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Abstract 

Moving mass control (MMC) method is of benefit to reentry aircrafts in shape maintenance, energy consume 
reduction and load capability increase. However, as an aerodynamic manipulating method, MMC partially lacks 
ability to perform effectively during a whole airspace flight. To achieve reentry aircrafts control system design 
goal of high performance and low energy cost, we propose a moving mass and reaction compound control 
system design method in this paper. Firstly, dynamic models are established for a reentry aircraft actuated by 
moving mass and reaction compound control system, including MMC actuator models. Secondly, moving mass 
control periodic equivalent torque (MMCPET) is defined, and an optimal torque distribution compound control 
method based on MMCPET prediction is presented. The optimal object of torque distribution is minimizing 
difference from MMCPET and control torque command given by virtual controller. Finally, comparison 
simulations are performed to demonstrate validity of the proposed method. Simulation results show that the 
proposed compound control is more effective than moving mass control. Also, even if performance of compound 
control is nearly the same as that of reaction control, thrust impulse requirement of the former is close to 1/5 of 
the latter. 
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1. Introduction 

As a special attitude control method for reentry aircrafts, Moving Mass Control (MMC) has distinct advantages 
from rudder control and reaction control. For example, the servo system of MMC is settled inside the shell, 
which makes the control performance of MMC more reliable than rudder control. Also, by using all aerodynamic 
forces acting on the shell to provide control torque, MMC is more effective than rudder control and need less 
energy cost than reaction control. Unfortunately, as an aerodynamic manipulating method, MMC is not always 
able to provide high performance attitude control for a whole airspace reentry aircraft. 

As we all known, reaction control system (RCS) is able to provide stable control torque in any aerodynamic 
condition. Therefore, combining moving mass control with reaction control, we can obtain a new control method 
that will lead to whole airspace high attitude control performance of reentry aircrafts. According to KONG Xue 
et al. (2009), adjusting static stability by MMC is helpful to improve reaction control performance. However, the 
effect of MMC torque on attitude control is not focused in her research, nor is to make full use of MMC torque 
in compound control system design for reducing energy cost. 

In this paper, we focus on making full use of MMCS control torque in moving mass and reaction compound 
control system design, in order to obtain a compound control system that is high performance and low energy 
cost, and an optimal torque distribution compound control method is proposed. 

2. Dynamic Models 

2.1 Compound Control System Collectivity 

Consider an axial symmetry reentry aircraft actuated by both moving mass control system and reaction control 
system. The former control system includes three one-dimensional movable blocks. Each of them can move 
along one of body frame axes without any rotation relative to the body frame. As for the latter, twelve 
pulse-width modulated thrusters compose the reaction control system. Thrusters for pitch and yaw are located in 
pairs in the nose and tail of the aircraft, while those for roll are located in the middle. All thrusters are configured 
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to allow “coupled” RCS firings (where thrusters on opposite sides of the aircraft fired together), which allows 
adjusting the aircrafts attitude without affecting the critical accuracy of their trajectories. 

Considering that the reentry aircraft is axial symmetry, the compound control system collectivity for only pitch 
channel is shown in Figure 1. Here, P represents press center, C represents the total mass center, and O represents 
mass center of the shell, which is the aircraft except for moving mass control system. Let 
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Figure 1. Compound control system collectivity for pitch channel 

 
2.2 Govern Equation of Attitude Motion 

Based on angular momentum theorem, vector equation of attitude motion for a reentry aircraft actuated by 
moving mass and reaction compound control system, which is written in body frame, can be described as 
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Where, B
Oω is angular velocity, 3 3R ωM is aerodynamic damping, sm is total mass, CI is inertia and 

B
PCr  is the 

vector from point P to point C. For the ith movable block, i is the ratio from block mass to total mass, and
,

i i

B B
OA OAr r  are block velocity and acceleration with respect to body frame, 

i

B
CAr is the block position vector with 

respect to point C. For the jth thruster, jF is the thrust value, 
j

B
Bp is the direction vector, and

j

B
CBr is the vector 

from point C to the point of thrust. 

2.3 Actuator Models of MMCS 

The servo characteristic of the movable block can be described as a second order object, therefore motion 
models of MMCS actuators are 

2 22 , 1,2,3i i i i i i i ic i                                        (2) 

Where, ic  is coordinate command of the ith block given by controller, and ,i i  are relative servo damping and 
nature frequency. Coordinate commands are restricted by space constrains of the blocks. 

3. Optimal Torque Distribution Compound Control Method 

To make up for MMC deficiency, reaction control is introduced to form a compound control method of whole 
airspace reentry aircrafts. Considering characteristics of those control systems, any good design of the compound 
control should aim at high performance and low energy cost. One simple design to achieve that goal is 
dynamically distributing control torque demands given by virtual controller, in the way of making MMC torque 
as close to torque demands as possible. However, MMC is a continuous control method while reaction control is 
discrete, which makes the compound system a hybrid system. Consequently, it is difficult to design torque 
distribution rules without uniform criterion to evaluate control torques provided by MMCS and RCS. 

In this paper, we choose periodic equivalent torque to be the uniform torque evaluation criterion, and propose an 
optimal torque distribution compound control method based on MMC periodic equivalent prediction. Compound 
control design for only pitch channel is given as an example, and following problems are solved: 

 What is MMC periodic equivalent torque (MMCPET) and how to calculate or even predict it; 

 What is the optimization function to make full use of MMC torque in the compound control design; 
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 How to solve the optimal problem and obtain servo commands for both MMCS and RCS. 

The structure of proposed compound control is shown in Figure 2. 

 
Figure 2. Optimal torque distribution compound control structure 

 
3.1 Virtual Controller Design 

Suppose lateral motion is indistinctive, attitude motion equations for pitch channel, derived from Equation 1, are  
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Where, bzM represents RCS periodic equivalent torque with a period of dT , Rl  is axial coordinate of press 
center in body frame, supposed to be a constant.  

Let  2 2 1 1 2 2 3 3az x R yM R l l l R          be instantaneous MMC torque, cz az bzM M M  be compound control 
torque, and thus the control model for virtual controller design can be obtained according to Equation 3, which is  

z
z z cz zI M M f                              (4) 

With full consideration of engineering practicability, PID control method is used to design the virtual controller. 
Therefore the control law is 

0

t

cz p d iM K e K e K e dt                                 (5) 

Where re     is attack angle error. 

3.2 Definition and Prediction of MMCPET 

We define MMCPET as the average torque of all instantaneous MMC torque working on aircraft during a period 
of dT , which can be described as  

  2 2 1 1 2 2 3 30

1 dT

ap x R y
d

M R l l l R dt
T

               (6) 

Accordingly, only after all aerodynamic forces and MMC block position coordinates during the period are 
known, MMCPET is able to be calculated. However, to distribute the control torque, what we need is to predict 
MMCPET in the beginning of every period, and the exact information mentioned above cannot be known. To 
solve this problem, we use MMCS actuator models to predict MMC block position coordinates during the period, 
and simplify MMCPET calculation by taking aerodynamic forces as constant values in one period. As a result, 
the MMCPET prediction method we got is effective when following conditions are satisfied: 

 The pulse-width modulation period dT  is short enough that aerodynamic force changes during the period 
can be neglected reasonably. 
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 Rl  and 1  are constants, so as the distance between press center and total mass center 

1 1 2 2 3 3PC Rx l l l       . 

 At the beginning of every period, aircraft apparent acceleration ,Ax Aya a , position coordinate 20  and relative 
velocity 20  of the second block can be easily measured on line. Thus the aerodynamic forces at that time can be 
calculated, and the equations are ,x s Ax y s AyR m a R m a  . 

 MMCS servo characteristic can be described as Equation 2, and values of 2 2,   are known. The space 
constraint condition of second block is 2 maxy   

When above conditions are all satisfied, the prediction of MMCPET can be described as 
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Where, position coordinate prediction  2 t of the second block during the period is  
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Equations 7-8 show that MMCPET for one control period is single function of servo command 2c , because 
values of 20 20, ,,Ax Aya a    are known constants during the period.   

3.3 Optimal Torque Distribution Rules and Optimal Solution 

To make full use of MMC torque, we define  2
2cz apJ M M  

 
as our optimal objective function for optimal 

torque distribution, which can be described as. Let 2c 

 be the optimal solution of the problem described by 
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And the optimal torque distribution rules are  
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Where, the distributive MMC torque acM  equals to the optimal MMCPET  2ap cM   , and the distributive 
reaction control torque bcM is the compensation torque corresponding to the optimal MMCPET. 

The above optimal problem is not difficult to be solved. Define two constants to simplify the optimal objective 
function, which are 
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(11) 
Accordingly, J  can be expressed as a quadratic polynomial function of 2c , as is shown below 

 2

2 2cJ a b                                   (12) 

From Equation 12, we can obtain the nonrestraint solution * b a    , which satisfies  2 0cJ     . Define 

cY as the feasible set of the optimal problem, which can be described as  max max,y y c JY Y . Here, if 
*

max maxy y   ,  *= JY , otherwise =JY . By searching within cY , we can easily obtain the optimal solution 
*
2c . 

3.4 Servo Commands of MMCS and RCS 

After we solve the optimal torque distribution problem, the distributive torque for MMCS and RCS are obtained. 
Then we can calculate the servo commands for these two control systems. For MMCS, servo command is 
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