,proves the argument. 

The next predictor step extends β̂  as in (11),and,thus,the current correlations change.Denoting the vector of changes 
in correlation for a unit decrease in λ  as a , 

                ( ) hachc −= ˆ                                        (17) 

                    ( ) ,ˆ
0ˆˆˆ

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′′−=

−

β
SgnXWXXWXhc AAA

               (18) 

Where 0>h  is a given decrease in λ .For the factors in Α ,the values of a  are those of 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

β̂

0
Sgn .To find the h  

with which any factor in cΑ  yields the same absolute correlation as the ones in Α ,we solve the following equations: 

                ( ) hhachc jjj −=−= λˆ  for any cj Α∈               (19) 

The equations suggest an estimate of the step length in λ  as 
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In addition,to check if any variable in the active set reaches 0 before λ  decreases by h ,we solve the equations 

            ( ) ( ) 0ˆ
0ˆ~ˆ~ 1

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′+=

−

β
ββ SgnXWXhh AAjj

 for any Α∈j .      (21) 

If hh <<
~0  for any Α∈j ,we expect that the corresponding variable will be eliminated from the active set before any 

other variable joins it;therefore, h~  rather than h  is used as the next step length. 

Letting the coefficient paths be piecewise linear with the knots placed where the active set changes is a reasonable 
simplification of the truth based on our experience(using both simulated and real datasets). If the smallest step length 
that modifies the active set were to be larger than the value we have estimated,the active set remains the same,even after 
the corrector step.If the true step length were smaller than expected,and,thus,we missed the entering point of a new 
active variable by far,we would repeat a corrector step with an increased λ .Therefore,our path algorithm almost 
precisely detects the values of λ  at which the active set changes,in the sense that we compute the exact coefficients at 
least once before their absolute values grow larger than δ (a small fixed quantity). 
We can easily show that in the case of Gaussian distribution with the identity link, the piecewise linear paths are exact. 
Because βµ ˆˆ X ′=  and )( ii yVarV =  is constant for ni ,,1L= , ),( λβH  implifies to ),0()( ′+−′− βλµ SgnyX . The 
step lengths are computed with no error; in addition, since the predictor steps yield the exact coefficient values, 
corrector steps are not deccessary. In fact, the paths are identical to those Lasso. 
4. Discussion 
We can extend the use of the predictor-corrector scheme by generalizing the loss+penalty function to any convex and 
almost differentiable functions. For example, we can find the entire regularization path for the Cox proportional hazards 
models with 1L  penalization,. Just as the solution paths for Gaussian distribution were computed with no error 
through the predictor-corrector method, so any other piecewise linear solution paths can be computed exactly by 
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applying the same strategy. 
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